1
|
Tamiyakul H, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Tanasupawat S, Warisnoicharoen W. Changes in protein patterns of Staphylococcus aureus and Escherichia coli by silver nanoparticles capped with poly (4-styrenesulfonic acid-co-maleic acid) polymer. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
While silver nanoparticles (AgNPs) are increasingly attractive as an antibacterial agent in many applications, the effect of AgNPs on bacterial protein profiles, especially AgNPs stabilized by polymeric molecules, is not well understood.
Objectives
To investigate the changes in bacterial protein patterns by AgNPs capped with poly (4-styrenesulfonic acid-co-maleic acid) (AgNPs-PSSMA) polymer toward Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922.
Methods
The growth of bacteria after incubated with AgNPs-PSSMA for different time intervals was determined by optical density at 600 nm. Their protein patterns were observed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the proteomic analysis of extracted proteins was determined by liquid chromatography-tandem mass spectrometry (LC–MS/MS).
Results
AgNPs-PSSMA was able to inhibit the growth of both S. aureus and E. coli cells. The treated bacterial cells expressed more proteins than the untreated cells as seen from SDS-PAGE study. Nanosilver (NS) caused the upregulation of metabolic gene, waaA, in S. aureus cells. For E. coli cells, the upregulated proteins were metabolic genes (srlB, fliE, murD) and other genes dealt with DNA replication (dinG), DNA–RNA transcription (yrdD), RNA– protein translation (rplD), molecular transport (sapF), and signal transduction (tdcF).
Conclusions
The antibacterial effect of AgNPs-PSSMA may arise by changing the bacterial proteins and thus interfering with the normal cell function.
Collapse
Affiliation(s)
- Hathaichanok Tamiyakul
- Graduate School of Nanoscience and Technology, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), The National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330 , Thailand
| | - Warangkana Warisnoicharoen
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok 10330 , Thailand
| |
Collapse
|
2
|
Targeted transcriptional and proteomic studies explicate specific roles of Bacillus subtilis iturin A, fengycin, and surfactin on elicitation of defensive systems in mandarin fruit during stress. PLoS One 2019; 14:e0217202. [PMID: 31120923 PMCID: PMC6532888 DOI: 10.1371/journal.pone.0217202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Application of Bacillus cyclic lipopeptides (CLPs); fengycin, iturin A and surfactin has shown a great potential in controlling the spread of green mold pathogen invasion (Penicillium digitatum) in wounded mandarin fruit during postharvest period. The limited defensive protein profiles followed specific expression of pivotal genes relating to plant hormone mediating signaling pathways of the CLPs’ action on stimulating host plant resistance have been exhibited. The present study aimed to elucidate the specific effect of individual CLP obtained from Bacillus subtilis ABS-S14 as elicitor role on activation of plant defensive system at transcriptional and proteomic levels with and without P. digitatum co-application in mandarin fruit. Fengycin and iturin A elevated the gene expression of PAL, ACS1, ACO, CHI, and GLU while significantly stimulating plant POD transcription was only detected in the treatments of surfactin both with and without following P. digitatum. An increase of LOX and PR1 gene transcripts was determined in the treatments of individual CLP with fungal pathogen co-application. Fengycin activated production of unique defensive proteins such as protein involved in ubiquinone biosynthetic process in treated flavedo without P. digitatum infection. Proteins involved in the auxin modulating pathway were present in the iturin A and surfactin treatments. CLP-protein binding assay following proteome analysis reveals that iturin A attached to 12-oxophytodienoate reductase 2 involved in the oxylipin biosynthetic process required for jasmonic acid production which is implicated in induced systemic resistance (ISR). This study suggests specific elicitor action of individual CLP, particularly iturin A showed the most powerful in stimulating the ISR system in response to stresses in postharvest mandarins.
Collapse
|
3
|
Tunsagool P, Jutidamrongphan W, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Leelasuphakul W. Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. PLANT CELL REPORTS 2019; 38:559-575. [PMID: 30715581 DOI: 10.1007/s00299-019-02386-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 05/11/2023]
Abstract
Bacillus subtilis CLP extract activates defense gene expression and increases the unique protein production involving in pathways of ISR, SAR, ubiquitin-proteasome system, and glycolysis for stress responses in flavedo tissues. Cyclic lipopeptides (CLPs) of Bacillus subtilis ABS-S14 had ability to activate plant defensive pathways, increase resistance and control green mold rot caused by Penicillium digitatum in mandarin fruit. The current study investigated transcriptional and proteomic data to highlight the unique induction effect of CLPs produced by B. subtilis ABS-S14 on the defense mechanism of mandarins in response to P. digitatum attack, and their differences from those following the exogenous plant hormone application. The proteomic patterns of the flavedo tissues as affected by Bacillus CLP extract, salicylic acid (SA), methyl jasmonate (MeJA), and ethephon (Et) were explored. qPCR analysis revealed the great effects of CLP extract in enhancing the transcription of PAL, ACS1, GLU, POD, and PR1. Tryptic peptides by LC-MS analysis between treatments with and without fungal infection were compared. B. subtilis CLP extract empowered the plant's immune response to wound stress by the significant production of calmodulin-binding receptor-like cytoplasmic kinase 2, molybdenum cofactor sulfurase, and NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase. Ubiquitin carrier protein abundance was developed only in the treated flavedo with CLP extract coupled with P. digitatum infection. The gene expression and overall proteome findings involving pathways of ubiquitin proteasome system, ISR, SAR, and energy production provide a new insight into the molecular mechanisms of the antagonist B. subtilis ABS-S14 inducing resistance against green mold in mandarins.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biochemistry, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | - Narumon Phaonakrop
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Janthima Jaresitthikunchai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park (TSP), Pathum Thani, 12120, Thailand
| | | |
Collapse
|
4
|
Top-Down Proteomics and Farm Animal and Aquatic Sciences. Proteomes 2016; 4:proteomes4040038. [PMID: 28248248 PMCID: PMC5260971 DOI: 10.3390/proteomes4040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023] Open
Abstract
Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.
Collapse
|
5
|
Khornchatri K, Kornthong N, Saetan J, Tinikul Y, Chotwiwatthanakun C, Cummins SF, Hanna PJ, Sobhon P. Distribution of serotonin and dopamine in the central nervous system of the female mud crab, Scylla olivacea (Herbst). Acta Histochem 2015; 117:196-204. [PMID: 25618422 DOI: 10.1016/j.acthis.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/13/2023]
Abstract
In crustaceans serotonin (5-HT) and dopamine (DA) are neurotransmitters that play roles in the modulation of numerous physiological functions, including reproduction. However, in the mud crab, Scylla olivacea, the distributions of 5-HT and DA in the CNS have not yet been investigated. The aim of our study was to map the distributions of these two neurotransmitters in the central nervous system (CNS) of the female of this crab during the late stage of ovarian development. We found 5-HT immunoreactivity (-ir) and DA-ir in many parts of the CNS, including the eyestalk, brain, and thoracic ganglia. In the eyestalk, 5-HT-ir was localized in the medulla terminalis (MT), hemi-ellipsoid body (HB), and protocerebral tract (PT), whereas DA-ir was present in neuronal cluster 1, the LG neuropils, and PT. In the brain, 5-HT-ir and DA-ir were detected in cells and fibers of neuronal clusters 6, 7, 8, 9, 10, 11, 14, and 15. In the ventral nerve cord, 5-HT-ir was present in neurons of the abdominal ganglia, whereas DA was only present in fibers. These spatial distributions of 5-HT and DA suggest that they may be involved in the neuromodulation of important physiological functions, including ovarian maturation, as shown in other non-crab decapods.
Collapse
|
6
|
Proteomic analysis of ovarian proteins and characterization of thymosin-β and RAC-GTPase activating protein 1 of the giant tiger shrimp Penaeus monodon. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:9-19. [PMID: 24946223 DOI: 10.1016/j.cbd.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 11/20/2022]
Abstract
Cellular proteomics of total proteins in ovaries of domesticated and wild giant tiger shrimp (Penaeus monodon) were examined using GeLC-MS/MS. In total, 1638 proteins matched those previously deposited in databases and 1253 (76.50%) of these significantly matched known proteins. Several reproduction-related proteins (e.g. Cdc2, Cyclin B, Cdc25, 14-3-3, thymosin-β and Rac-GTPase activating protein 1) were identified. In addition, the full-length cDNA of P. monodon thymosin-β (PmTmsb; 1084 bp with an ORF of 387 bp and 128 deduced aa) and Rac-GTPase activating protein 1 (PmRacgap1; an ORF of 1881 bp and 626 deduced aa) were further characterized. PmTmsb was constitutively expressed in all tissues. In contrast, PmRacgap1 was more abundantly expressed in gonads than in several non-reproductive tissues (e.g. subcuticular epithelium, hepatopancreas, intestine, pleopods, stomach and thoracic ganglion). The expression levels of PmTmsb and PmRacgap1 in ovaries of wild adult broodstock were significantly greater than those in ovaries of juveniles (P<0.05). However, their expression levels did not vary significantly during ovarian development stages in intact broodstock. However, eyestalk ablation resulted in a significant reduction in PmTmsb expression at stages I and III ovaries (P<0.05), although it did not affect PmRacgap1 transcription significantly at these stages. On the other hand, use of polyclonal antibodies derived from recombinant PmTmsb and PmRacgap1 revealed that levels of both proteins decreased at the late stage (IV) of ovarian development. Our results suggested that PmTmsb and PmRacgap1 may act as negative effectors during ovarian development in P. monodon.
Collapse
|
7
|
Phinyo M, Visudtiphole V, Roytrakul S, Phaonakrop N, Jarayabhand P, Klinbunga S. Characterization and expression of cell division cycle 2 (Cdc2) mRNA and protein during ovarian development of the giant tiger shrimp Penaeus monodon. Gen Comp Endocrinol 2013; 193:103-11. [PMID: 23899716 DOI: 10.1016/j.ygcen.2013.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/24/2013] [Accepted: 07/11/2013] [Indexed: 11/26/2022]
Abstract
The meiotic maturation of oocytes is regulated by the maturation-promoting factor (MPF), a complex of Cdc2 (Cdk1) and Cyclin B. Here, the complete open reading frame (ORF) of Cdc2 in Penaeus monodon was characterized. PmCdc2 were 900bp in length corresponding to a polypeptide of 299 amino acids with the conserved Thr14, Tyr15 and Thr161 residues. Quantitative real-time PCR indicated that the expression level of PmCdc2 in wild intact broodstock was significantly increased in stages II (vitellogenic) and III (early cortical rod) ovaries relative to stage I (previtellogenic) ovaries and peaked in stage IV (mature) ovaries (P<0.05). The expression level of PmCdc2 in stages I-IV ovaries of eyestalk-ablated broodstock was greater than that of the same ovarian developmental stages in intact broodstock (P<0.05). Expression levels of PmCdc2 in ovaries of 18-month-old P. monodon upon 5-HT injection (50μg/g body weight) were significantly increased at 1hour post injection (hpi, P<0.05). Recombinant PmCdc2 protein and its polyclonal antibody were successfully produced. Western blot analysis revealed the expected 34kDa band (PmCdc2) along with a smaller band of 23kDa (ribosomal protein S3) in ovaries of juveniles and various ovarian stages of broodstock. Using phospho-Cdc2 (Thr161) polyclonal antibody, the positive signal of 34kDa was observed in all ovarian stages but the most intense signal was found in stage IV ovaries. Results in the present study indicated that PmCdc2 gene/protein plays an important role in the development and maturation of oocytes/ovaries in P. monodon.
Collapse
Affiliation(s)
- Mahattanee Phinyo
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
8
|
Talakhun W, Khamnamtong B, Nounurai P, Klinbunga S, Menasveta P. Characterization, expression and localization of valosin-containing protein in ovaries of the giant tiger shrimp Penaeus monodon. Gene 2013; 533:188-98. [PMID: 24095778 DOI: 10.1016/j.gene.2013.09.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
Valosin-containing protein (VCP), a member of the ATPase-associated with diverse cellular activity (AAA) family, was identified from the giant tiger shrimp (Penaeus monodon). The full-length cDNA of the PmVCP mRNA consisted of 2,724 bp containing an ORF of 2,367 bp corresponding to a deduced polypeptide of 788 amino acids. The deduced PmVCP protein contained two putative Cdc48 domains (positions 17-103, E-value=2.00e-36 and 120-186, E-value=3.60e-11) and two putative AAA domains (positions 232-368, E-value=3.67e-24 and 505-644, E-value=3.73e-25). PmVCP mRNA expression in ovaries was greater than that in testes in both juveniles and broodstock. PmVCP was significantly up-regulated in stages II and IV ovaries in intact wild broodstock (P<0.05) but it was not differentially expressed during ovarian development in eyestalk-ablated broodstock (P>0.05). The expression level of PmVCP mRNA in ovaries of 14-month-old shrimp was not affected by progesterone injection (0.1μg/g body weight, P>0.05). In contrast, exogenous 5-HT administration (50μg/g body weight) resulted in an increase of PmVCP mRNA in ovaries of 18-month-old shrimp at 6 and 24h post-injection (hpi) (P<0.05). The rPmCdc48-VCP protein and its polyclonal antibody were successfully produced. Cellular localization revealed that PmVCP was localized in the ooplasm of previtellogenic oocytes. Subsequently, it was translocated into the germinal vesicle of vitellogenic oocytes. Interestingly, PmVCP was found in nucleo-cytoplasmic compartments, in the cytoskeletal architecture and in the plasma membrane of mature oocytes in both intact and eyestalk-ablated broodstock.
Collapse
Affiliation(s)
- Witchulada Talakhun
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|