1
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
3
|
Rapamycin suppresses inflammation and increases the interaction between p65 and IκBα in rapamycin-induced fatty livers. PLoS One 2023; 18:e0281888. [PMID: 36867603 PMCID: PMC9983852 DOI: 10.1371/journal.pone.0281888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
Rapamycin treatment significantly increases lifespan and ameliorates several aging-related diseases in mice, making it a potential anti-aging drug. However, there are several obvious side effects of rapamycin, which may limit the broad applications of this drug. Lipid metabolism disorders such as fatty liver and hyperlipidemia are some of those unwanted side effects. Fatty liver is characterized as ectopic lipid accumulation in livers, which is usually accompanied by increased inflammation levels. Rapamycin is also a well-known anti-inflammation chemical. How rapamycin affects the inflammation level in rapamycin-induced fatty liver remains poorly understood. Here, we show that eight-day rapamycin treatment induced fatty liver and increased liver free fatty acid levels in mice, while the expression levels of inflammatory markers are even lower than those in the control mice. Mechanistically, the upstream of the pro-inflammatory pathway was activated in rapamycin-induced fatty livers, however, there is no increased NFκB nuclear translocation probably because the interaction between p65 and IκBα was enhanced by rapamycin treatment. The lipolysis pathway in the liver is also suppressed by rapamycin. Liver cirrhosis is an adverse consequence of fatty liver, while prolonged rapamycin treatment did not increase liver cirrhosis markers. Our results indicate that although fatty livers are induced by rapamycin, the fatty livers are not accompanied by increased inflammation levels, implying that rapamycin-induced fatty livers might not be as harmful as other types of fatty livers, such as high-fat diet and alcohol-induced fatty livers.
Collapse
|
4
|
Wei Q, Zhou J, Wang K, Zhang X, Chen J, Lu D, Wei X, Zheng S, Xu X. Combination of Early Allograft Dysfunction and Protein Expression Patterns Predicts Outcome of Liver Transplantation From Donation After Cardiac Death. Front Med (Lausanne) 2021; 8:775212. [PMID: 34957150 PMCID: PMC8692269 DOI: 10.3389/fmed.2021.775212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Early allograft dysfunction (EAD) after liver transplantation (LT) accompanies poor prognosis. This study aims to explore the relationship between pretransplant intrahepatic proteins and the incidence of EAD, and the value of combined EAD and protein profiles for predicting recipient and graft survival prognosis. Liver biopsy specimens of 105 pretransplant grafts used for LT were collected and used for immunohistochemistry analysis of 5 proteins. And matched clinical data of donor, recipient, transplantation, and prognosis were analyzed. The incidence of EAD was 41.9% (44/105) in this cohort. Macrovesicular steatosis (P = 0.016), donor body mass index (P = 0.013), recipients' pretransplant serum creatinine (P = 0.036), and intrahepatic expression of heme oxygenase 1 (HO1) (P = 0.015) and tumor necrosis factor α (TNF-α) (P = 0.039) were independent predictors of EAD. Inferior graft and recipient prognosis were observed in patients who experienced EAD (P = 0.028 and 0.031) or received grafts with higher expression of sirtuin 1 (P = 0.005 and 0.013). The graft and recipient survival were worst in patients with both EAD and high expression of sirtuin 1 (P = 0.001 and 0.004). In conclusion, pretransplant intrahepatic expression of HO1 and TNF-α are associated with the incidence of EAD. The combination of EAD and EAD-unrelated proteins showed superiority in distinguishing recipients with worse prognosis.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kun Wang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuanyu Zhang
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junli Chen
- China Liver Transplant Registery, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,National Health Commission Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Qin H, Zhang G, Zhang L. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells. Exp Ther Med 2018; 15:3439-3448. [PMID: 29545866 DOI: 10.3892/etm.2018.5863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guang Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
6
|
Yu A, Dang W. Regulation of stem cell aging by SIRT1 - Linking metabolic signaling to epigenetic modifications. Mol Cell Endocrinol 2017; 455:75-82. [PMID: 28392411 PMCID: PMC7951659 DOI: 10.1016/j.mce.2017.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 01/09/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
In mammals, profound changes in the population and functions of adult stem cells occur with age and these changes are thought to underlie functional decline and pathophysiology at the tissue and organismal levels associated with aging. SIRT1, a member of the conserved sirtuin family, functions as an anti-aging regulator for adult stem cells. Mediated through its regulatory roles in AMPK and mTORC1 pathways as well as gene expression, SIRT1 modulate the activities of genes maintaining stem cell functions and delays cellular senescence. Further investigation of the cross-talk between SIRT1 and other longevity target genes under different physiological conditions of stem cells may help us better design intervention strategies to antagonize stem cells aging.
Collapse
Affiliation(s)
- An Yu
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiwei Dang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Yzydorczyk C, Li N, Chehade H, Mosig D, Bidho M, Keshavjee B, Armengaud JB, Nardou K, Siddeek B, Benahmed M, Vergely C, Simeoni U. Transient postnatal overfeeding causes liver stress-induced premature senescence in adult mice. Sci Rep 2017; 7:12911. [PMID: 29018245 PMCID: PMC5635041 DOI: 10.1038/s41598-017-11756-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Unbalanced nutrition early in life is increasingly recognized as an important factor in the development of chronic, non-communicable diseases at adulthood, including metabolic diseases. We aimed to determine whether transient postnatal overfeeding (OF) leads to liver stress-induced premature senescence (SIPS) of hepatocytes in association with liver structure and hepatic function alterations. Litters sizes of male C57BL/6 mice were adjusted to 9 pups (normal feeding, NF) or reduced to 3 pups during the lactation period to induce transient postnatal OF. Compared to the NF group, seven-month-old adult mice transiently overfed during the postnatal period were overweight and developed glucose intolerance and insulin resistance. Their livers showed microsteatosis and fibrosis, while hepatic insulin signaling and glucose transporter protein expressions were altered. Increased hepatic oxidative stress (OS) was observed, with increased superoxide anion production, glucose-6-phosphate dehydrogenase protein expression, oxidative DNA damage and decreased levels of antioxidant defense markers, such as superoxide dismutase and catalase proteins. Hepatocyte senescence was characterized by increased p21WAF, p53, Acp53, p16INK4a and decreased pRb/Rb and Sirtuin-1 (SIRT-1) protein expression levels. Transient postnatal OF induces liver OS at adulthood, associated with hepatocyte SIPS and alterations in liver structure and hepatic functions, which could be mediated by a SIRT-1 deficiency.
Collapse
Affiliation(s)
- Catherine Yzydorczyk
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | - Na Li
- Equipe: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (AE 7460, PEC2), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Dolores Mosig
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mickael Bidho
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Basile Keshavjee
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Jean Baptiste Armengaud
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Katya Nardou
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mohamed Benahmed
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Catherine Vergely
- Equipe: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (AE 7460, PEC2), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Wu H, Deng X, Shi Y, Su Y, Wei J, Duan H. PGC-1α, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016; 229:R99-R115. [PMID: 27094040 DOI: 10.1530/joe-16-0021] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.
Collapse
Affiliation(s)
- Haijiang Wu
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Xinna Deng
- Departments of Oncology & ImmunotherapyHebei General Hospital, Shijiazhuang, China
| | - Yonghong Shi
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Ye Su
- Mathew Mailing Centre for Translational Transplantation StudiesLawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada Departments of Medicine and PathologyUniversity of Western Ontario, London, Ontario, Canada
| | - Jinying Wei
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| | - Huijun Duan
- Department of PathologyHebei Medical University, Shijiazhuang, China Key Laboratory of Kidney Diseases of Hebei ProvinceShijiazhuang, China
| |
Collapse
|
9
|
Yang Y, Zhang S, Fan C, Yi W, Jiang S, Di S, Ma Z, Hu W, Deng C, Lv J, Li T, Nie Y, Jin Z. Protective role of silent information regulator 1 against hepatic ischemia: effects on oxidative stress injury, inflammatory response, and MAPKs. Expert Opin Ther Targets 2016; 20:519-531. [PMID: 26864795 DOI: 10.1517/14728222.2016.1153067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Previous studies have verified that silent information regulator 1 (SIRT1), a class III histone deacetylase, protects against ischemia reperfusion (IR) injury (IRI) in some organs. In this study, we examined whether SIRT1 could protect against hepatic IRI and explored the potential mechanisms. RESEARCH DESIGN AND METHODS We examined whether SIRT1 could protect against hepatic IRI in vivo and in vitro using hepatic-specific SIRT1(-/-) mice, SIRT1 siRNA-transfected hepatocytes and SIRT1(+/+) hepatocytes. RESULTS The expression and activity of SIRT1 were significantly reduced during reperfusion compared with that observed in the control group. Hepatic-specific SIRT1(-/-) mice exhibited significant increase of hepatic damage markers and augment of oxidative stress and inflammatory response compared with control mice. In vitro studies demonstrated similar results. Furthermore, SIRT1 upregulation protects against hepatic IRI, through the overexpression of p-JNK, p-p38MAPK, and p-ERK. The protection of SIRT1 can be effectively reversed by the inhibitors of p38MAPK, JNK, and ERK. CONCLUSION The activation of SIRT1 significantly inhibits the oxidative stress and inflammatory response during hepatic IRI, which can be developed as a novel method to protect against hepatic IRI.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Song Zhang
- c State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Chongxi Fan
- d Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Wei Yi
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Shuai Jiang
- e Department of Aerospace Medicine , The Fourth Military Medical University , Xi'an , China
| | - Shouyi Di
- c State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Zhiqiang Ma
- c State Key Laboratory of Cancer Biology, Department of Gastroenterology, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Wei Hu
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Chao Deng
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Jianjun Lv
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Tian Li
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Yongzhan Nie
- d Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Zhenxiao Jin
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
10
|
Weber M, Locher L, Huber K, Rehage J, Tienken R, Meyer U, Dänicke S, Webb L, Sauerwein H, Mielenz M. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 2: The SIRT-PPARGC1A axis and its relationship with the adiponectin system. J Dairy Sci 2016; 99:1560-1570. [DOI: 10.3168/jds.2015-10132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/23/2015] [Indexed: 01/10/2023]
|
11
|
Quiñones M, Al-Massadi O, Fernø J, Nogueiras R. Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Mol Cell Endocrinol 2014; 397:42-50. [PMID: 25109279 DOI: 10.1016/j.mce.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
The mammalian sirtuins (SIRT1-7) are a family of highly conserved nicotine adenine dinucleotide (NAD(+))-dependent deacetylases that act as cellular sensors to detect energy availability. SIRT1 is a multifaceted protein that is involved in a wide variety of cellular processes. SIRT1 is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. SIRT1 regulates the role of multiple hormones implicated in energy balance, including glucose and lipid metabolism. Here, we review the relevant role of SIRT1 as a mediator of endocrine function of several hormones to modulate energy balance. In addition, we analyze the potential of targeting SIRT1 for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| | - Omar Al-Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Tajiri K, Shimizu Y. Liver physiology and liver diseases in the elderly. World J Gastroenterol 2013; 19:8459-8467. [PMID: 24379563 PMCID: PMC3870491 DOI: 10.3748/wjg.v19.i46.8459] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
The liver experiences various changes with aging that could affect clinical characteristics and outcomes in patients with liver diseases. Both liver volume and blood flow decrease significantly with age. These changes and decreased cytochrome P450 activity can affect drug metabolism, increasing susceptibility to drug-induced liver injury. Immune responses against pathogens or neoplastic cells are lower in the elderly, although these individuals may be predisposed to autoimmunity through impairment of dendritic cell maturation and reduction of regulatory T cells. These changes in immune functions could alter the pathogenesis of viral hepatitis and autoimmune liver diseases, as well as the development of hepatocellular carcinoma. Moreover, elderly patients have significantly decreased reserve functions of various organs, reducing their tolerability to treatments for liver diseases. Collectively, aged patients show various changes of the liver and other organs that could affect the clinical characteristics and management of liver diseases in these patients.
Collapse
|