1
|
Signorile PG, Baldi A, Viceconte R, Boccellino M. The Role of Adenogenesis Factors in the Pathogenesis of Endometriosis. Int J Mol Sci 2025; 26:2076. [PMID: 40076699 PMCID: PMC11899868 DOI: 10.3390/ijms26052076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Endometriosis is a pathological condition characterized by the presence of the endometrial tissue, outside the uterine cavity. It affects nearly 10% of women of reproductive age and is responsible for infertility, chronic pain, and the weakening of the quality of life. Various pathogenetic mechanisms have been suggested; however, the essential pathogenesis of endometriosis remains insufficiently comprehended. A comprehensive literature search was conducted in databases such as PubMed, Scopus, and Web of Science up to December 2024. Inclusion criteria encompassed studies investigating the pathogenetic mechanisms of endometriosis, while exclusion criteria included reviews, case reports, and studies lacking primary data. The analyzed studies explored multiple pathogenetic mechanisms, including retrograde menstruation, coelomic metaplasia, embryological defects, stem cell involvement, and epigenetic modifications. Special emphasis was placed on the role of uterine adenogenesis factors in the development and progression of endometriosis. A deeper understanding of the various pathogenetic mechanisms underlying endometriosis is crucial for advancing targeted therapeutic strategies. Further research into uterine adenogenesis factors may provide new insights into the disease's pathophysiology and pave the way for novel treatment approaches.
Collapse
Affiliation(s)
- Pietro G. Signorile
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
| | - Alfonso Baldi
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
- Department of Life Science, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Rosa Viceconte
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
| | - Mariarosaria Boccellino
- Italian Endometriosis Foundation, Formello (RM), 00060 Rome, Italy; (R.V.); (M.B.)
- Department of Life Science, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
2
|
Aljubran F, Schumacher K, Graham A, Gunewardena S, Marsh C, Lydic M, Holoch K, Nothnick WB. Uterine cyclin A2-deficient mice as a model of female early pregnancy loss. J Clin Invest 2024; 134:e163796. [PMID: 39264721 PMCID: PMC11563677 DOI: 10.1172/jci163796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
Proper action of the female sex steroids 17β-estradiol (E2) and progesterone (P4) on the endometrium is essential for fertility. Beyond its role in regulating the cell cycle, cyclin A2 (CCNA2) also mediates E2 and P4 signaling in vitro, but a potential role in modulating steroid action for proper endometrial tissue development and function is unknown. To fill this gap in our knowledge, we examined human endometrial tissue from fertile and infertile cisgender women for CCNA2 expression and correlated this with pregnancy outcome. Functional assessment of CCNA2 was validated in vivo using a conditional Ccna2 uterine-deficient mouse model, while in vitro function was assessed using human cell culture models. We found that CCNA2 expression was significantly reduced in endometrial tissue, specifically the stromal cells, from women undergoing in vitro fertilization who failed to achieve pregnancy. Conditional deletion of Ccna2 from mouse uterine tissue resulted in an inability to achieve pregnancy, which appeared to be due to alterations in the process of decidualization, which was confirmed using in vitro models. From these studies, we conclude that CCNA2 expression during the proliferative/regenerative stage of the menstrual cycle allows for proper steroid responsiveness, decidualization, and pregnancy. When CCNA2 expression levels are insufficient, there is impaired endometrial responsiveness, aberrant decidualization, and loss of pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Marsh
- Department of Cell Biology and Physiology
- Department of Obstetrics and Gynecology
- Center for Reproductive Sciences
| | - Michael Lydic
- Department of Obstetrics and Gynecology
- Center for Reproductive Sciences
| | | | - Warren B. Nothnick
- Department of Cell Biology and Physiology
- Department of Obstetrics and Gynecology
- Center for Reproductive Sciences
- Department of Cancer Biology
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
4
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
5
|
Wu Y, Gu S, Cobb JM, Dunn GH, Muth TA, Simchick CJ, Li B, Zhang W, Hua X. E2-Loaded Microcapsules and Bone Marrow-Derived Mesenchymal Stem Cells with Injectable Scaffolds for Endometrial Regeneration Application. Tissue Eng Part A 2024; 30:115-130. [PMID: 37930721 DOI: 10.1089/ten.tea.2023.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.
Collapse
Affiliation(s)
- Yuelin Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Shengyi Gu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Jonathan M Cobb
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Griffin H Dunn
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Taylor A Muth
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Chloe J Simchick
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Baoguo Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wujie Zhang
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Xiaolin Hua
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Gnecco JS, Brown A, Buttrey K, Ives C, Goods BA, Baugh L, Hernandez-Gordillo V, Loring M, Isaacson KB, Griffith LG. Organoid co-culture model of the human endometrium in a fully synthetic extracellular matrix enables the study of epithelial-stromal crosstalk. MED 2023; 4:554-579.e9. [PMID: 37572651 PMCID: PMC10878405 DOI: 10.1016/j.medj.2023.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/11/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The human endometrium undergoes recurring cycles of growth, differentiation, and breakdown in response to sex hormones. Dysregulation of epithelial-stromal communication during hormone-mediated signaling may be linked to myriad gynecological disorders for which treatments remain inadequate. Here, we describe a completely defined, synthetic extracellular matrix that enables co-culture of human endometrial epithelial and stromal cells in a manner that captures healthy and disease states across a simulated menstrual cycle. METHODS We parsed cycle-dependent endometrial integrin expression and matrix composition to define candidate cell-matrix interaction cues for inclusion in a polyethylene glycol (PEG)-based hydrogel crosslinked with matrix metalloproteinase-labile peptides. We semi-empirically screened a parameter space of biophysical and molecular features representative of the endometrium to define compositions suitable for hormone-driven expansion and differentiation of epithelial organoids, stromal cells, and co-cultures of the two cell types. FINDINGS Each cell type exhibited characteristic morphological and molecular responses to hormone changes when co-encapsulated in hydrogels tuned to a stiffness regime similar to the native tissue and functionalized with a collagen-derived adhesion peptide (GFOGER) and a fibronectin-derived peptide (PHSRN-K-RGD). Analysis of cell-cell crosstalk during interleukin 1B (IL1B)-induced inflammation revealed dysregulation of epithelial proliferation mediated by stromal cells. CONCLUSIONS Altogether, we demonstrate the development of a fully synthetic matrix to sustain the dynamic changes of the endometrial microenvironment and support its applications to understand menstrual health and endometriotic diseases. FUNDING This work was supported by The John and Karine Begg Foundation, the Manton Foundation, and NIH U01 (EB029132).
Collapse
Affiliation(s)
- Juan S Gnecco
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Alexander Brown
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kira Buttrey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Clara Ives
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brittany A Goods
- Thayer School of Engineering at Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Lauren Baugh
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Victor Hernandez-Gordillo
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Megan Loring
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Newton Wellesley Hospital, 2014 Washington Street, Newton, MA 02115, USA
| | - Keith B Isaacson
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Newton Wellesley Hospital, 2014 Washington Street, Newton, MA 02115, USA
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Noghrehalipour N, Aflatoonian R, Rahimipour A, Aghajanpour S, Najafian A, Chekini Z, Ghaffari F, Kazerouni F. The Effect of Altered Mucin1, FGF2, and HBEGF Gene Expression at The Ectopic Implantation Site and Endometrial Tissues in The Tubal Pregnancy Pathogenesis: A Case-Control Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2023; 17:242-247. [PMID: 37577906 PMCID: PMC10439997 DOI: 10.22074/ijfs.2023.1972252.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 04/05/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Ectopic pregnancy (EP) is defined as implantation and development of an embryo outside of the uterine tissue. Women undergoing assisted reproductive technologies (ART), particularly frozen embryo transfer (FET), are in high-risk populations for EP. Mucin1 (MUC1), fibroblast growth factor-2 (FGF2), and Heparin-binding epidermal growth factor (HBEGF) genes are involved in the endometrial receptivity pathway, leading to normal eutopic implantation; Although, their relevance in the tubal pregnancy after FET is unknown. We aimed evaluation of Mucin1, FGF2, and HBEGF expression fold as endometrial receptive markers in the EP patients following the FET cycle. MATERIALS AND METHODS A case-control study was conducted on ten patients (five EP patients and five women in the pseudo-pregnancy group, as the control samples). Pseudo-pregnancy group was established in women who were candidates for hysterectomy for benign diseases. Fallopian tube biopsies and corresponding endometrial tissues from these patients were taken during the hysterectomy. However, the fallopian tube and endometrial tissues of EP patients were obtained during salpingectomy. The mRNA expressions of Mucin1, FGF2, and HBEGF genes in the fallopian tube and endometrial tissues were measured by real-time polymerase chain reaction (PCR) assay. RESULTS MUC1 mRNA expression level in the endometrium of the case group was higher than in the control group (P=0.04); however, its mRNA expression in the fallopian samples of the case group in comparison with the control group was significantly decreased (P=0.001). The HBEGF mRNA expression level was not significantly different between the case and control endometrium, whereas its expression was significantly increased in the case fallopian samples compared with the control ones (P=0.001). The same pattern was observed for FGF2 mRNA expression level in the fallopian samples of the case group but was significantly reduced in the endometrial samples in comparison with the control samples (P=0.03). CONCLUSION Mucin1, FGF2, and HBEGF gene mRNA expression changes may explain the embryo rejection from the uterus and the establishment of a receptive phenotype in fallopian cells.
Collapse
Affiliation(s)
- Nadia Noghrehalipour
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Rahimipour
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Aghajanpour
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Aida Najafian
- Department of Endocrinology and Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chekini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Firouzeh Ghaffari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Faranak Kazerouni
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Marañón P, Isaza SC, Fernández-García CE, Rey E, Gallego-Durán R, Montero-Vallejo R, de Cía JR, Ampuero J, Valverde ÁM, Romero-Gómez M, García-Monzón C, González-Rodríguez Á. Circulating bone morphogenetic protein 8A is a novel biomarker to predict advanced liver fibrosis. Biomark Res 2023; 11:46. [PMID: 37106416 PMCID: PMC10142503 DOI: 10.1186/s40364-023-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND & AIMS Advanced hepatic fibrosis is the main risk factor of liver-related morbidity and mortality in patients with chronic liver disease. In this study, we assessed the potential role of bone morphogenetic protein 8A (BMP8A) as a novel target involved in liver fibrosis progression. METHODS Histological assessment and BMP8A expression were determined in different murine models of hepatic fibrosis. Furthermore, serum BMP8A was measured in mice with bile duct ligation (BDL), in 36 subjects with histologically normal liver (NL) and in 85 patients with biopsy-proven non-alcoholic steatohepatitis (NASH): 52 with non- or mild fibrosis (F0-F2) and 33 with advanced fibrosis (F3-F4). BMP8A expression and secretion was also determined in cultured human hepatocyte-derived (Huh7) and human hepatic stellate (LX2) cells stimulated with transforming growth factor ꞵ (TGFꞵ). RESULTS Bmp8a mRNA levels were significantly upregulated in livers from fibrotic mice compared to control animals. Notably, serum BMP8A levels were also elevated in BDL mice. In addition, in vitro experiments showed increased expression and secretion to the culture supernatant of BMP8A in both Huh7 and LX2 cells treated with TGFꞵ. Noteworthy, we found that serum BMP8A levels were significantly higher in NASH patients with advanced fibrosis than in those with non- or mild fibrosis. In fact, the AUROC of circulating BMP8A concentrations to identify patients with advanced fibrosis (F3-F4) was 0.74 (p˂0.0001). Moreover, we developed an algorithm based on serum BMP8A levels that showed an AUROC of 0.818 (p˂0.0001) to predict advanced fibrosis in NASH patients. CONCLUSION This study provides experimental and clinical evidence indicating that BMP8A is a novel molecular target linked to liver fibrosis and introduces an efficient algorithm based on serum BMP8A levels to screen patients at risk for advanced hepatic fibrosis.
Collapse
Affiliation(s)
- Patricia Marañón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Stephania C Isaza
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Carlos Ernesto Fernández-García
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Esther Rey
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Rodríguez de Cía
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Carmelo García-Monzón
- Metabolic Syndrome and Vascular Risk Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain.
| |
Collapse
|
9
|
Tang J, Tan M, Liao S, Pang M, Li J. Recent progress in the biology and physiology of BMP-8a. Connect Tissue Res 2023; 64:219-228. [PMID: 36594156 DOI: 10.1080/03008207.2022.2160326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE BMP-8a is a member of bone morphogenetic proteins (BMPs) and plays a regulatory role in human growth and development as a transcription regulator. This review aims to summarize the current research on the impact and mechanism of BMP-8a in female and male reproduction, formation and eruption of teeth, bone and cartilage development, tissue differentiation, disease occurrence, progression and prognosis. METHODS The phrases "BMP-8a," "BMPs," "regulator," "mechanism," "osteoblast," "cartilage," "cancer," "disease," and "inflammation" were searched in the PubMed database. The abstracts were evaluated, and a series of original publications and reviews were examined. RESULTS According to the search, BMP-8a affects the development of the uterus by inhibiting luteinization and plays an important role in late spermatogenesis. It is highly expressed in osteogenesis and differentially expressed in chondrogenesis. Furthermore, BMP-8a has a significant impact on the occurrence, development and prognosis of various diseases. CONCLUSIONS BMP-8a regulates important factors and pathways, such as SMAD2/3 and SMAD1/5/8, to promote or inhibit the developmental processes of human reproductive organs. BMP-8a is also a member of the BMP family of proteins that regulates chondrogenesis and osteogenesis. In addition to its osteoinductive capabilities, BMP-8a is involved in the progression of diverse cancers.
Collapse
Affiliation(s)
- Jiawei Tang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Miao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Siqi Liao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengwei Pang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
CD146+ Endometrial-Derived Mesenchymal Stem/Stromal Cell Subpopulation Possesses Exosomal Secretomes with Strong Immunomodulatory miRNA Attributes. Cells 2022; 11:cells11244002. [PMID: 36552765 PMCID: PMC9777070 DOI: 10.3390/cells11244002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The perivascular localization of endometrial mesenchymal stem/stromal cells (eMSC) allows them to sense local and distant tissue damage, promoting tissue repair and healing. Our hypothesis is that eMSC therapeutic effects are largely exerted via their exosomal secretome (eMSC EXOs) by targeting the immune system and angiogenic modulation. For this purpose, EXOs isolated from Crude and CD146+ eMSC populations were compared for their miRNA therapeutic signatures and immunomodulatory functionality under inflammatory conditions. eMSC EXOs profiling revealed 121 in Crude and 88 in CD146+ miRNAs, with 82 commonly present in both populations. Reactome and KEGG analysis of miRNAs highly present in eMSC EXOs indicated their involvement among others in immune system regulation. From the commonly present miRNAs, four miRNAs (hsa-miR-320e, hsa-miR-182-3p, hsa-miR-378g, hsa-let-7e-5p) were more enriched in CD146+ eMSC EXOs. These miRNAs are involved in macrophage polarization, T cell activation, and regulation of inflammatory cytokine transcription (i.e., TNF-α, IL-1β, and IL-6). Functionally, stimulated macrophages exposed to eMSC EXOs demonstrated a switch towards an alternate M2 status and reduced phagocytic capacity compared to stimulated alone. However, eMSC EXOs did not suppress stimulated human peripheral blood mononuclear cell proliferation, but significantly reduced secretion of 13 pro-inflammatory molecules compared to stimulated alone. In parallel, two anti-inflammatory proteins, IL-10 and IL-13, showed higher secretion, especially upon CD146+ eMSC EXO exposure. Our study suggests that eMSC, and even more, the CD146+ subpopulation, possess exosomal secretomes with strong immunomodulatory miRNA attributes. The resulting evidence could serve as a foundation for eMSC EXO-based therapeutics for the resolution of detrimental aspects of tissue inflammation.
Collapse
|
11
|
Bedir Ö, Gram A, Grazul-Bilska AT, Kowalewski MP. The effects of follicle stimulating hormone (FSH)-induced controlled ovarian hyperstimulation and nutrition on implantation-related gene expression in caruncular tissues of non-pregnant sheep. Theriogenology 2022; 195:229-237. [DOI: 10.1016/j.theriogenology.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
12
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Yang T, Zhao J, Liu F, Li Y. Lipid metabolism and endometrial receptivity. Hum Reprod Update 2022; 28:858-889. [PMID: 35639910 DOI: 10.1093/humupd/dmac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has now been recognized as a high-risk factor for reproductive health. Although remarkable advancements have been made in ART, a considerable number of infertile obese women still suffer from serial implantation failure, despite the high quality of embryos transferred. Although obesity has long been known to exert various deleterious effects on female fertility, the underlying mechanisms, especially the roles of lipid metabolism in endometrial receptivity, remain largely elusive. OBJECTIVE AND RATIONALE This review summarizes current evidence on the impacts of several major lipids and lipid-derived mediators on the embryonic implantation process. Emerging methods for evaluating endometrial receptivity, for example transcriptomic and lipidomic analysis, are also discussed. SEARCH METHODS The PubMed and Embase databases were searched using the following keywords: (lipid or fatty acid or prostaglandin or phospholipid or sphingolipid or endocannabinoid or lysophosphatidic acid or cholesterol or progesterone or estrogen or transcriptomic or lipidomic or obesity or dyslipidemia or polycystic ovary syndrome) AND (endometrial receptivity or uterine receptivity or embryo implantation or assisted reproductive technology or in vitro fertilization or embryo transfer). A comprehensive literature search was performed on the roles of lipid-related metabolic pathways in embryo implantation published between January 1970 and March 2022. Only studies with original data and reviews published in English were included in this review. Additional information was obtained from references cited in the articles resulting from the literature search. OUTCOMES Recent studies have shown that a fatty acids-related pro-inflammatory response in the embryo-endometrium boundary facilitates pregnancy via mediation of prostaglandin signaling. Phospholipid-derived mediators, for example endocannabinoids, lysophosphatidic acid and sphingosine-1-phosphate, are associated with endometrial receptivity, embryo spacing and decidualization based on evidence from both animal and human studies. Progesterone and estrogen are two cholesterol-derived steroid hormones that synergistically mediate the structural and functional alterations in the uterus ready for blastocyst implantation. Variations in serum cholesterol profiles throughout the menstrual cycle imply a demand for steroidogenesis at the time of window of implantation (WOI). Since 2002, endometrial transcriptomic analysis has been serving as a diagnostic tool for WOI dating. Numerous genes that govern lipid homeostasis have been identified and, based on specific alterations of lipidomic signatures differentially expressed in WOI, lipidomic analysis of endometrial fluid provides a possibility for non-invasive diagnosis of lipids alterations during the WOI. WIDER IMPLICATIONS Given that lipid metabolic dysregulation potentially plays a role in infertility, a better understanding of lipid metabolism could have significant clinical implications for the diagnosis and treatment of female reproductive disorders.
Collapse
Affiliation(s)
- Tianli Yang
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, and Key Laboratory of Diabetes Immunology, Ministry of Education, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital of Central South University, Changsha, P.R. China.,Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, P.R. China
| |
Collapse
|
14
|
Brucker SY, Hentrich T, Schulze-Hentrich JM, Pietzsch M, Wajngarten N, Singh AR, Rall K, Koch A. Endometrial organoids derived from Mayer-Rokitansky-Küster-Hauser syndrome patients provide insights into disease-causing pathways. Dis Model Mech 2022; 15:dmm049379. [PMID: 35394036 PMCID: PMC9118093 DOI: 10.1242/dmm.049379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The uterus is responsible for the nourishment and mechanical protection of the developing embryo and fetus and is an essential part in mammalian reproduction. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by agenesis of the uterus and upper part of the vagina in females with normal ovarian function. Although heavily studied, the cause of the disease is still enigmatic. Current research in the field of MRKH mainly focuses on DNA-sequencing efforts and, so far, has been unable to decipher the nature and heterogeneity of the disease, thereby holding back scientific and clinical progress. Here, we developed long-term expandable organoid cultures from endometrium found in uterine rudiment horns of MRKH patients. Phenotypically, they share great similarity with healthy control organoids and are surprisingly fully hormone responsive. Transcriptome analyses, however, identified an array of dysregulated genes that point to potentially disease-causing pathways altered during the development of the female reproductive tract. We consider the endometrial organoid cultures to be a powerful research tool that promise to enable an array of studies into the pathogenic origins of MRKH syndrome and possible treatment opportunities to improve patient quality of life.
Collapse
Affiliation(s)
- Sara Y. Brucker
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Julia M. Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Martin Pietzsch
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Noel Wajngarten
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Anjali Ralhan Singh
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| | - Katharina Rall
- Department of Women's Health, University of Tübingen, 72076 Tübingen, Germany
- Rare Disease Center Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women's Health, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Lou L, Kong S, Sun Y, Zhang Z, Wang H. Human Endometrial Organoids: Recent Research Progress and Potential Applications. Front Cell Dev Biol 2022; 10:844623. [PMID: 35242764 PMCID: PMC8885623 DOI: 10.3389/fcell.2022.844623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since traditional two-dimensional (2D) cell culture cannot meet the demand of simulating physiological conditions in vivo, three-dimensional (3D) culture systems have been developed. To date, most of these systems have been applied for the culture of gastrointestinal and neural tissue. As for the female reproductive system, the culture of endometrial and oviductal tissues in Matrigel has also been performed, but there are still some problems that remain unsolved. This review highlights recent progress regarding endometrial organoids, focusing on the signal for organoid derivation and maintenance, the coculture of the epithelium and stroma, the drug screening using organoids from cancer patients, and provides a potential guideline for genome editing in endometrial organoids.
Collapse
Affiliation(s)
- Liqun Lou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Li K, Diakite D, Austin J, Lee J, Lantvit DD, Murphy BT, Burdette JE. The Flavonoid Baicalein Negatively Regulates Progesterone Target Genes in the Uterus in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:237-247. [PMID: 34935393 PMCID: PMC9164990 DOI: 10.1021/acs.jnatprod.1c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Djeneba Diakite
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julia Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeongho Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
17
|
Bunma T, Kanjanaruch C, Kogram N, Uriyapongson S, Khanthusaeng V, Navanukraw C. Effects of FSH treatment and withdrawal during proestrus on uterine proliferation and steroid hormone receptor expression in beef heifers. Anim Sci J 2021; 92:e13621. [PMID: 34448516 DOI: 10.1111/asj.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
To determine the effects of Follicle Stimulating Hormone (FSH) treatment and subsequent withdrawal on uterine proliferation and estrogen receptor (ESR), Brahman crossbred heifers (n = 12) were twice daily injected with FSH (4, 3, and 2 mg/injection) on Days 17-19 of the estrous cycle (FSH 3 days) and (4 and 3 mg/injection) on Days 17-18 (FSH 2 days) and withdrawal with saline on Day 19 and (4 mg/injection) on Day 17 (FSH 1 day) and withdrawal with saline on Days 18-19. Uterine tissue was subjectively collected on Day 20 and microscopically classified to four regions: endometrial stroma (ES), surface endometrial gland (EG), deep endometrial gland (DG), and myometrium (Myo). The cell proliferation marker, Ki-67, was quantified as labeling index (LI) in uterine regions, and tissues were immunostained to detect ESR2 followed by image analysis. The LI of ES, EG, and DG was greater (P = 0.0018, P = 0.0005, and P = 0.0103; respectively) in heifers received FSH for 3 days. The expression of ESR2 protein on ES and EG was greatest (P < 0.0001 and P = 0.0036, respectively) in FSH 3 days-treated group. Thus, FSH administration during proestrus stimulates uterine cell proliferation, and ESR2 expressions are affected by FSH during proestrus and differentially distributed in the uterine regions.
Collapse
Affiliation(s)
- Thanya Bunma
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Chutikun Kanjanaruch
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Nattawut Kogram
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Suthipong Uriyapongson
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Vilaivan Khanthusaeng
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Chainarong Navanukraw
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| |
Collapse
|
18
|
Liu F, Li Z, Guo J, Fang S, Zhou J, Cao B, Liu J, Yi Y, Yuan X, Xu X, Huang O, Wang L, Zou Y. Endometrial stromal cell proteomic analysis reveals LIM and SH3 protein 1 (LASP1) plays important roles in the progression of adenomyosis. Mol Hum Reprod 2021; 27:6129094. [PMID: 33543750 DOI: 10.1093/molehr/gaab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/12/2021] [Indexed: 11/14/2022] Open
Abstract
Adenomyosis is one of the most common gynecological disorders that the molecular events underlying its pathogenesis remain not fully understood. Prior studies have shown that endometrial stromal cells (ESCs) played crucial roles in the pathogenesis of adenomyosis. In this study, we utilized two-dimensional gel electrophoresis combined with protein identification by mass spectrometry (2D/MS) proteomics analysis to compare the differential protein expression profile between the paired eutopic and ectopic ESCs (EuESCs and EcESCs) in adenomyosis, and a total of 32 significantly altered protein spots were identified. Among which, the expression of LIM and SH3 protein 1 (LASP1) was increased significantly in EcESCs compared to EuESCs. Immunohistochemical assay showed that LASP1 was overexpressed in the stromal cells of ectopic endometriums compared to eutopic endometriums; further functional analyses revealed that LASP1 overexpression could enhance cell proliferation, migration and invasion of EcESCs. Furthermore, we also showed that the dysregulated expression of LASP1 in EcESCs was associated with DNA hypermethylation in the promoter region of the LASP1 gene. However, the detailed molecular mechanisms of enhancing cell proliferation, invasion and migration caused by upregulated LASP1 in adenomyosis needs further study. For the first time, our data suggested that LASP1 plays important roles in the pathogenesis of adenomyosis, and could serve as a prognostic biomarker of adenomyosis.
Collapse
Affiliation(s)
- Faying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zengming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jiubai Guo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shufen Fang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jiangyan Zhou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bianna Cao
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jun Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yulan Yi
- Department of Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Xiaoqun Yuan
- Department of Gynecology, Jiujiang Maternal and Child Health Hospital, Jiujiang, Jiangxi, China
| | - Xiaoyun Xu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ouping Huang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Liqun Wang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Wu J, Tao X, Zhang H, Yi XH, Yu YH. Estrogen-Induced Stromal FGF18 Promotes Proliferation and Invasion of Endometrial Carcinoma Cells Through ERK and Akt Signaling. Cancer Manag Res 2020; 12:6767-6777. [PMID: 32801905 PMCID: PMC7414926 DOI: 10.2147/cmar.s254242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of this study was to evaluate whether estrogen promoted the proliferation and invasion of endometrial carcinoma (EC) cells through paracrine FGFs in endometrial stromal cells (ESCs). Patients and Methods We screened gene alterations in a primary ESC culture after 10 nM estrogen treatment using an Agilent mRNA microarray. We knocked down stromal FGF18 expression in a co-culture system and aimed to explore the contribution of E2-induced stromal FGF18 to the proliferation and invasion of EC cells. To determine the effective receptors and detailed downstream signaling of FGF18, we co-cultured estrogen-treated hESCs with FGFR1-, FGFR2-, FGFR3- or FGFR4-knockdown Ishikawa cells. Finally, we detected FGF18 expression in clinical samples, including several primary cultures of different ESCs and a series of tissue microarrays (TMAs) of 90 patients with EC. Results A few genes altered significantly in estrogen-treated primary ESCs, but only FGF18 was noticeably enhanced among the FGF family genes. Knockdown of FGF18 expression in hESCs inhibited the promoting effect of FGF18 on the proliferation and invasion of EC cells. FGF18 bound FGFR2 and FGFR3 in Ishikawa cells to activate downstream ERK and Akt pathways and to promote the viability of EC cells. The FGF18-FGFR2 and FGF18-FGFR3 pathways had close correlations with Survivin and CD44V6 expression but not with P53. Primary ESCs of endometrioid EC (EEC, type I EC) had higher FGF18 expression than ESCs of normal endometrium (NE), endometrial atypical hyperplasia (EAH) and type II EC. Conclusion Estrogen induced FGF18 in ESCs to promote the proliferation and invasion of EC cells, and FGFR inhibitors should be considered as promising candidate targets for EC treatment.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China.,Department of Pathology, Gongli Hospital, Second Military Medical University, Shanghai 200135, People's Republic of China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200032, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Hong Zhang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China
| | - Xiang-Hua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People's Republic of China
| | - Yin-Hua Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| |
Collapse
|
20
|
Yilmaz BD, Sison CAM, Yildiz S, Miyazaki K, Coon V J, Yin P, Bulun SE. Genome-wide estrogen receptor-α binding and action in human endometrial stromal cells. F&S SCIENCE 2020; 1:59-66. [PMID: 35559740 DOI: 10.1016/j.xfss.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the gene targets of estradiol (E2)-estrogen receptor-α (ESR1) in human endometrial stromal cells. DESIGN Basic science. SETTING University research center. PATIENT(S) Premenopausal women with or without endometriosis. INTERVENTION(S) Primary cultures of human endometrial stromal cells from healthy endometrium, with or without small-interfering RNA (siRNA) knockdown of ESR1 expression, were treated with E2 or vehicle control. MAIN OUTCOME MEASURE(S) Genome-wide RNA expression by RNA sequencing was compared in endometrial stromal cells with or without siRNA knockdown of ESR1 in the presence or absence of E2. Genome-wide recruitment of ESR1 to chromatin was assessed by chromatin immunoprecipitation sequencing. Gene expression by real-time qualitative polymerase chain reaction of a potential E2-ESR1 target gene was determined in endometrial stromal cells and endometriotic stromal cells. RESULT(S) We identified several important pathways that are dependent on E2-ESR1 signaling in endometrial stromal cells, including progesterone signaling, cell-matrix adhesion, and cytoskeleton rearrangement, as well as paracrine signaling by members of the fibroblast growth factor family. We detected a total of 709 ESR1 target sites on chromatin. By integrating data on genome-wide transcriptomic changes and E2-ESR1 binding sites, we identified inositol polyphosphate phosphatase type II (INPP4B) as a candidate E2-mediated suppressor of proliferation in healthy endometrial cells. INPP4B was downregulated in endometriosis-derived stromal cells. CONCLUSION(S) E2-ESR1 activates genes involved in human endometrial stromal cell cycle regulation, progesterone response, and production of stromal growth factors. Understanding the direct role of estrogen on the endometrial stroma and identifying downstream targets of E2-ESR1 can inform the development of targeted therapies for endometriosis and diminished endometrial receptivity.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christia A M Sison
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sule Yildiz
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kaoru Miyazaki
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Coon V
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ping Yin
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
21
|
Pluripotent Stem (VSELs) and Progenitor (EnSCs) Cells Exist in Adult Mouse Uterus and Show Cyclic Changes Across Estrus Cycle. Reprod Sci 2020; 28:278-290. [PMID: 32710237 DOI: 10.1007/s43032-020-00250-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
We have earlier reported pluripotent, very small embryonic-like stem cells (VSELs) and slightly bigger endometrial stem cells (EnSCs) in adult mouse uterus and their regulation by gonadotropin and steroid hormones. VSELs can differentiate into cells of all three lineages in vitro; however, they neither expand readily in vitro nor compliment a developing embryo. In the present study, a robust protocol is described to enrich uterine stem/progenitor cells along with their characterization and variation across estrus cycle. After enzymatic digestion of adult mouse uterus, single-cell suspension obtained was spun at 1000 rpm (250 g) to pellet majority of cells. Stem cells remain buoyant at this speed and were pelleted by spinning supernatant at 3000 rpm (1000 g). Spherical, darkly stained VSELs (2-6 μm) with high nucleo-cytoplasmic ratio and EnSCs (> 6 μm) expressed OCT-4, NANOG, SSEA-1, SCA-1, and c-KIT. OCT-4-positive cells co-expressed SSEA-1, ERα, ERβ, PR, and FSHR. Transcripts specific for pluripotent state (Oct-4, Oct-4a, Sox-2, Nanog), primordial germ cells (Stella, Fragilis), and receptors for pituitary and steroid hormones (ERα, ERβ, PR, FSHR 1 and 3) were studied by RT-PCR in 3000 rpm pellet. Cell pellet collected at 3000 rpm showed 10-fold enrichment of VSELs (2-6 μm, viable cells with surface phenotype of LIN-CD45-SCA-1+) by flow cytometry and upregulation of pluripotent transcripts by qRT-PCR compared with 1000 rpm pellet. VSELs were maximal during estrus and metestrus phases of estrus cycle. To conclude, VSELs/EnSCs can be enriched from adult uterus using the strategy described here, vary in numbers across estrus cycle, and are vulnerable to endocrine disruption as they express steroid receptors.
Collapse
|
22
|
Zhou H, Zhang C, Li H, Chen L, Cheng X. A novel risk score system of immune genes associated with prognosis in endometrial cancer. Cancer Cell Int 2020; 20:240. [PMID: 32549787 PMCID: PMC7294624 DOI: 10.1186/s12935-020-01317-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial cancer was the commonest gynecological malignancy in developed countries. Despite striking advances in multimodality management, however, for patients in advanced stage, targeted therapy still remained a challenge. Our study aimed to investigate new biomarkers for endometrial cancer and establish a novel risk score system of immune genes in endometrial cancer. Methods The clinicopathological characteristics and gene expression data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) of immune genes between tumors and normal tissues were identified. Protein–protein interaction (PPI) network of immune genes and transcriptional factors was integrated and visualized in Cytoscape. Univariate and multivariate analysis were employed for key genes to establish a new risk score system. Receiver operating characteristic (ROC) curve and survival analysis were performed to investigate the prognostic value of the model. Association between clinical characteristics and the model was analyzed by logistic regression. For validation, we identified 34 patients with endometrial cancer from Fudan University Shanghai Cancer Center (FUSCC). We detected 14-genes mRNA expression and calculated the risk scores of each patients and we performed survival analysis between the high-risk group and the low-risk group. Results 23 normal tissues and 552 tumor tissues were obtained from TCGA database. 410 immune-related DEGs was identified by difference analysis and correlation analysis. KEGG and GO analysis revealed these DEGs were enriched in cell adhesion, chemotaxis, MAPK pathways and PI3K-Akt signaling pathway, which might regulate tumor progression and migration. All genes were screened for risk model construction and 14 hub immune-related genes (HTR3E, CBLC, TNF, PSMC4, TRAV30, PDIA3, FGF8, PDGFRA, ESRRA, SBDS, CRHR1, LTA, NR2F1, TNFRSF18) were prognostic in endometrial cancer. The area under the curve (AUC) was 0.787 and the high-risk group estimated by the model possessed worse outcome (P < 0.001). Multivariate analysis suggested that the model was indeed an independent prognostic factor (high-risk vs. low-risk, HR = 1.14, P < 0.001). Meanwhile, the high-risk group was prone to have higher grade (P = 0.002) and advanced clinical stage (P = 0.018). In FUSCC validation set, the high-risk group had worse survival than the low-risk group (P < 0.001). Conclusions In conclusion, the novel risk model of immune genes had some merits in predicting the prognosis of endometrial cancer and had strong correlation with clinical outcomes. Furthermore, it might provide new biomarkers for targeted therapy in endometrial cancer.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chufan Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoran Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Schöniger S, Schoon HA. The Healthy and Diseased Equine Endometrium: A Review of Morphological Features and Molecular Analyses. Animals (Basel) 2020; 10:ani10040625. [PMID: 32260515 PMCID: PMC7222714 DOI: 10.3390/ani10040625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Diseases of the endometrium are a frequent cause of subfertility in mares and have an economic impact on the horse breeding industry. These include periglandular fibrosis of endometrial glands (endometrosis), degenerative diseases of vessels (angiosis), inflammation (endometritis), as well as altered differentiation of endometrial glands. Some mares are susceptible towards persistent endometritis. The etiology and pathogenesis of endometrosis are still unclear. This review describes morphological hallmarks and molecular features associated with endometrial health and different types of diseases. The presented literature data reveal characteristic differences in the expression of several extra- and intracellular molecules between the healthy and diseased equine endometrium. Some of these molecules can be detected directly within the tissue and thus have the potential to serve as excellent diagnostic markers for the presence of endometrial diseases. The knowledge of disease-associated changes in cellular differentiation, secretory functions, and immune mechanisms will help to decipher pathogenesis and will contribute to the development of novel treatments. In addition, the quantification of molecular alterations may contribute to a fertility prognosis for an individual mare. Reproductive health increases the well-being of mares and reduces financial loss for the horse breeding industry. Abstract Mares are seasonally polyestric. The breeding season in spring and summer and the winter anestrus are flanked by transitional periods. Endometrial diseases are a frequent cause of subfertility and have an economic impact on the horse breeding industry. They include different forms of endometrosis, endometritis, glandular maldifferentiation, and angiosis. Except for suppurative endometritis, these are subclinical and can only be diagnosed by the microscopic examination of an endometrial biopsy. Endometrosis is characterized by periglandular fibrosis and nonsuppurative endometritis by stromal infiltration with lymphocytes and plasma cells. The pathogenesis of endometrosis and nonsuppurative endometritis is still undetermined. Some mares are predisposed to persistent endometritis; this has likely a multifactorial etiology. Glandular differentiation has to be interpreted under consideration of the season. The presence of endometrial diseases is associated with alterations in the expression of several intra- and extracellular molecular markers. Some of them may have potential to be used as diagnostic biomarkers for equine endometrial health and disease. The aim of this review is to provide an overview on pathomorphological findings of equine endometrial diseases, to outline data on analyses of cellular and molecular mechanisms, and to discuss the impact of these data on reproduction and treatment.
Collapse
Affiliation(s)
- Sandra Schöniger
- Targos Molecular Pathology GmbH, Germaniastrasse 7, 34119 Kassel, Germany
- Correspondence:
| | - Heinz-Adolf Schoon
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany;
| |
Collapse
|
24
|
Cheon YP. Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics. Dev Reprod 2020; 24:1-17. [PMID: 32411914 PMCID: PMC7201063 DOI: 10.12717/dr.2020.24.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
Phthalates have a long industrial history. It is suspected that phthalates and their metabolites have detrimental effects on reproduction and development. They are well-known for their anti-androgenic effects. Several studies have indicated that phthalates and their metabolites are reprotoxic in males and endocrine disruptors. Reproduction and embryogenesis occur in the uterus of female eutherian mammals. A horizontal analytical method is preferred to elucidate the toxic effects of phthalates on human reproduction. Nevertheless, there are vast numbers of known phthalates and not all of their modes of action have been clarified. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer and has been the subject of numerous toxicological studies. However, few of these have reported on the toxic effects of DEHP, its metabolites, other phthalates, or mixtures on female reproduction. Acute and high doses of DEHP adversely affect uterine histology. Recently, it was disclosed that chronic exposures to low doses of DEHP have endocrine disruption efficacy. DEHP induces various cellular responses including modulation of the expression and regulation of steroid hormone receptors and transcription and paracrine factors. Uteri do not respond uniformly to DEHP exposure. The phenotypic manifestations and effects on fertility in response to DEHP and its metabolites may vary with species, developmental stage, and generation. Hence, DEHP exposure may histological alter the uterus and induce endometriosis, endometriosis, hyperplasia, myoma, and developmental and reproductive toxicity.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of
Biotechnology, Sungshin University, Seoul 02844,
Korea
| |
Collapse
|
25
|
Li K, Liszka M, Zhou C, Brehm E, Flaws JA, Nowak RA. Prenatal exposure to a phthalate mixture leads to multigenerational and transgenerational effects on uterine morphology and function in mice. Reprod Toxicol 2020; 93:178-190. [PMID: 32126281 DOI: 10.1016/j.reprotox.2020.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/21/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Phthalates are commonly used plasticizers and additives that are found in plastic containers, children's toys and medical equipment. Phthalates are classified as endocrine-disrupting chemicals and exposure to phthalates has been associated with several human health risks including reproductive defects. Most studies focus on a single phthalate; however, humans are exposed to a mixture of phthalates daily. We hypothesized that prenatal exposure to an environmentally relevant phthalate mixture would lead to changes in uterine morphology and function in mice in a multi-generational manner. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle or a phthalate mixture (20 μg/kg/day, 200 μg/kg/day, 200 mg/kg/day, and 500 mg/kg/day) from gestational day 10.5 to parturition. The mixture contained 35 % diethyl phthalate, 21 % di-(2-ethylhexyl) phthalate, 15 % dibutyl phthalate, 15 % diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. The F1 pups were maintained and mated to produce two more generations (F2 and F3). At the age of 13 months, all females were euthanized and tissue samples were collected in diestrus. Our results showed that exposure to a phthalate mixture caused a decrease in progesterone levels in the treated groups in the F2 generation. The 200 mg/kg/day treatment group showed a decreased and increased luminal epithelial cell proliferation in the F1 and F2 generations respectively. In addition, these mice in the F2 generation had reduced Hand2 expression in the sub-epithelial stroma compared to the controls. A higher incidence of multilayered luminal epithelium and large dilated endometrial glands were observed in the phthalate mixture exposed groups in all generations. The mixture also caused a higher incidence of smooth muscle actin expression and collagen deposition in the endometrium compared to controls. Collectively, our results demonstrate that prenatal exposure to an environmentally relevant phthalate mixture can have adverse effects on female reproductive functions.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Monika Liszka
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States.
| |
Collapse
|
26
|
Kim J, Cha S, Lee MY, Hwang YJ, Yang E, Choi D, Lee SH, Cheon YP. Chronic and Low Dose Exposure to Nonlyphenol or Di(2-Ethylhexyl) Phthalate Alters Cell Proliferation and the Localization of Steroid Hormone Receptors in Uterine Endometria in Mice. Dev Reprod 2019; 23:263-275. [PMID: 31660453 PMCID: PMC6812976 DOI: 10.12717/dr.2019.23.3.263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/30/2019] [Accepted: 09/19/2019] [Indexed: 02/04/2023]
Abstract
Based on our preliminary results, we examined the possible role of low-dose and
chronic-exposing of the chemicals those are known as endocrine disrupting
chemical (EDC), on the proliferation of uterine endometrium and the localization
of steroid receptors. Immunohistochemical or immunofluorochemical methodology
were employed to evaluate the localization of antigen identified by monoclonal
antibody Ki 67 protein (MKI67), estrogen receptor 1 (ESR1), estrogen receptor 2
(ESR2), and progesterone receptor (PGR). In 133 μg/L and 1,330
μg/L di(2-ethylhexyl) phthalate (DEHP) and 50 μg/L nonylphenol
(NP) groups, the ratio of MKI67 positive stromal cells was significantly
increased but not in 500 μg/L NP group. The ratios of MKI67 positive
glandular and luminal epithelial cells were also changed by the chronic
administration of NP and DEHP in tissue with dose specific manner. ESR1 signals
were localized in nucleus in glandular and luminal epithelia of control group
but its localization was mainly in cytoplasm in DEHP and NP administered groups.
On the other hand, it was decreased at nucleus of stromal cells in 1,330
μg/L DEHP group. The colocalization patterns of these nuclear receptors
were also modified by the administration of these chemicals. Such a tissue
specific and dose specific localization of ESR2 and PGR were detected as ESR1 in
all the uterine endometrial tissues. These results show that the chronic
lows-dose exposing of NP or DEHP modify the localization and colocalization of
ESRs and PGR, and of the proliferation patterns of the endometrial tissues.
Collapse
Affiliation(s)
- Juhye Kim
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Sunyeong Cha
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Min Young Lee
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Yeon Jeong Hwang
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Eunhyeok Yang
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| |
Collapse
|
27
|
Palaniappan M, Nguyen L, Grimm SL, Xi Y, Xia Z, Li W, Coarfa C. The genomic landscape of estrogen receptor α binding sites in mouse mammary gland. PLoS One 2019; 14:e0220311. [PMID: 31408468 PMCID: PMC6692022 DOI: 10.1371/journal.pone.0220311] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/12/2019] [Indexed: 01/15/2023] Open
Abstract
Estrogen receptor α (ERα) is the major driving transcription factor in the mammary gland development as well as breast cancer initiation and progression. However, the genomic landscape of ERα binding sites in the normal mouse mammary gland has not been completely elucidated. Here, we mapped genome-wide ERα binding events by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) in the mouse mammary gland in response to estradiol. We identified 6237 high confidence ERα binding sites in two biological replicates and showed that many of these were located at distal enhancer regions. Furthermore, we discovered 3686 unique genes in the mouse genome that recruit ER in response to estradiol. Interrogation of ER-DNA binding sites in ER-positive luminal epithelial cells showed that the ERE, PAX2, SF1, and AP1 motifs were highly enriched at distal enhancer regions. In addition, comprehensive transcriptome analysis by RNA-seq revealed that 493 genes are differentially regulated by acute treatment with estradiol in the mouse mammary gland in vivo. Through integration of RNA-seq and ERα ChIP-seq data, we uncovered a novel ERα targetome in mouse mammary epithelial cells. Taken together, our study has identified the genomic landscape of ERα binding events in mouse mammary epithelial cells. Furthermore, our study also highlights the cis-regulatory elements and cofactors that are involved in estrogen signaling and may contribute to ductal elongation in the normal mouse mammary gland.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of America
- * E-mail:
| | - Loc Nguyen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of America
| | - Sandra L. Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States of America
| | - Yuanxin Xi
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
| | - Zheng Xia
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, United States of America
- Advanced Technology Core, Baylor College of Medicine, Houston, United States of America
| |
Collapse
|
28
|
Hewitt SC, Lierz SL, Garcia M, Hamilton KJ, Gruzdev A, Grimm SA, Lydon JP, Demayo FJ, Korach KS. A distal super enhancer mediates estrogen-dependent mouse uterine-specific gene transcription of Igf1 ( insulin-like growth factor 1). J Biol Chem 2019; 294:9746-9759. [PMID: 31073032 PMCID: PMC6597841 DOI: 10.1074/jbc.ra119.008759] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) is primarily synthesized in and secreted from the liver; however, estrogen (E2), through E2 receptor α (ERα), increases uterine Igf1 mRNA levels. Previous ChIP-seq analyses of the murine uterus have revealed a potential enhancer region distal from the Igf1 transcription start site (TSS) with multiple E2-dependent ERα-binding regions. Here, we show E2-dependent super enhancer-associated characteristics and suggest contact between the distal enhancer and the Igf1 TSS. We hypothesized that this distal super-enhancer region controls E2-responsive induction of uterine Igf1 transcripts. We deleted 430 bp, encompassing one of the ERα-binding sites, thereby disrupting interactions of the enhancer with gene-regulatory factors. As a result, E2-mediated induction of mouse uterine Igf1 mRNA is completely eliminated, whereas hepatic Igf1 expression remains unaffected. This highlights the central role of a distal enhancer in the assembly of the factors necessary for E2-dependent interaction with the Igf1 TSS and induction of uterus-specific Igf1 transcription. Of note, loss of the enhancer did not affect fertility or uterine growth responses. Deletion of uterine Igf1 in a PgrCre;Igf1f/f model decreased female fertility but did not impact the E2-induced uterine growth response. Moreover, E2-dependent activation of uterine IGF1 signaling was not impaired by disrupting the distal enhancer or by deleting the coding transcript. This indicated a role for systemic IGF1, suggested that other growth mediators drive uterine response to E2, and suggested that uterine-derived IGF1 is essential for reproductive success. Our findings elucidate the role of a super enhancer in Igf1 regulation and uterine growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara A Grimm
- the Integrative Bioinformatics Support Group, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - John P Lydon
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Francesco J Demayo
- Pregnancy & Female Reproduction Group, Reproductive and Developmental Biology Laboratory and
| | | |
Collapse
|
29
|
The Emerging Role of the Microenvironment in Endometrial Cancer. Cancers (Basel) 2018; 10:cancers10110408. [PMID: 30380719 PMCID: PMC6266917 DOI: 10.3390/cancers10110408] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is one of the most frequently diagnosed cancers in women, and despite recent therapeutic advances, in many cases, treatment failure results in cancer recurrence, metastasis, and death. Current research demonstrates that the interactive crosstalk between two discrete cell types (tumor and stroma) promotes tumor growth and investigations have uncovered the dual role of the stromal cells in the normal and cancerous state. In contrast to tumor cells, stromal cells within the tumor microenvironment (TME) are genetically stable. However, tumor cells modify adjacent stromal cells in the TME. The alteration in signaling cascades of TME from anti-tumorigenic to pro-tumorigenic enhances metastatic potential and/or confers therapeutic resistance. Therefore, the TME is a fertile ground for the development of novel therapies. Furthermore, disrupting cancer-promoting signals from the TME or re-educating stromal cells may be an effective strategy to impair metastatic progression. Here, we review the paradoxical role of different non-neoplastic stromal cells during specific stages of EC progression. We also suggest that the inhibition of microenvironment-derived signals may suppress metastatic EC progression and offer novel potential therapeutic interventions.
Collapse
|
30
|
Shift from androgen to estrogen action causes abdominal muscle fibrosis, atrophy, and inguinal hernia in a transgenic male mouse model. Proc Natl Acad Sci U S A 2018; 115:E10427-E10436. [PMID: 30327348 PMCID: PMC6217386 DOI: 10.1073/pnas.1807765115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inguinal hernia is one of the most common disorders that affect elderly men. A major pathology underlying inguinal hernia is the fibrosis and other degenerative changes that affect the lower abdominal muscle strength adjacent to the inguinal canal. Here we describe a critical role of estrogen and its nuclear receptor that enhance fibroblast proliferation and muscle atrophy, leading to inguinal hernia. Further research may reveal a potential role of estrogen ablation to prevent muscle fibrosis or hernia in a subset of elderly men. Inguinal hernia develops primarily in elderly men, and more than one in four men will undergo inguinal hernia repair during their lifetime. However, the underlying mechanisms behind hernia formation remain unknown. It is known that testosterone and estradiol can regulate skeletal muscle mass. We herein demonstrate that the conversion of testosterone to estradiol by the aromatase enzyme in lower abdominal muscle (LAM) tissue causes intense fibrosis, leading to muscle atrophy and inguinal hernia; an aromatase inhibitor entirely prevents this phenotype. LAM tissue is uniquely sensitive to estradiol because it expresses very high levels of estrogen receptor-α. Estradiol acts via estrogen receptor-α in LAM fibroblasts to activate pathways for proliferation and fibrosis that replaces atrophied myocytes, resulting in hernia formation. This is accompanied by decreased serum testosterone and decreased expression of the androgen receptor target genes in LAM tissue. These findings provide a mechanism for LAM tissue fibrosis and atrophy and suggest potential roles of future nonsurgical and preventive approaches in a subset of elderly men with a predisposition for hernia development.
Collapse
|
31
|
Du S, Liu X, Deng K, Zhou W, Lu F, Shi D. The expression pattern of fibroblast growth factor 10 and its receptors during buffalo follicular development. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4934-4941. [PMID: 31949569 PMCID: PMC6962906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 06/10/2023]
Abstract
This study explored the expression and localization of fibroblast growth factor (FGF) 10 and its receptors (FGF receptor 1 and FGF receptor 2, FGFR1 and FGFR2) during buffalo follicular development, laying a foundation for the further study of FGF signaling pathways in follicular development and oogenesis. Granulosa cells and ovarian follicles were extracted from buffalo ovaries, and in vitro maturation culture of oocytes was conducted. Immunohistochemistry was performed to detect the expression of FGF10 and its receptors FGFR1 and FGFR2. In addition, immunofluorescence staining was used to detect the expression of FGF10 in buffalo cumulus oocyte complexes (COCs). Moreover, mRNA levels of FGF10, sub-types of FGFR1 and FGFR2 (FGFR1b and FGFR2b) were measured using qRT-PCR. Immunohistochemistry results showed that FGF10 and its receptors FGFR1 and FGFR2 appeared to have positive responses in buffalo primordial follicles, primary follicles, secondary follicles, and mature follicle oocytes and granulosa cells, and mature follicle basal membrane cells. However, no expression of FGF10 mRNA was detected in granulosa cells from follicles of different diameters, but immunofluorescence results showed that FGF10 could be detected in both cumulus cells and oocytes. With an increase in the vitro maturation time of buffalo COCs, FGF10 and receptor sub-types FGFR1b and FGFR2b mRNA expression also gradually increased, and significantly higher than before maturation. In summary, FGF10 and its receptors may be involved in the process of buffalo follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Shanshan Du
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Wenting Zhou
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi UniversityNanning 530004, Guangxi, China
| |
Collapse
|
32
|
James K, Bhartiya D, Ganguly R, Kaushik A, Gala K, Singh P, Metkari SM. Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. J Ovarian Res 2018; 11:83. [PMID: 30241552 PMCID: PMC6148988 DOI: 10.1186/s13048-018-0454-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Background Very small embryonic-like stem cells (VSELs) exist in adult organs, express pluripotent markers and have the ability to differentiate into three germ layers in vitro. Testicular, ovarian and hematopoietic stem/progenitor cells express receptors for follicle stimulating (FSH) and ovarian hormones and are activated by them to undergo proliferation/differentiation. VSELs exist in mouse uterus and are regulated by physiological dose of estradiol (E) & progesterone (P) during endometrial growth, differentiation and regeneration/remodeling. In the present study, effects of daily administration of E (2 μg/day), P (1 mg/Kg/day) or FSH (5 IU/day) for 7 days on the endometrium and stem/progenitor cells was studied in bilaterally ovariectomized mice. Results E treatment resulted in hypertrophy whereas P resulted in hyperplasia and overcrowding of epithelial cells. FSH also directly stimulated the endometrial cells. Nuclear OCT-4A positive VSELs were visualized in ovariectomized (atrophied) endometrium and cytoplasmic OCT-4B positive epithelial, stromal and endothelial cells were observed after treatment. FSH treated uterine tissue showed presence of 4 alternately spliced FSHR isoforms by Western blotting. 3–5 μm VSELs with a surface phenotype of LIN-/CD45-/SCA-1+ were enumerated by flow cytometry and were found to express ER, PR, FSHR1 and FSHR3 by RT-PCR analysis. Differential effects of treatment were observed on pluripotent (Oct4A, Sox2, Nanog), progenitors (Oct-4, Sca-1), primordial germ cells (Stella, Fragilis) and proliferation (Pcna) specific transcripts by qRT-PCR analysis. FSH and P (rather than E) exerted profound, direct stimulatory effects on uterine VSELs. Asymmetric, symmetric divisions and clonal expansion of stem/progenitor cells was confirmed by co-expression of OCT-4 and NUMB. Conclusions Results confirm presence of VSELs and their regulation by circulatory hormones in mouse uterus. Stem cell activation was more prominent after P and FSH compared to E treatment. The results question whether epithelial cells proliferation is regulated by paracrine influence of stromal cells or due to direct action of hormones on stem cells. VSELs expressing nuclear OCT-4A are the most primitive and pluripotent stem cells, undergo asymmetric cell division to self-renew and differentiate into epithelial, stromal and endothelial cells with cytoplasmic OCT-4B. Role of follicle stimulating and steroid hormones on the stem cells needs to be studied in various uterine pathologies.
Collapse
Affiliation(s)
- Kreema James
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Ranita Ganguly
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Kavita Gala
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR - National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
33
|
Wu SP, Li R, DeMayo FJ. Progesterone Receptor Regulation of Uterine Adaptation for Pregnancy. Trends Endocrinol Metab 2018; 29:481-491. [PMID: 29705365 PMCID: PMC6004243 DOI: 10.1016/j.tem.2018.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Progesterone acts through the progesterone receptor to direct physiological adaption of the uterus in preparation and completion of pregnancy. Genome-wide transcriptome and cistrome analyses have uncovered new members and novel modifiers of the progesterone signaling pathway. Genetically engineered mice allow functional assessment of newly identified genes in vivo and provide insights on the impact of progesterone receptor-dependent molecular mechanisms on pregnancy at the organ system level. Progesterone receptor isoforms collectively mediate progesterone signaling via their distinct and common downstream target genes, which makes the stoichiometry of isoforms relevant in modifying the progesterone activity. This review discusses recent advances on the discovery of the progesterone receptor network, with special focus on the endometrium at early pregnancy and myometrium during parturition.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
34
|
Morgani SM, Saiz N, Garg V, Raina D, Simon CS, Kang M, Arias AM, Nichols J, Schröter C, Hadjantonakis AK. A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Dev Biol 2018; 441:104-126. [PMID: 29964027 DOI: 10.1016/j.ydbio.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | | | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
35
|
Di (2-ethylhexyl) phthalate (DEHP) alters proliferation and uterine gland numbers in the uteri of adult exposed mice. Reprod Toxicol 2018; 77:70-79. [DOI: 10.1016/j.reprotox.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
|
36
|
Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, Simons BD, Hemberger M, Koo BK, Moffett A, Burton GJ. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol 2017; 19:568-577. [PMID: 28394884 PMCID: PMC5410172 DOI: 10.1038/ncb3516] [Citation(s) in RCA: 461] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem cell-derived organoid cultures to generate 3D cultures of normal and decidualised human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.
Collapse
Affiliation(s)
- Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jasmine Hughes
- Department of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2SP, UK
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Maria J Gomez
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Lydia Farrell
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, NW3 2QU, UK
| | - Jan J Brosens
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Hilary O Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Benjamin D Simons
- Gurdon Institute and Department of Physics, University of Cambridge, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
37
|
Zhang H, Lu L, Zhu M, Zhang F, Sheng X, Yuan Z, Han Y, Watanabe G, Taya K, Weng Q. Seasonal expression of P450arom and estrogen receptors in scented glands of muskrats (Ondatra zibethicus). Am J Physiol Regul Integr Comp Physiol 2017; 312:R380-R387. [DOI: 10.1152/ajpregu.00458.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 02/08/2023]
Abstract
Male muskrats have one pair of scented glands that grow and involute annually. To investigate the annual changes in the scented gland, we measured the expressions of aromatase cytochrome P-450 (P450arom) and estrogen receptors (ERs) in the scented glands. P450arom was expressed in glandular cells and epithelial cells in the scented glands during the breeding season, and only in glandular cells during the nonbreeding season. ERα and ERβ were also detected in different types of cells in the scented gland during the breeding and nonbreeding seasons. Both mRNA and protein levels of P450arom, ERα, and ERβ were higher in the scented glandular tissues during the breeding season than those during the nonbreeding season. In addition, small RNA sequencing showed that the predicted targets of the significantly changed microRNAs might be the genes encoding P450arom and ERs. In conclusion, the seasonal changes in the expression of P450arom and ERs may be involved in the regulation of scented gland functions.
Collapse
Affiliation(s)
- Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Lu Lu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Manyu Zhu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Fengwei Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Xia Sheng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuyoshi Taya
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Peoples Republic of China; and
| |
Collapse
|
38
|
Ito S, Kobayashi Y, Yamamoto Y, Kimura K, Okuda K. Remodeling of bovine oviductal epithelium by mitosis of secretory cells. Cell Tissue Res 2016; 366:403-410. [PMID: 27256395 DOI: 10.1007/s00441-016-2432-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.
Collapse
Affiliation(s)
- Sayaka Ito
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshihiko Kobayashi
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan. .,Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Hokkaido, Japan.
| |
Collapse
|
39
|
Hiraoka T, Hirota Y, Saito-Fujita T, Matsuo M, Egashira M, Matsumoto L, Haraguchi H, Dey SK, Furukawa KS, Fujii T, Osuga Y. STAT3 accelerates uterine epithelial regeneration in a mouse model of decellularized uterine matrix transplantation. JCI Insight 2016; 1:87591. [PMID: 27358915 PMCID: PMC4922514 DOI: 10.1172/jci.insight.87591] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Although a close connection between uterine regeneration and successful pregnancy in both humans and mice has been consistently observed, its molecular basis remains unclear. We here established a mouse model of decellularized uterine matrix (DUM) transplantation. Resected mouse uteri were processed with SDS to make DUMs without any intact cells. DUMs were transplanted into the mouse uteri with artificially induced defects, and all the uterine layers were recovered at the DUM transplantation sites within a month. In the regenerated uteri, normal hormone responsiveness in early pregnancy was observed, suggesting the regeneration of functional uteri. Uterine epithelial cells rapidly migrated and formed a normal uterine epithelial layer within a week, indicating a robust epithelial-regenerating capacity. Stromal and myometrial regeneration occurred following epithelial regeneration. In ovariectomized mice, uterine regeneration of the DUM transplantation was similarly observed, suggesting that ovarian hormones are not essential for this regeneration process. Importantly, the regenerating epithelium around the DUM demonstrated heightened STAT3 phosphorylation and cell proliferation, which was suppressed in uteri of Stat3 conditional knockout mice. These data suggest a key role of STAT3 in the initial step of the uterine regeneration process. The DUM transplantation model is a powerful tool for uterine regeneration research.
Collapse
Affiliation(s)
- Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mahiro Egashira
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Leona Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Haraguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Katsuko S Furukawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Robertshaw I, Bian F, Das SK. Mechanisms of uterine estrogen signaling during early pregnancy in mice: an update. J Mol Endocrinol 2016; 56:R127-38. [PMID: 26887389 PMCID: PMC4889031 DOI: 10.1530/jme-15-0300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
Adherence of an embryo to the uterus represents the most critical step of the reproductive process. Implantation is a synchronized event between the blastocyst and the uterine luminal epithelium, leading to structural and functional changes for further embryonic growth and development. The milieu comprising the complex process of implantation is mediated by estrogen through diverse but interdependent signaling pathways. Mouse models have demonstrated the relevance of the expression of estrogen-modulated paracrine factors to uterine receptivity and implantation window. More importantly, some factors seem to serve as molecular links between different estrogen pathways, promoting cell growth, acting as molecular chaperones, or amplifying estrogenic effects. Abnormal expression of these factors can lead to implantation failure and infertility. This review provides an overview of several well-characterized signaling pathways that elucidates the molecular cross talk involved in the uterus during early pregnancy.
Collapse
Affiliation(s)
- I Robertshaw
- Department of Obstetrics and GynecologyUniversity of Cincinnati, West Chester, Ohio, USA Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - F Bian
- Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Perinatal InstituteCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - S K Das
- Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Perinatal InstituteCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Department of PediatricsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|