1
|
Chen Y, Yamamoto T, Takahashi Y, Moro T, Tajima T, Sakaguchi Y, Sakata N, Yokoyama A, Hijioka S, Sada A, Tabata Y, Ohki R. Metabolic intervention by low carbohydrate diet suppresses the onset and progression of neuroendocrine tumors. Cell Death Dis 2023; 14:597. [PMID: 37679316 PMCID: PMC10484927 DOI: 10.1038/s41419-023-06123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Insulin signaling often plays a role in the regulation of cancer, including tumor initiation, progression, and response to treatment. In addition, the insulin-regulated PI3K-Akt-mTOR pathway plays an important role in the regulation of islet cell proliferation, and this pathway is hyperactivated in human non-functional pancreatic neuroendocrine tumors (PanNETs). We, therefore, investigated the effect of a very low carbohydrate diet (ketogenic diet) on a mouse model that develops non-functional PanNETs to ask how reduced PI3K-Akt-mTOR signaling might affect the development and progression of non-functional PanNET. We found that this dietary intervention resulted in lower PI3K-Akt-mTOR signaling in islet cells and a significant reduction in PanNET formation and progression. We also found that this treatment had a significant effect on the suppression of pituitary NET development. Furthermore, we found that non-functional PanNET patients with lower blood glucose levels tend to have a better prognosis than patients with higher blood glucose levels. This preclinical study shows that a dietary intervention that results in lower serum insulin levels leads to lower insulin signals within the neuroendocrine cells and has a striking suppressive effect on the development and progression of both pancreatic and pituitary NETs.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yura Takahashi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Tokyo College of Biotechnology, 1-3-14 Kitakoujiya, Ohta-ku, Tokyo, 144-0032, Japan
| | - Tomoka Moro
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Tokyo College of Biotechnology, 1-3-14 Kitakoujiya, Ohta-ku, Tokyo, 144-0032, Japan
| | - Tomoko Tajima
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukiko Sakaguchi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, 997-0052, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuko Tabata
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Klementieva N, Goliusova D, Krupinova J, Yanvarev V, Panova A, Mokrysheva N, Kiselev SL. A Novel Isogenic Human Cell-Based System for MEN1 Syndrome Generated by CRISPR/Cas9 Genome Editing. Int J Mol Sci 2021; 22:12054. [PMID: 34769484 PMCID: PMC8584395 DOI: 10.3390/ijms222112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype-genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome.
Collapse
Affiliation(s)
- Natalia Klementieva
- Endocrinology Research Centre, 115478 Moscow, Russia; (J.K.); (A.P.); (N.M.)
| | - Daria Goliusova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (V.Y.)
| | - Julia Krupinova
- Endocrinology Research Centre, 115478 Moscow, Russia; (J.K.); (A.P.); (N.M.)
| | - Vladislav Yanvarev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (V.Y.)
| | - Alexandra Panova
- Endocrinology Research Centre, 115478 Moscow, Russia; (J.K.); (A.P.); (N.M.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (V.Y.)
| | - Natalia Mokrysheva
- Endocrinology Research Centre, 115478 Moscow, Russia; (J.K.); (A.P.); (N.M.)
| | - Sergey L. Kiselev
- Endocrinology Research Centre, 115478 Moscow, Russia; (J.K.); (A.P.); (N.M.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.G.); (V.Y.)
| |
Collapse
|
3
|
Goliusova DV, Klementieva NV, Mokrysheva NG, Kiselev SL. Molecular Mechanisms of Carcinogenesis Associated with MEN1 Gene Mutation. RUSS J GENET+ 2019; 55:927-932. [DOI: 10.1134/s1022795419080052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 02/05/2023]
|
4
|
Confer A, Owston MA, Kumar S, Dick EJ. Multiple endocrine neoplasia-like syndrome in 24 baboons (Papio spp.). J Med Primatol 2018; 47:434-439. [PMID: 30256416 PMCID: PMC6234079 DOI: 10.1111/jmp.12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/20/2018] [Accepted: 08/05/2018] [Indexed: 01/03/2023]
Abstract
Multiple endocrine neoplasia (MEN) has not been reported in baboons, but this condition is well described in humans. An internal database was searched for all cases of concurrent endocrine hyperplasia and neoplasia in baboons. Twenty-four baboons (Papio spp.) with concurrent endocrine hyperplasia and neoplasia were identified. Twenty-one baboons had lesions in two endocrine organs, two baboons had lesions in three organs, and one baboon had lesions in four organs. Ten baboons aligned with the MEN1 classification; 14 baboons did not match any current human MEN classification. We report 24 cases of MEN-like syndrome in baboons. MEN1-like lesions accounted for nearly half (41%) of the affected animals. Genetic analysis of baboons with MEN-like syndrome could further elucidate the mechanisms of MEN and support the use of baboons as animal models for human MEN.
Collapse
Affiliation(s)
- Alexandra Confer
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
- USDA Food Safety and Inspection Service, Albany, CA
| | - Michael A. Owston
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
- Charles River Laboratories, Ashland, OH
| | - Shyamesh Kumar
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| | - Edward J. Dick
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
5
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
6
|
Stevenson M, Lines KE, Thakker RV. Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors: New Therapeutic Approaches. Endocrinol Metab Clin North Am 2018; 47:525-548. [PMID: 30098714 PMCID: PMC7614857 DOI: 10.1016/j.ecl.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise sporadically or as part of familial syndromes. Genetic studies of hereditary syndromes and whole exome sequencing analysis of sporadic NETs have revealed the roles of some genes involved in PNET tumorigenesis. The multiple endocrine neoplasia type 1 (MEN1) gene is most commonly mutated. Its encoded protein, menin, has roles in transcriptional regulation, genome stability, DNA repair, protein degradation, cell motility and adhesion, microRNA biogenesis, cell division, cell cycle control, and epigenetic regulation. Therapies targeting epigenetic regulation and MEN1 gene replacement have been reported to be effective in preclinical models.
Collapse
Affiliation(s)
- Mark Stevenson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Kate E Lines
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Rajesh V Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
7
|
Li JWY, Hua X, Reidy-Lagunes D, Untch BR. MENIN loss as a tissue-specific driver of tumorigenesis. Mol Cell Endocrinol 2018; 469:98-106. [PMID: 28965973 PMCID: PMC8064664 DOI: 10.1016/j.mce.2017.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
The MEN1 gene encodes MENIN, a tumor suppressor that plays a role in multiple cellular processes. Germline and somatic mutations in MEN1 have been identified in hereditary and sporadic tumors of neuroendocrine origins suggesting context-specific functions. In this review, we focus on the development of mutational Men1 in vivo models, the known cellular activities of MENIN and efforts to identify vulnerabilities in tumors with MENIN loss.
Collapse
Affiliation(s)
- Janet W Y Li
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
Pancreatic neuroendocrine tumours (PNETs) might occur as a non-familial isolated endocrinopathy or as part of a complex hereditary syndrome, such as multiple endocrine neoplasia type 1 (MEN1). MEN1 is an autosomal dominant disorder characterized by the combined occurrence of PNETs with tumours of the parathyroids and anterior pituitary. Treatments for primary PNETs include surgery. Treatments for non-resectable PNETs and metastases include biotherapy (for example, somatostatin analogues, inhibitors of receptors and monoclonal antibodies), chemotherapy and radiological therapy. All these treatments are effective for PNETs in patients without MEN1; however, there is a scarcity of clinical trials reporting the efficacy of the same treatments of PNETs in patients with MEN1. Treatment of PNETs in patients with MEN1 is challenging owing to the concomitant development of other tumours, which might have metastasized. In recent years, preclinical studies have identified potential new therapeutic targets for treating MEN1-associated neuroendocrine tumours (including PNETs), and these include epigenetic modification, the β-catenin-wingless (WNT) pathway, Hedgehog signalling, somatostatin receptors and MEN1 gene replacement therapy. This Review discusses these advances.
Collapse
Affiliation(s)
- Morten Frost
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
- Endocrine Research Unit, University of Southern Denmark, Odense, 5000, Denmark
| | - Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, OX3 7LJ. United Kingdom
| |
Collapse
|
9
|
Molatore S, Kügler A, Irmler M, Wiedemann T, Neff F, Feuchtinger A, Beckers J, Robledo M, Roncaroli F, Pellegata NS. Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma. Endocr Relat Cancer 2018; 25:145-162. [PMID: 29142006 DOI: 10.1530/erc-17-0456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Rats affected by the MENX syndrome spontaneously develop multiple neuroendocrine tumors (NETs) including adrenal, pituitary and thyroid gland neoplasms. MENX was initially reported to be inherited as a recessive trait and affected rats were found to be homozygous for the predisposing Cdkn1b mutation encoding p27. We here report that heterozygous MENX-mutant rats (p27+/mut) develop the same spectrum of NETs seen in the homozygous (p27mut/mut) animals but with slower progression. Consequently, p27+/mut rats have a significantly shorter lifespan compared with their wild-type (p27+/+) littermates. In the tumors of p27+/mut rats, the wild-type Cdkn1b allele is neither lost nor silenced, implying that p27 is haploinsufficient for tumor suppression in this model. Transcriptome profiling of rat adrenal (pheochromocytoma) and pituitary tumors having different p27 dosages revealed a tissue-specific, dose-dependent effect of p27 on gene expression. In p27+/mut rats, thyroid neoplasms progress to invasive and metastatic medullary thyroid carcinomas (MTCs) accompanied by increased calcitonin levels, as in humans. Comparison of expression signatures of late-stage vs early-stage MTCs from p27+/mut rats identified genes potentially involved in tumor aggressiveness. The expression of a subset of these genes was evaluated in human MTCs and found to be associated with aggressive RET-M918T-positive tumors. Altogether, p27 haploinsufficiency in MENX rats uncovered a novel, representative model of invasive and metastatic MTC exploitable for translational studies of this often aggressive and incurable cancer.
Collapse
Affiliation(s)
- Sara Molatore
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Kügler
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Frauke Neff
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical PathologyHelmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
- Technische Universität MünchenChair of Experimental Genetics, Freising, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer GroupSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Federico Roncaroli
- Division of Neuroscience and Experimental PsychologyFaculty of Medicine, University of Manchester, Manchester, UK
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
10
|
Moodley S, Weber F, Mulligan LM. The evolving clinical, genetic and therapeutic landscape of multiple endocrine neoplasia type 2. Endocr Relat Cancer 2018; 25:E1-E4. [PMID: 29348305 DOI: 10.1530/erc-17-0488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Serisha Moodley
- Division of Cancer Biology and GeneticsCancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Frank Weber
- Department of General-Visceral- and Transplantations Surgery, Division of Endocrine Surgery, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Lois M Mulligan
- Division of Cancer Biology and GeneticsCancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Sundaresan S, Meininger CA, Kang AJ, Photenhauer AL, Hayes MM, Sahoo N, Grembecka J, Cierpicki T, Ding L, Giordano TJ, Else T, Madrigal DJ, Low MJ, Campbell F, Baker AM, Xu H, Wright NA, Merchant JL. Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells. Gastroenterology 2017; 153:1555-1567.e15. [PMID: 28859856 PMCID: PMC5705278 DOI: 10.1053/j.gastro.2017.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/31/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. METHODS Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. RESULTS Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. CONCLUSIONS MEN1-associated gastrinomas, which develop in the submucosa, might arise from enteric glial cells through hormone-dependent PKA signaling. This pathway disrupts nuclear menin function, leading to hypergastrinemia and associated sequelae.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Cameron A Meininger
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Anthony J Kang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Amanda L Photenhauer
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Hayes
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Nirakar Sahoo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lin Ding
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - David J Madrigal
- Endocrine Oncology Program, University of Michigan, Ann Arbor, Michigan
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Fiona Campbell
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Ann-Marie Baker
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Nicholas A Wright
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Juanita L Merchant
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
12
|
Abstract
Animal models of cancer have been instrumental in advancing our understanding of the biology of tumor initiation and progression, in studying gene function and in performing preclinical studies aimed at testing novel therapies. Several animal models of the MEN1 syndrome have been generated in different organisms by introducing loss-of-function mutations in the orthologues of the human MEN1 gene. In this review, we will discuss MEN1 and MEN1-like models in Drosophila, mice and rats. These model systems with their specific advantages and limitations have contributed to elucidate the function of Menin in tumorigenesis, which turned out to be remarkably conserved from flies to mammals, as well as the biology of the disease. Mouse models of MEN1 closely resemble the human disease in terms of tumor spectrum and associated hormonal changes, although individual tumor frequencies are variable. Rats affected by the MENX (MEN1-like) syndrome share some features with MEN1 patients albeit they bear a germline mutation in Cdkn1b (p27) and not in Men1 Both Men1-knockout mice and MENX rats have been exploited for therapy-response studies testing novel drugs for efficacy against neuroendocrine tumors (NETs) and have provided promising leads for novel therapies. In addition to presenting well-established models of MEN1, we also discuss potential models which, if implemented, might broaden even further our knowledge of neuroendocrine tumorigenesis. In the future, patient-derived xenografts in zebrafish or mice might allow us to expand the tool-box currently available for preclinical studies of MEN1-associated tumors.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
13
|
Gaudenzi G, Albertelli M, Dicitore A, Würth R, Gatto F, Barbieri F, Cotelli F, Florio T, Ferone D, Persani L, Vitale G. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine 2017; 57:214-219. [PMID: 27481363 DOI: 10.1007/s12020-016-1048-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022]
Abstract
Preclinical research on neuroendocrine tumors usually involves immortalized cell lines and few animal models. In the present study we described an in vivo model based on patient-derived xenografts of neuroendocrine tumor cells in zebrafish (Danio rerio) embryos, allowing a rapid analysis of the angiogenic and invasive potential. Patient-derived neuroendocrine tumor cells were transplanted in 48 hours post-fertilization Tg(fli1a:EGFP) y1 zebrafish embryos that express enhanced green fluorescent protein in the entire vasculature. Neuroendocrine tumor cells, stained with CM-Dil, were injected into the subperidermal (perivitelline) space, close to the developing subintestinal venous plexus. A proper control group, represented by zebrafish injected with only D-PBS, was included in this study. Angiogenic and invasive potentials of each patient-derived xenograft were evaluated by both epifluorescence and confocal microscopes. Six out of eight neuroendocrine tumor samples were successfully transplanted in zebrafish embryos. Although the implanted tumor mass had a limited size (about 100 cells for embryos), patient-derived xenografts showed pro-angiogenic (5 cases) and invasive (6 cases) behaviors within 48 hours post injection. Patient-derived xenograft in zebrafish embryos appears to be a reliable in vivo preclinical model for neuroendocrine tumors, tumors with often limited cell availability. The rapidity of this procedure makes our model a promising platform to perform preclinical drug screening and opens a new scenario for personalized treatment in patients with neuroendocrine tumors.
Collapse
Affiliation(s)
- Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
14
|
Sundaresan S, Kang AJ, Hayes MM, Choi EYK, Merchant JL. Deletion of Men1 and somatostatin induces hypergastrinemia and gastric carcinoids. Gut 2017; 66:1012-1021. [PMID: 26860771 PMCID: PMC4980289 DOI: 10.1136/gutjnl-2015-310928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Gastric carcinoids are slow growing neuroendocrine tumours arising from enterochromaffin-like (ECL) cells in the corpus of stomach. Although most of these tumours arise in the setting of gastric atrophy and hypergastrinemia, it is not understood what genetic background predisposes development of these ECL derived tumours. Moreover, diffuse microcarcinoids in the mucosa can lead to a field effect and limit successful endoscopic removal. OBJECTIVE To define the genetic background that creates a permissive environment for gastric carcinoids using transgenic mouse lines. DESIGN The multiple endocrine neoplasia 1 gene locus (Men1) was deleted using Cre recombinase expressed from the Villin promoter (Villin-Cre) and was placed on a somatostatin null genetic background. These transgenic mice received omeprazole-laced chow for 6 months. The direct effect of gastrin and the gastrin receptor antagonist YM022 on expression and phosphorylation of the cyclin inhibitor p27Kip1 was tested on the human human gastric adenocarcinoma cell line stably expressing CCKBR (AGSE) and mouse small intestinal neuroendocrine carcinoma (STC)-1 cell lines. RESULTS The combination of conditional Men1 deletion in the absence of somatostatin led to the development of gastric carcinoids within 2 years. Suppression of acid secretion by omeprazole accelerated the timeline of carcinoid development to 6 months in the absence of significant parietal cell atrophy. Carcinoids were associated with hypergastrinemia, and correlated with increased Cckbr expression and nuclear export of p27Kip1 both in vivo and in gastrin-treated cell lines. Loss of p27Kip1 was also observed in human gastric carcinoids arising in the setting of atrophic gastritis. CONCLUSIONS Gastric carcinoids require threshold levels of hypergastrinemia, which modulates p27Kip1 cellular location and stability.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anthony J. Kang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Michael M. Hayes
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Eun-Young K. Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Juanita L. Merchant
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Lines KE, Vas Nunes RP, Frost M, Yates CJ, Stevenson M, Thakker RV. A MEN1 pancreatic neuroendocrine tumour mouse model under temporal control. Endocr Connect 2017; 6:232-242. [PMID: 28420716 PMCID: PMC5632719 DOI: 10.1530/ec-17-0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by occurrence of parathyroid tumours and neuroendocrine tumours (NETs) of the pancreatic islets and anterior pituitary. The MEN1 gene, encoding menin, is a tumour suppressor, but its precise role in initiating in vivo tumourigenesis remains to be elucidated. The availability of a temporally controlled conditional MEN1 mouse model would greatly facilitate the study of such early tumourigenic events, and overcome the limitations of other MEN1 knockout models, in which menin is lost from conception or tumour development occurs asynchronously. To generate a temporally controlled conditional mouse model, we crossbred mice with the MEN1 gene floxed by LoxP sites (Men1L/L ), and mice expressing tamoxifen-inducible Cre recombinase under the control of the rat insulin promoter (RIP2-CreER), to establish a pancreatic β-cell-specific NET model under temporal control (Men1L/L /RIP2-CreER). Men1L/L /RIP2-CreER mice aged ~3 months were given tamoxifen in the diet for 5 days, and pancreata harvested 2-2.5, 2.9-3.5 and 4.5-5.5 months later. Control mice did not express Cre and did not receive tamoxifen. Immunostaining of pancreata from tamoxifen-treated Men1L/L /RIP2-CreER mice, compared to control mice, showed at all ages: loss of menin in all islets; increased islet area (>4.2-fold); increased proliferation of insulin immunostaining β-cells (>2.3-fold) and decreased proliferation of glucagon immunostaining α-cells (>1.7-fold). There were no gender and apoptotic or proliferation differences, and extra-pancreatic tumours were not detected. Thus, we have established a mouse model (Men1L/L /RIP2-CreER) to study early events in the development of pancreatic β-cell NETs.
Collapse
Affiliation(s)
| | | | - M Frost
- Academic Endocrine UnitOCDEM, University of Oxford, Churchill Hospital, Oxford, UK
| | - C J Yates
- Academic Endocrine UnitOCDEM, University of Oxford, Churchill Hospital, Oxford, UK
| | - M Stevenson
- Academic Endocrine UnitOCDEM, University of Oxford, Churchill Hospital, Oxford, UK
| | - R V Thakker
- Academic Endocrine UnitOCDEM, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
16
|
Vitale G, Gaudenzi G, Circelli L, Manzoni MF, Bassi A, Fioritti N, Faggiano A, Colao A. Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer 2017; 24:R1-R12. [PMID: 27799362 DOI: 10.1530/erc-16-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022]
Abstract
Medullary thyroid carcinoma is a neuroendocrine tumour originating from parafollicular C cells accounting for 5-10% of thyroid cancers. Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid carcinoma. These drugs increase progression-free survival; however, they are often poorly tolerated and most treatment responses are transient. Animal models are indispensable tools for investigating the pathogenesis, mechanisms for tumour invasion and metastasis and new therapeutic approaches for cancer. Unfortunately, only few models are available for medullary thyroid carcinoma. This review provides an overview of the state of the art of animal models in medullary thyroid carcinoma and highlights future developments in this field, with the aim of addressing salient features and clinical relevance.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic ResearchIstituto Auxologico Italiano IRCCS, Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO)University of Milan, Milan, Italy
| | - Luisa Circelli
- Department of Experimental OncologyLaboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, 'Fondazione Pascale' - IRCCS, Naples, Italy
| | - Marco F Manzoni
- Department of Endocrinology and Internal MedicineEndocrine Tumors Unit, San Raffaele Hospital Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Bassi
- Department of PhysicsPolitecnico di Milano, Milan, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and SurgerySection of Endocrinology, 'Federico II' University of Naples, Naples, Italy
| | | |
Collapse
|
17
|
Liu Q, Tong D, Yuan W, Liu G, Yuan G, Lan W, Zhang D, Zhang J, Huang Z, Zhang Y, Jiang J. Different RET gene mutation-induced multiple endocrine neoplasia type 2A in 3 Chinese families. Medicine (Baltimore) 2017; 96:e5967. [PMID: 28099363 PMCID: PMC5279108 DOI: 10.1097/md.0000000000005967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUD Multiple endocrine neoplasia type 2A (MEN2A) is a condition with inherited autosomal dominant mutations in RET (rearranged during transfection) gene that predisposes the carrier to extremely high risk of medullary thyroid cancer (MTC) and other MEN2A-associated tumors such as parathyroid cancer and/or pheochromocytoma. Little is reported about MEN2A syndrome in the Chinese population. METHODS All members of the 3 families along with specific probands of MEN2A were analyzed for their clinical, laboratory, and genetic characteristics. Exome sequencing was performed on the 3 probands, and specific mutation in RET was further screened on each of the family members. RESULTS Different mutations in the RET gene were identified: C634S in Family 1, C611Y in Family 2, and C634Y in Family 3. Proband 1 mainly showed pheochromocytoma with MTC, both medullary thyroid carcinoma and pheochromocytoma were seen in proband 2, and proband 3 showed medullary thyroid carcinoma. CONCLUSION The genetic evaluation is strongly recommended for patients with a positive family history, early onset of age, or multiple sites of masses. If the results verified the mutations of RET gene, thyroidectomy should be undertaken as the guide for better prognosis.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Wenqiang Yuan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Gang Yuan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zaoming Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|