1
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Constantin S, Pizano K, Matson K, Shan Y, Reynolds D, Wray S. An Inhibitory Circuit From Brainstem to GnRH Neurons in Male Mice: A New Role for the RFRP Receptor. Endocrinology 2021; 162:6132086. [PMID: 33564881 PMCID: PMC8016070 DOI: 10.1210/endocr/bqab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/31/2022]
Abstract
RFamide-related peptides (RFRPs, mammalian orthologs of gonadotropin-inhibitory hormone) convey circadian, seasonal, and social cues to the reproductive system. They regulate gonadotropin secretion by modulating gonadotropin-releasing hormone (GnRH) neurons via the RFRP receptor. Mice lacking this receptor are fertile but exhibit abnormal gonadotropin responses during metabolic challenges, such as acute fasting, when the normal drop in gonadotropin levels is delayed. Although it is known that these food intake signals to the reproductive circuit originate in the nucleus tractus solitarius (NTS) in the brainstem, the phenotype of the neurons conveying the signal remains unknown. Given that neuropeptide FF (NPFF), another RFamide peptide, resides in the NTS and can bind to the RFRP receptor, we hypothesized that NPFF may regulate GnRH neurons. To address this question, we used a combination of techniques: cell-attached electrophysiology on GnRH-driven green fluorescent protein-tagged neurons in acute brain slices; calcium imaging on cultured GnRH neurons; and immunostaining on adult brain tissue. We found (1) NPFF inhibits GnRH neuron excitability via the RFRP receptor and its canonical signaling pathway (Gi/o protein and G protein-coupled inwardly rectifying potassium channels), (2) NPFF-like fibers in the vicinity of GnRH neurons coexpress neuropeptide Y, (3) the majority of NPFF-like cell bodies in the NTS also coexpress neuropeptide Y, and (4) acute fasting increased NPFF-like immunoreactivity in the NTS. Together these data indicate that NPFF neurons within the NTS inhibit GnRH neurons, and thus reproduction, during fasting but prior to the energy deficit.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Katherine Pizano
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Kaya Matson
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Yufei Shan
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Daniel Reynolds
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
| | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20892-3703, USA
- Correspondence: Dr. Susan Wray, Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive MSC 3703, Building 35, Room 3A1012, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Leptin Receptor Mediates Bmal1 Regulation of Estrogen Synthesis in Granulosa Cells. Animals (Basel) 2019; 9:ani9110899. [PMID: 31683864 PMCID: PMC6912815 DOI: 10.3390/ani9110899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary There is increased interest in determining the effect of the biological clock system on reproduction, but how this biological system affects mammalian fertility and the regulation by clock genes on key genes of reproduction is poorly understood. This study examined the function of Leptin on reproduction through interaction with the Leptin receptor (Lepr) and the regulation of the key clock gene brain and muscle ARNT-like 1 (Bmal1) on Lepr. The results suggested that estrogen (E2) synthesis is regulated by Bmal1 through the Leptin–Lepr pathway as part of the regulatory mechanism of the circadian system on the fertility of female mammals. Abstract Chronobiology affects female fertility in mammals. Lepr is required for leptin regulation of female reproduction. The presence of E-box elements in the Lepr promoter that are recognized and bound by clock genes to initiate gene transcription suggested that circadian systems might regulate fertility through Lepr. However, it is unclear whether Bmal1, a key oscillator controlling other clock genes, is involved in leptin regulation in hormone synthesis through Lepr. In this study, serum estradiol (E2) concentration and the expressions of Bmal1, Lepr, Cyp19a1, and Cyp11a1 genes were found to display well-synchronized circadian rhythms. Knockdown of Bmal1 significantly reduced expression levels of Lepr, Fshr, and Cyp19a1 genes; protein production of Bmal1, Lepr, and Cyp19a1; and the E2 concentration in granulosa cells. Knockdown of Lepr reduced the expression levels of Cyp19a1 and Cyp11a1 genes and Cyp19a1 protein, and also reduced E2 concentration. Addition of leptin affected the expression of Cyp19a1, Cyp11a1, and Fshr genes. Bmal1 deficiency counteracted leptin-stimulated upregulation of the genes encoding E2 synthesis in granulosa cells. These results demonstrated that Bmal1 participates in the process by which leptin acts on Lepr to regulate E2 synthesis.
Collapse
|
4
|
Karatsoreos IN. Circadian Regulation of the Brain and Behavior: A Neuroendocrine Perspective. Curr Top Behav Neurosci 2019; 43:323-351. [PMID: 31586337 PMCID: PMC7594017 DOI: 10.1007/7854_2019_115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroendocrine systems are key regulators of brain and body functions, providing an important nexus between internal states and the external world, which then modulates appropriate behavioral outputs. Circadian (daily) rhythms are endogenously generated rhythms of approximately 24 h that help to synchronize internal physiological processes and behavioral states to the external environmental light-dark cycle. Given the importance of timing (hours, days, annual) in many different neuroendocrine axes, understanding how the circadian timing system regulates neuroendocrine function is particularly critical. Similarly, neuroendocrine signals can significantly affect circadian timing, and understanding these mechanisms can provide insights into general concepts of neuroendocrine regulation of brain circuits and behavior. This chapter will review the circadian timing system and its control of two key neuroendocrine systems: the hypothalamic-pituitary-gonadal (HPG) axis and the hypothalamic-pituitary-adrenal (HPA) axis. It will also discuss how outputs from these axes feedback to affect the circadian clock. Given that disruption of circadian timing is a central component of many mental and physical health conditions and that neuroendocrine function is similarly implicated in many of the same conditions, understanding these links will help illuminate potentially shared causality and perhaps lead to a better understanding of how to manipulate these systems when they begin to malfunction.
Collapse
Affiliation(s)
- Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
5
|
West AC, Wood SH. Seasonal physiology: making the future a thing of the past. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Abstract
Life in seasonally changing environments is challenging. Biological systems have to not only respond directly to the environment, but also schedule life history events in anticipation of seasonal changes. The cellular and molecular basis of how these events are scheduled is unknown. Cellular decision-making processes in response to signals above certain thresholds regularly occur i.e. cellular fate determination, apoptosis and firing of action potentials. Binary switches, the result of cellular decision-making processes, are defined as a change in phenotype between two stable states. A recent study presents evidence of a binary switch operating in the pars tuberalis (PT) of the pituitary, seemingly timing seasonal reproduction in sheep. Though, how a binary switch would allow for anticipation of seasonal environmental changes, not just direct responsiveness, is unclear. The purpose of this review is to assess the evidence for a binary switching mechanism timing seasonal reproduction and to hypothesize how a binary switch would allow biological processes to be timed over weeks to years. I draw parallels with mechanisms used in development, cell fate determination and seasonal timing in plants. I propose that the adult PT is a plastic tissue, showing a seasonal cycle of cellular differentiation, and that the underlying processes are likely to be epigenetic. Therefore, considering the mechanisms behind adult cellular plasticity offers a framework to hypothesize how a long-term timer functions within the PT.
Collapse
Affiliation(s)
- Shona H Wood
- Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Liu L, Chen Y, Wang D, Li N, Guo C, Liu X. Cloning and expression characterization in hypothalamic Dio2/3 under a natural photoperiod in the domesticated Brandt's vole (Lasiopodomys brandtii). Gen Comp Endocrinol 2018; 259:45-53. [PMID: 29154946 DOI: 10.1016/j.ygcen.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
The Dio2/3 gene is related to the photoperiodic response in mammals and plays an important role in the development of gonadal organs and seasonal breeding. Our previous studies have reported synchronous variations in the gonadal mass and photoperiodical transition around the summer solstice in a wild Brandt's vole population, a species with striking seasonal breeding. To investigate the role of the Dio2/3 gene in the control of seasonal breeding in this species, we cloned and characterized its expression levels by high-throughput Real-Time PCR during the period around the summer solstice. We selected a domesticated strain to ensure similar development of samples. The synchronous variation pattern between the Dio2/3 expression levels and gonadal mass around the summer solstice supports the prediction that the Dio2/3 gene plays an important role in the seasonal transition in this species. We suggest that the observed photoperiod response may be triggered by differences in the day length rather than the absolute daylength in this species. However, the similar Dio2/3 gene expression patterns but inconsistent gonadal mass patterns between the domesticated strain and the wild strain in the samples collected on Sep 8th, an absolute nonbreeding stage in the wild, lead us to speculate that the core function of the Dio2/3 gene should be restricted in response to the photoperiod rather than factors directly regulating gonadal development, and this laboratory strain could be used as an animal model to test the mechanism of environmental adaptation.
Collapse
Affiliation(s)
- Lan Liu
- College of Life Science, Sichuan University, Sichuan, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- College of Life Science, Sichuan University, Sichuan, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Guo
- College of Life Science, Sichuan University, Sichuan, China.
| | - Xiaohui Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Wood S, Loudon A. The pars tuberalis: The site of the circannual clock in mammals? Gen Comp Endocrinol 2018; 258:222-235. [PMID: 28669798 DOI: 10.1016/j.ygcen.2017.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Accurate timing and physiological adaptation to anticipate seasonal changes are an essential requirement for an organism's survival. In contrast to all other environmental cues, photoperiod offers a highly predictive signal that can be reliably used to activate a seasonal adaptive programme at the correct time of year. Coupled to photoperiod sensing, it is apparent that many organisms have evolved innate long-term timekeeping systems, allowing reliable anticipation of forthcoming environmental changes. The fundamental biological processes giving rise to innate long-term timing, with which the photoperiod-sensing pathway engages, are not known for any organism. There is growing evidence that the pars tuberalis (PT) of the pituitary, which acts as a primary transducer of photoperiodic input, may be the site of the innate long-term timer or "circannual clock". Current research has led to the proposition that the PT-specific thyrotroph may act as a seasonal calendar cell, driving both hypothalamic and pituitary endocrine circuits. Based on this research we propose that the mechanistic basis for the circannual rhythm appears to be deeply conserved, driven by a binary switching cell based accumulator, analogous to that proposed for development. We review the apparent conservation of function and pathways to suggest that these broad principles may apply across the vertebrate lineage and even share characteristics with processes driving seasonal adaptation in plants.
Collapse
Affiliation(s)
- Shona Wood
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - Andrew Loudon
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|