1
|
Abdel-Moneim A, Mahmoud R, Allam G, Mahmoud B. Relationship between Cytokines and Metabolic Syndrome Components: Role of Pancreatic-Derived Factor, Interleukin-37, and Tumor Necrosis Factor-α in Metabolic Syndrome Patients. Indian J Clin Biochem 2024; 39:37-46. [PMID: 38223016 PMCID: PMC10784435 DOI: 10.1007/s12291-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
The metabolic syndrome (MetS) is a serious public health issue that affects people all over the world. Notably, insulin resistance, prothrombotic activity, and inflammatory state are associated with MetS. This study aims to explore the relationship between cytokines and tumor necrosis factor-α (TNF-α), pancreatic-derived factor (PANDER), and interleukin (IL-)-37 and the accumulation of MetS components. Eligible participants were divided into four groups as follows: group 1, patients with dyslipidemia; group 2, patients with dyslipidemia and obesity; group 3, patients with dyslipidemia, obesity, and hypertension; and group 4, patients with dyslipidemia, obesity, hypertension, and hyperglycemia. This study exhibited that serum levels of TNF-α and PANDER were significantly elevated (P < 0.001) in the MetS groups, while IL-37 level and IL-37 mRNA expression were significantly decreased (P < 0.001) relative to healthy controls. Moreover, this study has revealed significant correlations (P < 0.001) between MetS components and TNF-α, PANDER, and IL-37 levels in MetS patients. The aforementioned results suggested the association between the proinflammatory cytokine (TNF-α and PANDER) and anti-inflammatory cytokine (IL-37) with the accumulation of MetS components. Hence, the overall outcome indicated that PANDER and IL-37 may be considered novel biomarkers associated with increased risk of MetS and can be used as a promising therapeutic target in preventing, ameliorating, and treating metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01079-z.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt. Salah Salem St, 62511 Beni-Suef, Egypt
| | - Rania Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Basant Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Morgan K, Mboumba JF, Ntie S, Mickala P, Miller CA, Zhen Y, Harrigan RJ, Le Underwood V, Ruegg K, Fokam EB, Tasse Taboue GC, Sesink Clee PR, Fuller T, Smith TB, Anthony NM. Precipitation and vegetation shape patterns of genomic and craniometric variation in the central African rodent Praomys misonnei. Proc Biol Sci 2020; 287:20200449. [PMID: 32635865 DOI: 10.1098/rspb.2020.0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Predicting species' capacity to respond to climate change is an essential first step in developing effective conservation strategies. However, conservation prioritization schemes rarely take evolutionary potential into account. Ecotones provide important opportunities for diversifying selection and may thus constitute reservoirs of standing variation, increasing the capacity for future adaptation. Here, we map patterns of environmentally associated genomic and craniometric variation in the central African rodent Praomys misonnei to identify areas with the greatest turnover in genomic composition. We also project patterns of environmentally associated genomic variation under future climate change scenarios to determine where populations may be under the greatest pressure to adapt. While precipitation gradients influence both genomic and craniometric variation, vegetation structure is also an important determinant of craniometric variation. Areas of elevated environmentally associated genomic and craniometric variation overlap with zones of rapid ecological transition underlining their importance as reservoirs of evolutionary potential. We also find that populations in the Sanaga river basin, central Cameroon and coastal Gabon are likely to be under the greatest pressure from climate change. Lastly, we make specific conservation recommendations on how to protect zones of high evolutionary potential and identify areas where populations may be the most susceptible to climate change.
Collapse
Affiliation(s)
- Katy Morgan
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - Jean-François Mboumba
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Stephan Ntie
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Patrick Mickala
- Département de Biologie, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Courtney A Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - Ying Zhen
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Ryan J Harrigan
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Vinh Le Underwood
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Kristen Ruegg
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Eric B Fokam
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
| | | | | | - Trevon Fuller
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Thomas B Smith
- Centre for Tropical Research, Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Nicola M Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| |
Collapse
|
3
|
Li Y, Ma Q, Li P, Wang J, Wang M, Fan Y, Wang T, Wang C, Wang T, Zhao B. Proteomics reveals different pathological processes of adipose tissue, liver, and skeletal muscle under insulin resistance. J Cell Physiol 2020; 235:6441-6461. [PMID: 32115712 DOI: 10.1002/jcp.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.
Collapse
Affiliation(s)
- Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Chi Y, Meng Y, Wang J, Yang W, Wu Z, Li M, Wang D, Gao F, Geng B, Tie L, Zhang W, Yang J. FAM3B (PANDER) functions as a co-activator of FOXO1 to promote gluconeogenesis in hepatocytes. J Cell Mol Med 2018; 23:1746-1758. [PMID: 30488666 PMCID: PMC6378191 DOI: 10.1111/jcmm.14073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
FAM3B, also known as PANcreatic DERived factor (PANDER), promotes gluconeogenesis and lipogenesis in hepatocytes. However, the underlying mechanism(s) still remains largely unclear. This study determined the mechanism of PANDER-induced FOXO1 activation in hepatocytes. In mouse livers and cultured hepatocytes, PANDER protein is located in both the cytoplasm and nucleus. Nuclear PANDER distribution was increased in the livers of obese mice. In cultured mouse and human hepatocytes, PANDER was co-localized with FOXO1 in the nucleus. PANDER directly interacted with FOXO1 in mouse and human hepatocytes. PANDER overexpression enhanced PANDER-FOXO1 interaction, and detained FOXO1 in the nucleus upon insulin stimulation in hepatocytes. With the increase in PANDER-FOXO1 interaction, PANDER overexpression upregulated the expression of gluconeogenic genes and promoted gluconeogenesis in both human and mouse hepatocytes. Luciferase reporter assays further revealed that PANDER augmented the transcriptional activity of FOXO1 on gluconeogenic genes. Moreover, PANDER overexpression also interfered the binding of AS1842856, a specific FOXO1 inhibitor, with FOXO1, and impaired its inhibitory effects on gluconeogenic gene expression and gluconeogenesis in hepatocytes. siRNA mediated-silencing of FOXO1 inhibited PANDER-promoted gluconeogenic gene expression and glucose production in hepatocytes. In conclusion, PANDER protein is abundantly present in the nucleus, where it functions as a new co-activator of FOXO1 to induce gluconeogenic gene expression in hepatocytes.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Mei Li
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Fangfang Gao
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, CAMS and PUMC, National Center for Cardiovascular Diseases, Beijing, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiping Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes. Metabolism 2018; 81:71-82. [PMID: 29221790 DOI: 10.1016/j.metabol.2017.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes are severe public health issues worldwide. The Family with sequence similarity 3 (FAM3) gene family consists of four members designated as FAM3A, FAM3B, FAM3C and FAM3D, respectively. Recently, there had been increasing evidence that FAM3A, FAM3B and FAM3C are important regulators of glucose and lipid metabolism. FAM3A expression is reduced in the livers of diabetic rodents and NAFLD patients. Hepatic FAM3A restoration activates ATP-P2 receptor-Akt and AMPK pathways to attenuate steatosis and hyperglycemia in obese diabetic mice. FAM3C expression is also reduced in the liver under diabetic condition. FAM3C is a new hepatokine that activates HSF1-CaM-Akt pathway and represses mTOR-SREBP1-FAS pathway to suppress hepatic gluconeogenesis and lipogenesis. In contrast, hepatic expression of FAM3B, also called PANDER, is increased under obese state. FAM3B promotes hepatic lipogenesis and gluconeogenesis by repressing Akt and AMPK activities, and activating lipogenic pathway. Under obese state, the imbalance among hepatic FAM3A, FAM3B and FAM3C signaling networks plays important roles in the pathogenesis of NAFLD and type 2 diabetes. This review briefly discussed the latest research progress on the roles and mechanisms of FAM3A, FAM3B and FAM3C in the regulation of hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
6
|
MarElia CB, Kuehl MN, Shemwell TA, Alman AC, Burkhardt BR. Circulating PANDER concentration is associated with increased HbA1c and fasting blood glucose in Type 2 diabetic subjects. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 11:26-30. [PMID: 29686968 PMCID: PMC5910510 DOI: 10.1016/j.jcte.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
PANcreatic-DERived factor (PANDER) is a novel hormone regulating glucose levels. Fasting PANDER levels were measured in T2D and non-T2D matched subjects from U.S. Associations between PANDER and other hormones or metabolic parameters were examined. PANDER was associated with increased HbA1c and fasting blood glucose in T2D subjects. PANDER was not associated with adiponectin, HOMA-β and HOMA-IR.
Aim PANcreatic-DERived factor (PANDER, FAM3B) is a novel hormone that regulates glucose levels via interaction with both the endocrine pancreas and liver. Prior studies examining PANDER were primarily conducted in murine models or in vitro but little is known regarding the circulating concentration of PANDER in humans, especially with regard to the association of type 2 diabetes (T2D) or overall glycemic regulation. To address this limitation, we performed a cross-sectional analysis of circulating serum PANDER concentration in association with other hormones that serve as either markers of insulin resistance (insulin and adiponectin) or to metabolic parameters of glycemic control such as fasting HbA1c and blood glucose (FBG). Methods Fasting serum was obtained from a commercial biorepository from 300 de-identified adult subjects with 150 T2D and non-T2D adult subjects collected from a population within the United States, respectively, matched on gender, age group and race/ethnicity. Concentration of PANDER, insulin and adiponectin were measured for all samples as determined by commercial ELISA. Metadata was provided for each subject including demography, anthropometry, and cigarette and alcohol use. In addition, fasting blood glucose (FBG) and HbA1c were available on T2D subjects. Results Multiple linear regression analyses were performed to examine the relationships between circulating log PANDER concentration on HbA1c, fasting glucose, log insulin, log HOMA-β and log HOMA-IR among T2D subjects and for insulin and adiponectin in non-T2D subjects. A significant linear association was identified between PANDER with fasting HbA1c (β 0.832 ± SE 0.22, p = 0.0003) and FBG (β 20.66 ± SE 7.43, p = 0.006) within T2D subjects. However, insulin, HOMA-β, HOMA-IR and adiponectin (p > 0.05) were not found to be linearly associated with PANDER concentration. Conclusion Within T2D subjects, PANDER is modestly linearly associated with increased HbA1c and FBG in a US population. In addition, highest circulating PANDER levels were measured in T2D subjects with HbA1c above 9.9. No association was identified with PANDER and insulin resistance or pancreatic β-cell function in T2D subjects.
Collapse
Affiliation(s)
- Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Tiffany A Shemwell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Amy C Alman
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, United States
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| |
Collapse
|
7
|
Athanason MG, Stevens SM, Burkhardt BR. Hepatic SILAC proteomic data from PANDER transgenic model. Data Brief 2016; 9:159-62. [PMID: 27642623 PMCID: PMC5018088 DOI: 10.1016/j.dib.2016.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
This article contains raw and processed data related to research published in "Quantitative Proteomic Profiling Reveals Hepatic Lipogenesis and Liver X Receptor Activation in the PANDER Transgenic Model" (M.G. Athanason, W.A. Ratliff, D. Chaput, C.B. MarElia, M.N. Kuehl, S.M., Jr. Stevens, B.R. Burkhardt (2016)) [1], and was generated by "spike-in" SILAC-based proteomic analysis of livers obtained from the PANcreatic-Derived factor (PANDER) transgenic mouse (PANTG) under various metabolic conditions [1]. The mass spectrometry output of the PANTG and wild-type B6SJLF mice liver tissue and resulting proteome search from MaxQuant 1.2.2.5 employing the Andromeda search algorithm against the UniprotKB reference database for Mus musculus has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with dataset identifiers PRIDE: PXD004171 and doi:10.6019/PXD004171. Protein ratio values representing PANTG/wild-type obtained by MaxQuant analysis were input into the Perseus processing suite to determine statistical significance using the Significance A outlier test (p<0.05). Differentially expressed proteins using this approach were input into Ingenuity Pathway Analysis to determined altered pathways and upstream regulators that were altered in PANTG mice.
Collapse
Affiliation(s)
- Mark G Athanason
- University of South Florida, Department of Cell Biology, Microbiology and Molecular Biology, USA
| | - Stanley M Stevens
- University of South Florida, Department of Cell Biology, Microbiology and Molecular Biology, USA
| | - Brant R Burkhardt
- University of South Florida, Department of Cell Biology, Microbiology and Molecular Biology, USA
| |
Collapse
|