1
|
Duan S, Chen M, Chen J, Shao Y, Jin X, Wang C, Feng P, Teng X, Yu Z. Application of insulin resistance score in type 2 diabetes mellitus complicated with fatty liver and liver fibrosis. Eur J Gastroenterol Hepatol 2025:00042737-990000000-00531. [PMID: 40359287 DOI: 10.1097/meg.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND Insulin resistance plays a pivotal role in the progression of type 2 diabetes mellitus (T2DM). An in-depth investigation into the role of insulin resistance scores in evaluating T2DM combined with metabolic-associated fatty liver disease (MAFLD) and liver fibrosis holds significant importance for clinical decisions and personalized treatment. METHODS The study screened patients with diabetes from Taizhou Central Hospital from June 2020 to May 2024. In conjunction with the National Health and Nutrition Examination Survey (NHANES) database, various statistical methods such as logistic regression analysis, restricted cubic spline, and receiver operating characteristic curves were employed to complete data analysis. RESULTS This study encompassed 3776 patients with T2DM, including 1074 diagnosed with MAFLD. Insulin resistance scores in the MAFLD group were significantly elevated. Compared with nonfibrotic patients, those with T2DM and liver fibrosis exhibited notably higher Chinese visceral adiposity index (CVAI) scores and notably lower triglyceride-glucose index and visceral adiposity index scores; the incidence of hypertension, coronary heart disease, stroke, and peripheral arterial disease were significantly elevated. Among other insulin resistance scores, the CVAI score demonstrated the highest value for correlating with the MAFLD and liver fibrosis in patients with T2DM. The NHANES database, encompassing data from 6763 individuals, validated the aforementioned findings, further affirming that the CVAI score exhibited optimal consistency with the risk of T2DM with MAFLD and liver fibrosis. CONCLUSION The insulin resistance scores were significantly elevated in T2DM combined with MAFLD. The CVAI score demonstrated the best predictive effect on MAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Shaojie Duan
- Department of Gastroenterology
- Department of Geriatrics
| | | | - Jie Chen
- Endoscopy Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | | | | | | | | | | | - Zhenjun Yu
- Department of Gastroenterology
- Department of Geriatrics
| |
Collapse
|
2
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Personnaz J, Guillou H, Kautz L. Fibrinogen-like 1: A hepatokine linking liver physiology to hematology. Hemasphere 2024; 8:e115. [PMID: 38966209 PMCID: PMC11223652 DOI: 10.1002/hem3.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
A recent study identified the critical contribution of the hepatokine FGL1 to the regulation of iron metabolism during the recovery from anemia. FGL1 is secreted by hepatocytes in response to hypoxia to sequester BMP ligands and repress the transcription of the iron-regulatory hormone hepcidin. This process ensures the proper supply of iron to the bone marrow for new red blood cell synthesis and the restoration of physiological oxygen levels. FGL1 may therefore contribute to the recovery from common anemias and cause iron overload in chronic anemias with ineffective erythropoiesis, such as ß-thalassemia, dyserythropoietic anemia, and myelodysplastic syndromes. However, FGL1 has also been described as a regulator of hepatocyte proliferation, glucose homeostasis, and insulin signaling, as well as a mediator of liver steatosis and immune evasion. Chronic exposure to elevated levels of FGL1 during anemia may therefore have systemic metabolic effects besides iron regulation and erythropoiesis. Here, we are providing an overview of the proposed functions of FGL1 in physiology and pathophysiology.
Collapse
Affiliation(s)
- Jean Personnaz
- IRSD, Université de ToulouseINSERM, INRAE, ENVT, Univ Toulouse III‐Paul Sabatier (UPS)ToulouseFrance
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology)INRAE, ENVT, INP‐PURPAN, UMR 1331, UPS, Université de ToulouseToulouseFrance
| | - Léon Kautz
- IRSD, Université de ToulouseINSERM, INRAE, ENVT, Univ Toulouse III‐Paul Sabatier (UPS)ToulouseFrance
| |
Collapse
|
4
|
Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res 2024; 12:53. [PMID: 38816776 PMCID: PMC11141035 DOI: 10.1186/s40364-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Liver disease is a complex group of diseases with high morbidity and mortality rates, emerging as a major global health concern. Recent studies have highlighted the involvement of fibrinogen-like proteins, specifically fibrinogen-like protein 1 (FGL1) and fibrinogen-like protein 2 (FGL2), in the regulation of various liver diseases. FGL1 plays a crucial role in promoting hepatocyte growth, regulating lipid metabolism, and influencing the tumor microenvironment (TME), contributing significantly to liver repair, non-alcoholic fatty liver disease (NAFLD), and liver cancer. On the other hand, FGL2 is a multifunctional protein known for its role in modulating prothrombin activity and inducing immune tolerance, impacting viral hepatitis, liver fibrosis, hepatocellular carcinoma (HCC), and liver transplantation. Understanding the functions and mechanisms of fibrinogen-like proteins is essential for the development of effective therapeutic approaches for liver diseases. Additionally, FGL1 has demonstrated potential as a disease biomarker in radiation and drug-induced liver injury as well as HCC, while FGL2 shows promise as a biomarker in viral hepatitis and liver transplantation. The expression levels of these molecules offer exciting prospects for disease assessment. This review provides an overview of the structure and roles of FGL1 and FGL2 in different liver conditions, emphasizing the intricate molecular regulatory processes and advancements in targeted therapies. Furthermore, it explores the potential benefits and challenges of targeting FGL1 and FGL2 for liver disease treatment and the prospects of fibrinogen-like proteins as biomarkers for liver disease, offering insights for future research in this field.
Collapse
Affiliation(s)
- Jiongming Chen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lei Wu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Shafieizadeh Z, Shafieizadeh Z, Davoudi M, Afrisham R, Miao X. Role of Fibrinogen-like Protein 1 in Tumor Recurrence Following Hepatectomy. J Clin Transl Hepatol 2024; 12:406-415. [PMID: 38638375 PMCID: PMC11022061 DOI: 10.14218/jcth.2023.00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Partial hepatectomy is a first-line treatment for hepatocellular carcinoma. Within 2 weeks following partial hepatectomy, specific molecular pathways are activated to promote liver regeneration. Nevertheless, residual microtumors may also exploit these pathways to reappear and metastasize. Therapeutically targeting molecules that are differentially regulated between normal cells and malignancies, such as fibrinogen-like protein 1 (FGL1), appears to be an effective approach. The potential functions of FGL1 in both regenerative and malignant cells are discussed within the ambit of this review. While FGL1 is normally elevated in regenerative hepatocytes, it is normally downregulated in malignant cells. Hepatectomy does indeed upregulate FGL1 by increasing the release of transcription factors that promote FGL1, including HNF-1α and STAT3, and inflammatory effectors, such as TGF-β and IL6. This, in turn, stimulates certain proliferative pathways, including EGFR/Src/ERK. Hepatectomy alters the phase transition of highly differentiated hepatocytes from G0 to G1, thereby transforming susceptible cells into cancerous ones. Activation of the PI3K/Akt/mTOR pathway by FGL1 allele loss on chromosome 8, a tumor suppressor area, may also cause hepatocellular carcinoma. Interestingly, FGL1 is specifically expressed in the liver via HNF-1α histone acetylase activity, which triggers lipid metabolic reprogramming in malignancies. FGL1 might also be involved in other carcinogenesis processes such as hypoxia, epithelial-mesenchymal transition, immunosuppression, and sorafenib-mediated drug resistance. This study highlights a research gap in these disciplines and the necessity for additional research on FGL1 function in the described processes.
Collapse
Affiliation(s)
- Zahra Shafieizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Shafieizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
6
|
Chen C, Xie L, Zhang M, Shama, Cheng KKY, Jia W. The interplay between the muscle and liver in the regulation of glucolipid metabolism. J Mol Cell Biol 2024; 15:mjad073. [PMID: 38095440 PMCID: PMC11078061 DOI: 10.1093/jmcb/mjad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/24/2023] [Indexed: 05/09/2024] Open
Affiliation(s)
- Cheng Chen
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Liping Xie
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Mingliang Zhang
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Shama
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kenneth King Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
7
|
Rivera CN, Smith CE, Draper LV, Watne RM, Wommack AJ, Vaughan RA. Physiological 4-phenylbutyrate promotes mitochondrial biogenesis and metabolism in C2C12 myotubes. Biochimie 2024; 219:155-164. [PMID: 38008282 DOI: 10.1016/j.biochi.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Type 2 diabetes is characterized by elevated circulating blood metabolites such as glucose, insulin, and branched chain amino acids (BCAA), which often coincide with reduced mitochondrial function. 4-Phenylbutyrate (PBA), an ammonia scavenger, has been shown to activate BCAA metabolism, resolve endoplasmic reticulum (ER) stress, and rescue BCAA-mediated insulin resistance. To determine the effect of PBA on the altered metabolic phenotype featured in type 2 diabetes, the present study investigated the effect of PBA on various metabolic parameters including mitochondrial metabolism and mitochondrial biogenesis. C2C12 myotubes were treated with PBA at 0.5 mM (representing physiologically attainable blood concentrations) or 10 mM (representing physiologically unattainable/proof-of-concept levels) for up to 24 h. Mitochondrial and glycolytic metabolism were assessed via oxygen consumption and extracellular acidification rate, respectively. Mitochondrial content, lipid content, and ER stress were measured by fluorescent staining. Metabolic gene expression was measured by qRT-PCR. Both doses of PBA increased expression of indicators of mitochondrial biogenesis, though only PBA at 0.5 mM increased mitochondrial function and content while 10 mM PBA reduced mitochondrial function and content. PBA at 0.5 mM also rescued reduced mitochondrial function during insulin resistance, though PBA also caused a reduced insulin stimulated pAkt expression during insulin resistance. PBA treatment also increased extracellular BCAA accumulation during insulin resistance despite unchanged pBCKDH expression. Taken together, PBA may increase mitochondrial biogenesis, content, and function in a dose-dependent fashion which may have implications for prevention or treatment of metabolic disease such as insulin resistance.
Collapse
Affiliation(s)
- Caroline N Rivera
- Department of Health and Human Performance, High Point University, High Point, NC, USA
| | - Carly E Smith
- Department of Health and Human Performance, High Point University, High Point, NC, USA
| | - Lillian V Draper
- Department of Health and Human Performance, High Point University, High Point, NC, USA
| | - Rachel M Watne
- Department of Chemistry, High Point University, High Point, NC, USA
| | - Andrew J Wommack
- Department of Chemistry, High Point University, High Point, NC, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, NC, USA.
| |
Collapse
|
8
|
Zhang Y, Zhang K, Wen H, Ge D, Gu J, Zhang C. FGL1 in plasma extracellular vesicles is correlated with clinical stage of lung adenocarcinoma and anti-PD-L1 response. Clin Exp Immunol 2024; 216:68-79. [PMID: 38146642 PMCID: PMC10929704 DOI: 10.1093/cei/uxad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Fibrinogen-like protein-1 (FGL1) is confirmed a major ligand of lymphocyte activation gene-3 which could inhibit antigen-mediated T-cell response and evade immune supervision. Although hepatocytes secrete large amounts of FGL1, its high expression also be detected in solid tumors such as lung cancer, leading to a poor efficacy of immune checkpoint inhibitors therapy. Here we reported that FGL1 was overexpressed in lung adenocarcinoma (LUAD) but not in lung squamous cell carcinoma. However, FGL1 in tissue and plasma can only distinguish LUAD patients from healthy donors and cannot correlate with clinical Tumor Node Metastasis (TNM) stage. Using lung cancer cell lines, we confirmed that FGL1 can be detected on extracellular vesicles (EVs) and we established a method using flow cytometry to detect FGL1 on the surface of EVs, which revealed that FGL1 could be secreted via EVs. Both animal model and clinical samples proved that plasma FGL1 in EVs would increase when the tumor was loaded. The level of FGL1 in plasma EVs was correlated with clinical TNM stage and tumor size, and a higher level indicated non-responsiveness to anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy. Its effect on tumor progression and immune evasion may be achieved by impairing the killing and proliferating capacities of CD8+ T cells. Our result demonstrates that FGL1 levels in plasma EVs, but not total plasma FGL1, could be a promising biomarker that plays an important role in predicting anti-PD-L1 immune therapy in LUAD and suggests a new strategy in LUAD immunotherapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People’s Republic of China
| | - Haoyu Wen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chunyi Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Townsend LK, Steinberg GR. AMPK and the Endocrine Control of Metabolism. Endocr Rev 2023; 44:910-933. [PMID: 37115289 DOI: 10.1210/endrev/bnad012] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Complex multicellular organisms require a coordinated response from multiple tissues to maintain whole-body homeostasis in the face of energetic stressors such as fasting, cold, and exercise. It is also essential that energy is stored efficiently with feeding and the chronic nutrient surplus that occurs with obesity. Mammals have adapted several endocrine signals that regulate metabolism in response to changes in nutrient availability and energy demand. These include hormones altered by fasting and refeeding including insulin, glucagon, glucagon-like peptide-1, catecholamines, ghrelin, and fibroblast growth factor 21; adipokines such as leptin and adiponectin; cell stress-induced cytokines like tumor necrosis factor alpha and growth differentiating factor 15, and lastly exerkines such as interleukin-6 and irisin. Over the last 2 decades, it has become apparent that many of these endocrine factors control metabolism by regulating the activity of the AMPK (adenosine monophosphate-activated protein kinase). AMPK is a master regulator of nutrient homeostasis, phosphorylating over 100 distinct substrates that are critical for controlling autophagy, carbohydrate, fatty acid, cholesterol, and protein metabolism. In this review, we discuss how AMPK integrates endocrine signals to maintain energy balance in response to diverse homeostatic challenges. We also present some considerations with respect to experimental design which should enhance reproducibility and the fidelity of the conclusions.
Collapse
Affiliation(s)
- Logan K Townsend
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism Obesity and Diabetes Research, Hamilton, ON L8S 4L8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
10
|
Cai X, Tang D, Chen J, Li H, Zhang P. Evaluation of Serum FGL1 as Diagnostic Markers for HBV-Related Hepatocellular Carcinoma. Lab Med 2023; 54:270-281. [PMID: 36219698 DOI: 10.1093/labmed/lmac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVE Based on the current difficulties in early diagnosis of HBV-related hepatocellular carcinoma (HBV-HCC), we assessed the values of preoperative serum fibrinogen-like protein 1 (FGL1) by itself and in combination with alpha-fetoprotein (AFP) for the diagnosis of HBV-HCC. METHODS We used ELISA and chemiluminescence assays to detect the serum levels of FGL1 and AFP, respectively. RESULTS Serum FGL1 level in the HBV-HCC group was significantly higher than in the chronic HBV (CHBV) group, the liver cirrhosis (LC) group, and the healthy control (HC) group. Serum FGL1 had an outstanding performance in distinguishing AFP-negative HBV-HCC from different control conditions. In the patients with AFP-negative HBV-HCC, the sensitivity of serum FGL1 was high. Moreover, serum FGL1 had a stronger performance than AFP in distinguishing early-stage HBV-HCC. CONCLUSIONS Serum FGL1 is significantly elevated among patients with HBV-HCC, including those with negative AFP and with disease at an early stage. Hence, serum FGL1 may serve as a potential diagnostic marker in the early diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Stefan N, Schick F, Birkenfeld AL, Häring HU, White MF. The role of hepatokines in NAFLD. Cell Metab 2023; 35:236-252. [PMID: 36754018 PMCID: PMC10157895 DOI: 10.1016/j.cmet.2023.01.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is not only a consequence of insulin resistance, but it is also an important cause of insulin resistance and major non-communicable diseases (NCDs). The close relationship of NAFLD with visceral obesity obscures the role of fatty liver from visceral adiposity as the main pathomechanism of insulin resistance and NCDs. To overcome this limitation, in analogy to the concept of adipokines, in 2008 we introduced the term hepatokines to describe the role of fetuin-A in metabolism. Since then, several other hepatokines were tested for their effects on metabolism. Here we address the dysregulation of hepatokines in people with NAFLD. Then, we discuss pathophysiological mechanisms of cardiometabolic diseases specifically related to NAFLD by focusing on hepatokine-related organ crosstalk. Finally, we propose how the determination of major hepatokines and adipokines can be used for pathomechanism-based clustering of insulin resistance in NAFLD and visceral obesity to better implement precision medicine in clinical practice.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Experimental Radiology, Department of Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Non-alcoholic fatty liver disease and liver secretome. Arch Pharm Res 2022; 45:938-963. [PMCID: PMC9703441 DOI: 10.1007/s12272-022-01419-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
|
13
|
Protective Role of Hepassocin against Hepatic Endoplasmic Reticulum Stress in Mice. Int J Mol Sci 2022; 23:ijms232113325. [DOI: 10.3390/ijms232113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Hepassocin (HPS) is a hepatokine that has multiple proposed physiological functions. Some of the biological processes in which it is involved are closely related to endoplasmic reticulum (ER) stress, but the role of HPS in the regulation of ER stress remains unclear. Here, we demonstrated that HPS transcription is induced by the protein kinase RNA-like ER kinase (PERK)/activating transcription factor 4 (ATF4) cascade upon ER stress in hepatocytes. Additionally, fasting/refeeding also induced HPS expression in mice liver. The loss of HPS sensitizes hepatocytes to ER stress-related cytotoxicity in vitro, whereas HPS treatment altered these phenotypes. HPS deficiency exacerbates fasting/refeeding-induced ER stress in vivo. The preliminary administration of HPS ameliorates liver steatosis, cell death, and inflammation in mice injected with tunicamycin (TM). The improvement of HPS can be observed even if HPS protein is injected after TM treatment. Furthermore, the administration of an ER stress inhibitor alleviated steatohepatitis in methionine- and choline-deficient (MCD) diet-fed HPS-deficient mice. These results suggest that HPS protects hepatocytes from physiological and pathological ER stress, and that the inactivation of HPS signaling aggravating ER stress may be a novel mechanism that drives the development of steatohepatitis. The protective mechanism of HPS against ER stress in hepatocytes was associated with the regulation of ER calcium handling, and the suppression of calcium influx release from ER upon stressor treatment. Collectively, our findings indicate that HPS may act in a negative feedback fashion to regulate hepatic ER stress and protect hepatocytes from ER stress-related injury. HPS has the potential to be a candidate drug for the treatment of ER stress-related liver injury.
Collapse
|
14
|
Zhang Y, Dilimulati D, Chen D, Cai M, You H, Sun H, Gao X, Shao X, Zhang M, Qu S. Serum fibrinogen-like protein 1 as a novel biomarker in polycystic ovary syndrome: a case-control study. J Endocrinol Invest 2022; 45:2123-2130. [PMID: 35790683 DOI: 10.1007/s40618-022-01844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the relationship between fibrinogen-like protein 1 (FGL-1) concentrations and various metabolic characteristics in patients with polycystic ovary syndrome (PCOS) and explore whether FGL-1 could be a predictive biomarker for PCOS. METHODS This case-control study included 136 patients with PCOS and 34 normal controls recruited in the Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital between May 2017 and June 2021. Anthropometric characteristics, metabolic parameters, and reproductive hormones were collected. Serum FGL-1 measurement was conducted using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS Serum FGL-1 concentrations were higher in patients with PCOS than in control subjects in body mass index (BMI) subgroups, insulin resistance (IR) subgroups, and hepatic function subgroups, respectively. Serum FGL-1 concentrations were significantly associated with BMI, glycosylated hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), homeostasis model assessment of insulin resistance (HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), high-density lipoprotein cholesterol (HDL-c), and serum uric acid (SUA) in all individuals. The receiver operating characteristic (ROC) curve analysis revealed that the best cutoff value for FGL-1 levels to predict PCOS was 21.02 ng/ml with a sensitivity of 74.3% and a specificity of 70.6%. Both univariate and multiple logistic regressions indicated that the odds ratio (OR) for PCOS significantly increased in the subjects with high levels of FGL-1. CONCLUSION In our study, FGL-1 was associated with serum aminotransferase and various metabolic indexes. Moreover, the high risk of PCOS was independently associated with the increased FGL-1 levels, which suggested that FGL-1 could be a predictive biomarker for PCOS.
Collapse
Affiliation(s)
- Y Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - D Dilimulati
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - D Chen
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - M Cai
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - H You
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - H Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - X Gao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - X Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.
| | - M Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China.
| | - S Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, China
| |
Collapse
|
15
|
Yang Y, Liu X, Chen H, Wang P, Yao S, Zhou B, Yin R, Li C, Wu C, Yang X, Yu M. HPS protects the liver against steatosis, cell death, inflammation, and fibrosis in mice with steatohepatitis. FEBS J 2022; 289:5279-5304. [PMID: 35285180 DOI: 10.1111/febs.16430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Hepassocin (HPS) is a hepatokine associated with metabolic regulation and development of non-alcoholic steatohepatitis (NASH). However, previous reports on HPS are controversial and its true function is not yet understood. Here, we demonstrated that hepatic HPS expression levels were upregulated in short-term feeding and downregulated in long-term feeding in high-fat diet (HFD)- and methionine- and choline-deficient (MCD) diet-fed mice, as well as in genetically obese (ob/ob) mice. HFD- and MCD-induced hepatic steatosis, inflammation, apoptosis, and fibrosis were more pronounced in HPS knockout mice than in the wild-type mice. Moreover, HPS depletion aggravated HFD-induced insulin resistance. By contrast, HPS administration improved MCD- or HFD-induced liver phenotypes and insulin resistance in HPS knockout and wild-type mice. Mechanistic studies revealed that MCD-induced hepatic oxidative stress was significantly increased by HPS deficiency and could be attenuated by HPS administration. Furthermore, palmitic acid-induced lipid accumulation and oxidative stress were exclusively enhanced in HPS knockout hepatocytes and diminished by HPS cotreatment. These data suggest that HPS ameliorates NASH in mice, at least in part, by inhibiting the oxidative stress. HPS expression levels are downregulated in human fatty liver tissues, suggesting that it may play an important protective role in NASH. Collectively, our findings provide clear genetic evidence that HPS has beneficial effects on the development of steatohepatitis in mice and suggest that upregulating HPS signaling may represent an effective treatment strategy for NASH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Pengjun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Songhui Yao
- Institute of Life Sciences, HeBei University, Baoding, China
| | - Bin Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China.,Beijing Institute of Radiation Medicine, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China.,Institute of Life Sciences, HeBei University, Baoding, China
| |
Collapse
|
16
|
Sun X, Liu L, Chen S, Wang J, Cai X, Song J, Zhou M, Guo D, Kuai L, Ding X, Li B, Li X. Fibrinogen-Like Protein 1 as a Novel Biomarker of Psoriasis Severity. J Inflamm Res 2022; 15:4637-4647. [PMID: 35996685 PMCID: PMC9391933 DOI: 10.2147/jir.s378953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 12/16/2022] Open
Abstract
Background Psoriasis is an immune-mediated chronic systemic inflammatory skin disease whose diagnosis and severity assessment pose challenges for clinicians worldwide. The use of serum biomarkers facilitates the early diagnosis and treatment of psoriasis. Methods This case–control study compared tumor necrosis factor α (TNF-α), interleukin (IL)-6, IL-17, IL-10, and fibrinogen-like protein 1 (FGL1) levels of 139 untreated psoriasis patients and 140 healthy controls. Serum samples were collected, and enzyme-linked immunosorbent assays were performed to quantify their levels. Subgroups were analyzed according to abnormal lipid metabolism status. Results Compared to controls, patients with psoriasis exhibited lower concentrations of serum TNF-α, IL-17, and FGL1 (P < 0.05). A correlation analysis showed that FGL1 was inversely correlated with high-density lipoprotein cholesterol and IL-17 in the psoriatic state. Stepwise multiple regression analysis revealed that FGL1 and total cholesterol were the independent determinants of Psoriasis Area and Severity Index (PASI) score in psoriasis patients. The area under the receiver operating characteristic curve of FGL1 assessing moderate-to-severe psoriasis and mild psoriasis was 0.70, while the area under the curve (AUC) assessing severe psoriasis and mild-to-moderate psoriasis was 0.67, better than that of IL-17. In addition, FGL1, but not IL-17, was able to identify psoriasis with abnormal lipid metabolism to a certain extent (AUC = 0.60). Conclusion In conclusion, serum FGL1 may be a promising biomarker for diagnosing and staging psoriasis. It may also be involved in its progression and comorbid abnormal lipid metabolism.
Collapse
Affiliation(s)
- Xiaoying Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Siting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoce Cai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiankun Song
- Dermatology of TCM, Shanghai Skin Diseases Hospital, Shanghai, People's Republic of China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Dongjie Guo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Department of Dermatology, Shanghai Skin Diseases Hospital, Shanghai, People's Republic of China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Hu Z, Zhou J, Han L, Li X, Li C, Wu T, Liu J, Zhao W, Kang J, Chen X. Acyclovir alleviates insulin resistance via activating PKM1 in diabetic mice. Life Sci 2022; 304:120725. [PMID: 35751919 DOI: 10.1016/j.lfs.2022.120725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
AIMS Diabetes mellitus (DM) is a major global health threat characterized by insulin resistance. A new tactic to ameliorate insulin resistance, thereby reversing the exacerbation of DM, is urgently needed. The work is aiming to provide a new strategy for DM treatment as well as to identify new targets. MAIN METHODS C57BL/6 N mice were raised with high-fat diet (HFD) and infused with streptozotocin (STZ) to induce diabetes. The blood glucose, serum insulin, blood lipid and oxidative stress were detected. In vitro insulin resistance model experiment has been made to examine the molecular mechanisms underlying anti-diabetic effect of potential active chemicals in human hepatocellular carcinoma cells (HepG2). KEY FINDINGS Acyclovir, an antiviral nucleotide analog, alleviates insulin resistance by reducing blood lipids as well as oxidative stress and elevating insulin sensitivity on diabetic mice, which is in accord with results in the insulin resistance model of HepG2 cells. Mechanically, acyclovir stimulates pyruvate kinase M1 (PKM1) directly to activate adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Sirtuin1 (SIRT1) signaling pathway, thus improving insulin resistance. SIGNIFICANCE The present study supports that acyclovir should be translated to remedy DM, and PKM1 might be a valuable target to develop new medicines.
Collapse
Affiliation(s)
- Zhuozhou Hu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Zhou
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Liang Han
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangxiang Li
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Chun Li
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Tongyu Wu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyang Zhao
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Kang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou 730000, PR China.
| |
Collapse
|
18
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Zambon Azevedo V, Silaghi CA, Maurel T, Silaghi H, Ratziu V, Pais R. Impact of Sarcopenia on the Severity of the Liver Damage in Patients With Non-alcoholic Fatty Liver Disease. Front Nutr 2022; 8:774030. [PMID: 35111794 PMCID: PMC8802760 DOI: 10.3389/fnut.2021.774030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
An extensive body of the literature shows a strong interrelationship between the pathogenic pathways of non-alcoholic fatty liver disease (NAFLD) and sarcopenia through the muscle-liver-adipose tissue axis. NAFLD is one of the leading causes of chronic liver diseases (CLD) affecting more than one-quarter of the general population worldwide. The disease severity spectrum ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, and its complications: end-stage chronic liver disease and hepatocellular carcinoma. Sarcopenia, defined as a progressive loss of the skeletal muscle mass, reduces physical performances, is associated with metabolic dysfunction and, possibly, has a causative role in NAFLD pathogenesis. Muscle mass is a key determinant of the whole-body insulin-mediated glucose metabolism and impacts fatty liver oxidation and energy homeostasis. These mechanisms drive the accumulation of ectopic fat both in the liver (steatosis, fatty liver) and in the muscle (myosteatosis). Myosteatosis rather than the muscle mass per se, seems to be closely associated with the severity of the liver injury. Sarcopenic obesity is a recently described entity which associates both sarcopenia and obesity and may trigger worse clinical outcomes including hepatic fibrosis progression and musculoskeletal disabilities. Furthermore, the muscle-liver-adipose tissue axis has a pivotal role in changes of the body composition, resulting in a distinct clinical phenotype that enables the identification of the "sarcopenic NAFLD phenotype." This review aims to bring some light into the complex relationship between sarcopenia and NAFLD and critically discuss the key mechanisms linking NAFLD to sarcopenia, as well as some of the clinical consequences associated with the coexistence of these two entities: the impact of body composition phenotypes on muscle morphology, the concept of sarcopenic obesity, the relationship between sarcopenia and the severity of the liver damage and finally, the future directions and the existing gaps in the knowledge.
Collapse
Affiliation(s)
- Vittoria Zambon Azevedo
- Doctoral School Physiology, Physiopathology and Therapeutics 394, Sorbonne Université, Paris, France
- Centre de Recherche de Cordeliers, INSERM UMRS 1138, Paris, France
| | - Cristina Alina Silaghi
- Department of Endocrinology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Thomas Maurel
- Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Horatiu Silaghi
- Department of Surgery V, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Vlad Ratziu
- Centre de Recherche de Cordeliers, INSERM UMRS 1138, Paris, France
- Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
| | - Raluca Pais
- Institute of Cardiometabolism and Nutrition, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS 938, Paris, France
| |
Collapse
|
20
|
Liu XH, Qi LW, Alolga RN, Liu Q. Implication of the hepatokine, fibrinogen-like protein 1 in liver diseases, metabolic disorders and cancer: The need to harness its full potential. Int J Biol Sci 2022; 18:292-300. [PMID: 34975333 PMCID: PMC8692158 DOI: 10.7150/ijbs.66834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022] Open
Abstract
Fibrinogen-like protein 1 (FGL1) is a novel hepatokine that forms part of the fibrinogen superfamily. It is predominantly expressed in the liver under normal physiological conditions. When the liver is injured by external factors, such as chemical drugs and radiation, FGL1 acts as a protective factor to promote the growth of regenerated cells. However, elevated hepatic FGL1 under high fat conditions can cause lipid accumulation and inflammation, which in turn trigger the development of non-alcoholic fatty liver disease, diabetes, and obesity. FGL1 is also involved in the regulation of insulin resistance in adipose tissues and skeletal muscles as a means of communication between the liver and other tissues. In addition, the abnormally changed FGL1 levels in the plasma of cancer patients make it a potential predictor of cancer incidence in clinical practice. FGL1 was recently identified as a major functional ligand of the immune inhibitory receptor, lymphocyte-activation gene 3 (LAG3), thus making it a promising target for cancer immunotherapy except for the classical programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis. Despite the potential of FGL1 as a new cancer biomarker and therapeutic target, there are few related studies and much of what has been reported are superficial and lack depth and particularity. Therefore, elucidating the role and underlying mechanisms of FGL1 could be crucial for the development of promising diagnostic and therapeutic strategies for related diseases. Here, we provide a comprehensive review of the cellular mechanisms and clinical prospects of FGL1 in the prevention and treatment of liver diseases, metabolic disorders and cancer, and proffer suggestions for future studies.
Collapse
Affiliation(s)
- Xi-Hua Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Dilimulati D, Du L, Huang X, Jayachandran M, Cai M, Zhang Y, Zhou D, Zhu J, Su L, Zhang M, Qu S. Serum Fibrinogen-Like Protein 1 Levels in Obese Patients Before and After Laparoscopic Sleeve Gastrectomy: A Six-Month Longitudinal Study. Diabetes Metab Syndr Obes 2022; 15:2511-2520. [PMID: 35999870 PMCID: PMC9393035 DOI: 10.2147/dmso.s374011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Fibrinogen-like protein (FGL)-1 is an original hepatokine with a critical role in developing hepatic steatosis. This study intends to examine the pre- and postoperative serum FGL-1 levels in bariatric patients and identify its relationship with other clinical indicators. PATIENTS AND METHODS Ninety-two individuals (60 bariatric patients and 32 people with normal weight) were enrolled in this research between July 2018 and April 2021. All bariatric patients finished follow-up visits 6 months after laparoscopic sleeve gastrectomy (LSG). Clinical data, anthropometric parameters, biochemical variables, FibroScan, and serum FGL-1 levels were collected at baseline and 6 months after LSG. RESULTS FGL-1 levels in patients with obesity (44.66±20.03 ng/mL) were higher than in individuals with normal weight (20.73±9.73 ng/mL, p < 0.001). After LSG, FGL-1 levels were significantly decreased (27.53±11.45 ng/mL, p < 0.001). Besides, body mass index (BMI), liver enzyme levels, glucose metabolism, lipid metabolism, uric acid (UA), controlled attenuation parameter (CAP), and liver stiffness measurement (LSM) were significantly improved. After adjusting possible confounders, FGL-1 levels at baseline were negatively associated with changes in LSM levels; changes in FGL-1 levels showed positive correlations with changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST) and UA levels at 6 months after surgery. CONCLUSION Serum FGL-1 levels were significantly decreased following LSG in patients with obesity. The preoperative serum FGL-1 levels could be a predictor of postoperative liver fibrosis improvement. Furthermore, the decreased FGL-1 levels were associated with improved liver enzymes and UA but not with bodyweight or glucolipid metabolism.
Collapse
Affiliation(s)
- Diliqingna Dilimulati
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Lei Du
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Xiu Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Meili Cai
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Yuqin Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Donglei Zhou
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Jiangfan Zhu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Lili Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
- Correspondence: Shen Qu; Manna Zhang, Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, 301 Middle Yanchang Road, Shanghai, 200072, People’s Republic of China, Tel +8602166301004; +8613774448495, Email ;
| |
Collapse
|
22
|
Lv Z, Cui B, Huang X, Feng HY, Wang T, Wang HF, Xuan YD, Li HZ, Ma X, Huang Y, Zhang X. FGL1 as a Novel Mediator and Biomarker of Malignant Progression in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:756843. [PMID: 34956878 PMCID: PMC8695555 DOI: 10.3389/fonc.2021.756843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), which is the most prevalent renal cell carcinoma subtype, has a poor prognosis. Emerging strategies for enhancing the immune response in ccRCC therapy are currently being investigated. Fibrinogen-like Protein 1(FGL1) is a novel mechanism that tumors may use to evade the immune system by binding LAG-3 and negatively regulating T cells. In this study, we aimed at investigating the underlying mechanism of FGL1 in ccRCC, and its expression and prognostic value. We found that FGL1 was upregulated in tumor tissues and plasma specimens of ccRCC patients. High FGL1 expression predicted a poor prognosis for ccRCC patients. We also discovered that overexpression of FGL1 enhances RCC cell migration, invasion, and metastasis by activating the epithelial-to-mesenchymal transition (EMT). Consistent with these results, we identified a significant positive correlation between expression of FGL1 and EMT-related genes through tissue microarray analysis. Gene-expression analysis revealed that FGL1-deficient ccRCC cell lines had altered transcriptional output in inflammatory response, cell-cell signaling, negative regulation of T cell activation, and intracellular signal transduction. Depletion of FGL1 significantly inhibited tumor growth and lung metastasis in orthotopic xenograft mouse model. Infiltration of myeloid-derived CD11b+ and Ly6G+ immune cells in tumor microenvironment (TME) was strikingly decreased when FGL1 expression reduced. Therefore, increased FGL1 expression in ccRCC is positively correlated with poor prognosis. Mechanistically, FGL1 facilitates the EMT process and modulates TME, which promotes ccRCC progression and metastasis. Consequently, targeting FGL1 can potentially improve clinical outcome of ccRCC patients.
Collapse
Affiliation(s)
- Zheng Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Bo Cui
- Medical School of Chinese PLA, Beijing, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xing Huang
- Medical School of Chinese PLA, Beijing, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua-Yi Feng
- Medical School of Chinese PLA, Beijing, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Han-Feng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun-Dong Xuan
- Medical School of Chinese PLA, Beijing, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Zhao Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Kim TH, Hong DG, Yang YM. Hepatokines and Non-Alcoholic Fatty Liver Disease: Linking Liver Pathophysiology to Metabolism. Biomedicines 2021; 9:biomedicines9121903. [PMID: 34944728 PMCID: PMC8698516 DOI: 10.3390/biomedicines9121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Dong-Gyun Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea;
- KNU Researcher Training Program for Developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-6909
| |
Collapse
|
24
|
Yang Y, Zhai H, Wan Y, Wang X, Chen H, Dong L, Liu T, Dou G, Wu C, Yu M. Recombinant Human HPS Protects Mice and Nonhuman Primates from Acute Liver Injury. Int J Mol Sci 2021; 22:12886. [PMID: 34884691 PMCID: PMC8657617 DOI: 10.3390/ijms222312886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Acute liver injury shares a common feature of hepatocytes death, immune system disorders, and cellular stress. Hepassocin (HPS) is a hepatokine that has ability to promote hepatocytes proliferation and to protect rats from D-galactose (D-Gal)- or carbon tetrachloride (CCl4)-induced liver injury by stimulating hepatocytes proliferation and preventing the high mortality rate, hepatocyte death, and hepatic inflammation. In this paper, we generated a pharmaceutical-grade recombinant human HPS using mammalian cells expression system and evaluated the effects of HPS administration on the pathogenesis of acute liver injury in monkey and mice. In the model mice of D-galactosamine (D-GalN) plus lipopolysaccharide (LPS)-induced liver injury, HPS treatment significantly reduced hepatocyte death and inflammation response, and consequently attenuated the development of acute liver failure. In the model monkey of D-GalN-induced liver injury, HPS administration promoted hepatocytes proliferation, prevented hepatocyte apoptosis and oxidation stress, and resulted in amelioration of liver injury. Furthermore, the primary pharmacokinetic study showed natural HPS possesses favorable pharmacokinetics; the acute toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of HPS-treated mice, implying the clinical potential of HPS. Our results suggest that exogenous HPS has protective effects on acute liver injury in both mice and monkeys. HPS or HPS analogues and mimetics may provide novel drugs for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (H.Z.)
| | - Huali Zhai
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (H.Z.)
| | - Yue Wan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China; (Y.W.); (X.W.); (H.C.); (L.D.)
- School of Basic Medical Sciences, An Hui Medical University, Hefei 230032, China
| | - Xiaofang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China; (Y.W.); (X.W.); (H.C.); (L.D.)
- Institute of Life Sciences, He Bei University, Baoding 071002, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China; (Y.W.); (X.W.); (H.C.); (L.D.)
| | - Lihou Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China; (Y.W.); (X.W.); (H.C.); (L.D.)
| | - Taoyun Liu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (T.L.); (G.D.)
| | - Guifang Dou
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (T.L.); (G.D.)
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Y.); (H.Z.)
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (T.L.); (G.D.)
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China; (Y.W.); (X.W.); (H.C.); (L.D.)
- School of Basic Medical Sciences, An Hui Medical University, Hefei 230032, China
- Institute of Life Sciences, He Bei University, Baoding 071002, China
| |
Collapse
|
25
|
Ketenci Gencer F, Yuksel S, Goksever Celik H. Do serum hepassocin levels change in women with polycystic ovary syndrome? Eur J Obstet Gynecol Reprod Biol 2021; 267:137-141. [PMID: 34768120 DOI: 10.1016/j.ejogrb.2021.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/04/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Insulin resistance is common in polycystic ovary syndrome (PCOS), especially in obese patients. Hepassocin is a peptid marker which increases in obesity and insulin resistance. OBJECTIVE We aimed to investigate hepassocin levels in patients with PCOS in this study. METHODS This prospective case-control study was conducted with a total of 60 patients with PCOS and age-matched 30 healthy women with body mass index < 30. Patients with PCOS were classified as obese PCOS and non-obese PCOS according to their BMI. Hepassocin levels were measured by using a commercially available enzyme-linked immunosorbent assay (ELISA) kit. A multivariate linear regression analysis was used to determine independent factors related to hepassocin levels. RESULTS Hepassocin levels of the obese-PCOS group were found significantly higher than non-obese PCOS and control group (6.95 ± 3.59, 2.69 ± 2.51, 2.66 ± 2.22, respectively, p < 0.001). There was no significant difference in hepassocin levels between control and non-obese PCOS group (p = 0.99). Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was independently associated with hepassocin concentrations after adjusting for age, low density lipoprotein C (LDL-C), high density lipoprotein C (HDL-C), triglyceride (TG), total testosterone, dehydroepiandrosterone sulfate (DHEA-S), and C reactive protein (CRP). CONCLUSION Obese patients with PCOS exhibited high serum levels of hepassocin. HOMA-IR index was found as the independent variable associated with high levels of hepassocin. Hepassocin can be used as a simple and easy way of detecting insulin resistance in obese patients with PCOS.
Collapse
Affiliation(s)
- Fatma Ketenci Gencer
- University of Health Sciences Istanbul Gaziosmanpasa Training and Research Hospital, Department of Obstetrics and Gynecology, İstanbul, Turkey.
| | - Semra Yuksel
- Basaksehir Cam and Sakura City Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Hale Goksever Celik
- University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey
| |
Collapse
|
26
|
Qian W, Zhao M, Wang R, Li H. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target. J Hematol Oncol 2021; 14:147. [PMID: 34526102 PMCID: PMC8444356 DOI: 10.1186/s13045-021-01161-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint therapy has achieved significant efficacy by blocking inhibitory pathways to release the function of T lymphocytes. In the clinic, anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies (mAbs) have progressed to first-line monotherapies in certain tumor types. However, the efficacy of anti-PD-1/PD-L1 mAbs is still limited due to toxic side effects and de novo or adaptive resistance. Moreover, other immune checkpoint target and biomarkers for therapeutic response prediction are still lacking; as a biomarker, the PD-L1 (CD274, B7-H1) expression level is not as accurate as required. Hence, it is necessary to seek more representative predictive molecules and potential target molecules for immune checkpoint therapy. Fibrinogen-like protein 1 (FGL1) is a proliferation- and metabolism-related protein secreted by the liver. Multiple studies have confirmed that FGL1 is a newly emerging checkpoint ligand of lymphocyte activation gene 3 (LAG3), emphasizing the potential of targeting FGL1/LAG3 as the next generation of immune checkpoint therapy. In this review, we summarize the substantial regulation mechanisms of FGL1 in physiological and pathological conditions, especially tumor epithelial to mesenchymal transition, immune escape and immune checkpoint blockade resistance, to provide insights for targeting FGL1 in cancer treatment.
Collapse
Affiliation(s)
- Wenjing Qian
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, 110006, People's Republic of China. .,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, 116001, People's Republic of China.
| | - Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, No.155 Nanjingbei Road, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
27
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
28
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Lee JH, Lee HS, Lee BK, Kwon YJ, Lee JW. Relationship between Muscle Mass and Non-Alcoholic Fatty Liver Disease. BIOLOGY 2021; 10:biology10020122. [PMID: 33562473 PMCID: PMC7915258 DOI: 10.3390/biology10020122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary Sarcopenia and non-alcoholic fatty liver disease share common pathological and physiological mechanisms that can co-occur with aging. Low skeletal muscle mass index and non-alcoholic fatty liver disease were related, regardless of abdominal obesity. Maintenance of muscle mass should be emphasized for prevention of non-alcoholic fatty liver disease. Management of fatty liver also could be an important strategy to preserve muscle mass. Abstract Although sarcopenia is known to be a risk factor for non-alcoholic fatty liver disease (NAFLD), whether NAFLD is a risk factor for the development of sarcopenia is not clear. We investigated relationships between NAFLD and low skeletal muscle mass index (LSMI) using three different datasets. Participants were classified into LSMI and normal groups. LSMI was defined as a body mass index (BMI)-adjusted appendicular skeletal muscle mass <0.789 in men and <0.512 in women or as the sex-specific lowest quintile of BMI-adjusted total skeletal muscle mass. NAFLD was determined according to NAFLD liver fat score or abdominal ultrasonography. The NAFLD groups showed a higher hazard ratios (HRs) with 95% confidence intervals (CIs) for LSMI than the normal groups (HRs = 1.21, 95% CIs = 1.05–1.40). The LSMI groups also showed a higher HRs with 95% CIs for NAFLD than normal groups (HRs = 1.56, 95% CIs = 1.38–1.78). Participants with NAFLD had consistently less skeletal muscle mass over 12 years of follow-up. In conclusion, LSMI and NAFLD showed a relationship. Maintaining muscle mass should be emphasized in the management of NAFLD.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Medicine, Graduate School of Yonsei University College of Medicine, Seoul 03722, Korea;
- Department of Family Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Yongin 16995, Korea
| | - Hye-Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Byoung-Kwon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul 06273, Korea;
| | - Yu-Jin Kwon
- Department of Family Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Yongin 16995, Korea
- Correspondence: (Y.-J.K.); (J.-W.L.); Tel.: +82-31-5189-8777 (Y.-J.K.); +82-2-2019-3480 (J.-W.L.)
| | - Ji-Won Lee
- Department of Family Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul 06273, Korea
- Correspondence: (Y.-J.K.); (J.-W.L.); Tel.: +82-31-5189-8777 (Y.-J.K.); +82-2-2019-3480 (J.-W.L.)
| |
Collapse
|
30
|
Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol 2021; 74:442-457. [PMID: 33161047 DOI: 10.1016/j.jhep.2020.10.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing in industrialised societies; this is likely secondary to the increasing burden of non-alcoholic fatty liver disease (NAFLD), its progressive form non-alcoholic steatohepatitis (NASH), and the metabolic syndrome. Cumulative studies suggest that NAFLD-related HCC may also develop in non-cirrhotic livers. However, prognosis and survival do not differ between NAFLD- or virus-associated HCC. Thus, research has increasingly focused on NAFLD-related risk factors to better understand the biology of hepatocarcinogenesis and to develop new diagnostic, preventive, and therapeutic strategies. One important aspect thereof is the role of hepatokines and adipokines in NAFLD/NASH-related HCC. In this review, we compile current data supporting the use of hepatokines and adipokines as potential markers of disease progression in NAFLD or as early markers of NAFLD-related HCC. While much work must be done to elucidate the mechanisms and interactions underlying alterations to hepatokines and adipokines, current data support the possible utility of these factors - in particular, angiopoietin-like proteins, fibroblast growth factors, and apelin - for detection or even as therapeutic targets in NAFLD-related HCC.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Jan-Peter Sowa
- Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Guillermo Daniel Mazzolini
- Laboratory of Gene Therapy, Instituto de Investigaciones en Medicina Traslacional, CONICET-Universidad Austral, Buenos Aires 999071, Argentina; Liver Unit, Hospital Universitario Austral, Universidad Austral, Argentina
| | - Wing-Kin Syn
- Section of Gastroenterology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA; Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Vizcaya, Spain
| | - Ali Canbay
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany.
| |
Collapse
|
31
|
Tsai IT, Hung WC, Lu YC, Wu CC, Lee TL, Hsuan CF, Yu TH, Wei CT, Chung FM, Lee YJ, Wang CP. Circulating hepassocin level in patients with stable angina is associated with fatty liver and renal function. Int J Med Sci 2021; 18:1-7. [PMID: 33390768 PMCID: PMC7738965 DOI: 10.7150/ijms.50646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/10/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is a major risk factor for coronary artery disease and it is often associated with hepatic steatosis. Hepassocin (also known as hepatocyte-derived fibrinogen related protein or fibrinogen-like 1) is a novel hepatokine that causes hepatic steatosis and induces insulin resistance. However, the role of hepassocin in renal function status remains unclear. Our objective was to investigate the association of plasma hepassocin level with fatty liver and renal function status in patients with stable angina. Methods: Plasma hepassocin levels were determined by enzyme-linked immunosorbent assays in 395 consecutive patients with stable angina. Renal function was defined as an estimated glomerular filtration rate (eGFR). Fatty liver was defined by ultrasonography and fibrosis-4 (FIB-4) index. Results: With increasing hepassocin tertiles, patients had higher prevalence of fatty live, an increased waist-to-hip ratio, and neutrophil count, monocyte count, and FIB-4 index, higher levels of uric acid, blood urine nitrogen and higher sensitivity C-reactive protein. They also had incrementally lower eGFR, serum hemoglobin and albumin levels. In multiple linear stepwise regression analysis, only eGFR was significantly independent negatively associated with plasma hepassocin levels. Conclusion: Our results indicate that circulating hepassocin in patients with stable angina is associated with fatty liver and renal function, which suggests that increased plasma hepassocin may be involved in the pathogenesis of fatty liver and CKD.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Emergency, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan.,Division of Cardiology, Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung 82445 Taiwan
| | - Thung-Lip Lee
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,The School of Chinese Medicine for Post Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Ching-Ting Wei
- Division of General Surgery, Department of Surgery, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan.,Department of Biomedical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan.,Department of Electrical Engineering, I-Shou University, Kaohsiung, 82445 Taiwan
| | - Fu-Mei Chung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan
| | | | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445 Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, 82445 Taiwan
| |
Collapse
|
32
|
Luo Y, Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:59-73. [PMID: 33332766 PMCID: PMC7860600 DOI: 10.1002/iid3.391] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Low‐level of chronic inflammation activation is characteristic of obesity. Nonalcoholic fatty liver disease (NAFLD) is closely linked to obesity and is an emerging health problem, it originates from abnormal accumulation of triglycerides in the liver, and sometimes causes inflammatory reactions that could contribute to cirrhosis and liver cancer, thus its pathogenesis needs to be clarified for more treatment options. Once NAFLD is established, it contributes to systemic inflammation, the low‐grade inflammation is continuously maintained during NAFLD causing impaired resolution of inflammation in obesity, which subsequently exacerbates its severity. This study focuses on the effects of obesity‐induced inflammations, which are the underlying causes of the disease progression and development of more severe inflammatory and fibrotic stages. Understanding the relationship between obesity and NAFLD could help in establishing attractive therapeutic targets or diagnostic markers in obesity‐induced inflammation response and provides new approaches for the prevention and treatment of NAFLD in obesity.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Pathophysiology, Schools of Basic Sciences, Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, Schools of Basic Sciences, Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Liu S, Guo Y, Lu L, Lu J, Ke M, Xu T, Lu Y, Chen W, Wang J, Kong D, Shen Q, Zhu Y, Tan W, Ji W, Zhou W. Fibrinogen-Like Protein 1 Is a Novel Biomarker for Predicting Disease Activity and Prognosis of Rheumatoid Arthritis. Front Immunol 2020; 11:579228. [PMID: 33123164 PMCID: PMC7574527 DOI: 10.3389/fimmu.2020.579228] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA), afflicting over 1% of the population, is an inflammatory joint disease leading to cartilage damage and ultimately impaired joint function. Disease-modifying anti-rheumatic drugs are considered as the first-line treatment to inhibit the progression of RA, and the treatment depends on the disease status assessment. The disease activity score 28 as clinical gold standard is extensively used for RA assessment, but it has the limitations of delayed assessment and the need for specialized expertise. It is necessary to discover biomarkers that can precisely monitor disease activity, and provide optimized treatment for RA patients. A total of 1,244 participants from two independent centers were divided into five cohorts. Cohorts 1–4 constituted sera samples of moderate to high active RA, low active RA, RA in remission and healthy subjects. Cohort 5 consisted of sera of RA, osteoarthritis (OA), ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (pSS) and healthy subjects. Biomarkers were found from cohorts 1–2 (screening sets), cohort 3 (discovery and external validation sets), cohort 4 (drug intervention set) and cohort 5 (biomarker-specific evaluation set). We found 68 upregulated and 74 downregulated proteins by TMT-labeled proteomics in cohort 1, and fibrinogen-like protein 1 (FGL1) had the highest area under the receiver operating characteristic curve (AUC) values in cohort 2. In cohort 3, in cross-comparison among moderate/high active RA, low active RA, RA in remission and healthy subjects, FGL1 had AUC values of approximately 0.9000 and predictive values of 90%. Additionally, FGL1 had a predictive value of 91.46% for moderate/high active RA vs. remission/low active RA and 80.77% for RA in remission vs. low active RA in cohort 4. Importantly, FGL1 levels had no significant difference in OA and AS compared with healthy persons. The concentrations in SLE and pSS were improved, but approximately 3-fold lower than that in active RA in cohort 5. In summary, FGL1 is a novel and specific biomarker that could be clinically useful for predicting progression of RA.
Collapse
Affiliation(s)
- Shijia Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunke Guo
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Lu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawei Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengying Ke
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lu
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjun Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jue Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Deshun Kong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuxiang Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youjuan Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - WenFeng Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Rheumatology and Immunology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
34
|
Kassouf T, Sumara G. Impact of Conventional and Atypical MAPKs on the Development of Metabolic Diseases. Biomolecules 2020; 10:biom10091256. [PMID: 32872540 PMCID: PMC7563211 DOI: 10.3390/biom10091256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, β, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic β-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.
Collapse
|
35
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
36
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
37
|
Huang RL, Li CH, Du YF, Cheng KP, Lin CH, Hu CY, Wu JS, Chang CJ, Wu HT, Ou HY. Discovery of a role of the novel hepatokine, hepassocin, in obesity. Biofactors 2020; 46:100-105. [PMID: 31587376 DOI: 10.1002/biof.1574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
Obesity is a public health problem that has raised concerns worldwide and is often associated with hepatic steatosis. Hepassocin is a novel hepatokine that causes hepatic steatosis and induces insulin resistance (IR). However, the role of hepassocin in obesity remains obscure. Thus, the aim of this study was to investigate the relationship between hepassocin levels and obesity. In total, 371 subjects who had a normal weight (NW), were overweight, or were obese were enrolled. We found that hepassocin levels in subjects who were overweight (6,705 ± 1,707 pg/ml) or obese (7,335 ± 2,077 pg/ml) were significantly higher than those of subjects with a NW (5,767 ± 1,500 pg/ml) (p < .001, test for trend). A multiple linear regression analysis showed that the body-mass index, waist circumference, nonalcoholic fatty liver disease, and homeostatic model assessment of IR were independently associated with hepassocin after adjusting for age, sex, high-sensitivity C-reactive protein, systolic blood pressure, high-density lipoprotein-cholesterol, log triglycerides, alanine transaminase, and the estimated glomerular filtration rate. This study provides evidence that subjects who were overweight or obese had significantly higher hepassocin levels than those with a NW. Hepassocin may be a useful biomarker in managing obesity and its related metabolic dysregulation.
Collapse
Affiliation(s)
- Ru-Lai Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Health Management Center, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ye-Fong Du
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Pi Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Han Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Yuan Hu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Horng-Yih Ou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
38
|
Wu HT, Chen SC, Fan KC, Kuo CH, Lin SY, Wang SH, Chang CJ, Li HY. Targeting fibrinogen-like protein 1 is a novel therapeutic strategy to combat obesity. FASEB J 2019; 34:2958-2967. [PMID: 31908014 DOI: 10.1096/fj.201901925r] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
Fibrinogen-like-protein 1 (FGL1) is a novel hepatokine that plays an important role in hepatic steatosis and insulin resistance. Although FGL1 expression can be detected in adipose tissues, the functions of FGL1 in adipose tissues are still unknown. In this study, 356 participants with (body mass index (BMI) ≥25 kg/m2 ; n = 134) or without obesity (BMI <25 kg/m2 ; n = 222) were recruited, and we found that the plasma FGL1 concentrations were significantly higher in obese group than those of in the normal weight group, and were positively correlated with age, BMI, waist circumference, fat content, plasma glucose at 2 hours during an oral glucose tolerance test, and the insulin sensitivity index. In univariate analyses, BMI, waist circumference, total fat, visceral fat, and subcutaneous fat areas were positively correlated with FGL1 levels. After adjusting for age and gender, obesity indices, including the BMI and different fat areas, remained significantly associated with FGL1 levels. In order to investigate the causal relationship between FGL1 and obesity, animal and cell models were used. Overexpression of FGL1 in epididymal adipose tissue by lentiviral vector encoding FGL1 increased the fat pad size, whereas FGL1-knockdown by lentiviral vector encoding short-hairpin RNA targeted to FGL1 decreased high-fat diet-induced adiposity. In addition, 3T3-L1 adipocytes were used to clarify the possible mechanism of FGL1-induced adipogenesis. FGL1 induced adipogenesis through an ERK1/2-C/EBPβ-dependent pathway in 3T3-L1 adipocytes. These findings highlight the pathophysiological role of FGL1 in obesity, and FGL1 might be a novel therapeutic target to combat obesity.
Collapse
Affiliation(s)
- Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Szu-Chi Chen
- Division of Endocrinology, Department of Internal Medicine, Cardinal Tien Hospital, Xindian, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
| | - Chun-Heng Kuo
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease which may progress to non-alcoholic steatohepatitis. The prevalence of sarcopenia, which is the loss of muscle mass and strength, is increasing in the aging society. Recent studies reported the relationship between NAFLD and sarcopenia. The skeletal muscle is the primary organ for glucose disposal. Loss of muscle mass can cause insulin resistance, which is an important risk factor for NAFLD. Moreover, obesity, chronic low-grade inflammation, vitamin D deficiency, physical inactivity, hepatokines, and myokines might be involved in the pathophysiologic mechanism of sarcopenia and NAFLD. Although most of the previous studies have demonstrated the positive correlation between sarcopenia and NAFLD, the difference in diagnostic methods of sarcopenia and NAFLD leads to difficulties in interpretation and application. This review discusses the concept and diagnosis of sarcopenia and NAFLD, common pathophysiology, and clinical studies linking sarcopenia to NAFLD. The presentation of the association between sarcopenia and NAFLD may provide an opportunity to prevent the deterioration of fatty liver disease.
Collapse
Affiliation(s)
- Jung A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, 148 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University Guro Hospital, 148 Guro-Dong, Guro-Gu, Seoul, 08308, South Korea.
| |
Collapse
|
40
|
Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr Rev 2019; 40:1367-1393. [PMID: 31098621 DOI: 10.1210/er.2019-00034] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The liver is a dynamic organ that plays critical roles in many physiological processes, including the regulation of systemic glucose and lipid metabolism. Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. Through the use of advanced mass spectrometry "omics" approaches and detailed experimentation in cells, mice, and humans, we now understand that the liver secretes a wide array of proteins, metabolites, and noncoding RNAs (miRNAs) and that many of these secreted factors exert powerful effects on metabolic processes both in the liver and in peripheral tissues. In this review, we summarize the rapidly evolving field of "hepatokine" biology with a particular focus on delineating previously unappreciated communication between the liver and other tissues in the body. We describe the NAFLD-induced changes in secretion of liver proteins, lipids, other metabolites, and miRNAs, and how these molecules alter metabolism in liver, muscle, adipose tissue, and pancreas to induce insulin resistance. We also synthesize the limited information that indicates that extracellular vesicles, and in particular exosomes, may be an important mechanism for intertissue communication in normal physiology and in promoting metabolic dysregulation in NAFLD.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paula M Miotto
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
41
|
Jung TW, Kim H, Kim HU, Park T, Park J, Kim U, Kim MK, Jeong JH. Asprosin attenuates insulin signaling pathway through PKCδ‐activated ER stress and inflammation in skeletal muscle. J Cell Physiol 2019; 234:20888-20899. [DOI: 10.1002/jcp.28694] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Tae Woo Jung
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Hyoung‐Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University Chunchon Republic of Korea
| | - Ho Ung Kim
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Taekwang Park
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Jinwoo Park
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Uiseok Kim
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Min Kyoon Kim
- Department of Surgery Chung‐Ang University College of Medicine, Chung‐Ang University Seoul Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology College of Medicine, Chung‐Ang University Seoul Republic of Korea
| |
Collapse
|
42
|
Cheng KP, Ou HY, Hung HC, Li CH, Fan KC, Wu JS, Wu HT, Chang CJ. Unsaturated Fatty Acids Increase the Expression of Hepassocin through a Signal Transducer and Activator of Transcription 3-Dependent Pathway in HepG2 Cells. Lipids 2018; 53:863-869. [DOI: 10.1002/lipd.12099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Kai-Pi Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
| | - Horng-Yih Ou
- Division of Endocrinology and Metabolism, Department of Internal Medicine; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
| | - Chung-Hao Li
- Department of Health Management Center; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
- Department of Family Medicine; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
| | - Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine; National Taiwan University Hospital Hsin-Chu Branch, No. 25, Lane 442, Sec. 1, Jingguo Road, 30059; Hsinchu City Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences; Taipei Medical University, No. 250, Wuxing St., 11031; Taipei Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine; National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Sheng-Li, Road, 70403; Tainan Taiwan
| |
Collapse
|
43
|
De Bandt JP, Jegatheesan P, Tennoune-El-Hafaia N. Muscle Loss in Chronic Liver Diseases: The Example of Nonalcoholic Liver Disease. Nutrients 2018; 10:E1195. [PMID: 30200408 PMCID: PMC6165394 DOI: 10.3390/nu10091195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Recent publications highlight a frequent loss of muscle mass in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD), and its association with a poorer prognosis. In NAFLD, given the role of muscle in energy metabolism, muscle loss promotes disease progression. However, liver damage may be directly responsible of this muscle loss. Indeed, muscle homeostasis depends on the balance between peripheral availability and action of anabolic effectors and catabolic signals. Moreover, insulin resistance of protein metabolism only partially explains muscle loss during NAFLD. Interestingly, some data indicate specific alterations in the liver⁻muscle axis, particularly in situations such as excess fructose/sucrose consumption, associated with increased hepatic de novo lipogenesis (DNL) and endoplasmic reticulum stress. In this context, the liver will be responsible for a decrease in the peripheral availability of anabolic factors such as hormones and amino acids, and for the production of catabolic effectors such as various hepatokines, methylglyoxal, and uric acid. A better understanding of these liver⁻muscle interactions could open new therapeutic opportunities for the management of NAFLD patients.
Collapse
|