1
|
Zhu L, Akhmet N, Bo D, Pan C, Wu J, Lan X. Genetic variant of the sheep E2F8 gene and its associations with litter size. Anim Biotechnol 2024; 35:2337751. [PMID: 38597900 DOI: 10.1080/10495398.2024.2337751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The economic efficiency of sheep breeding, aiming to enhance productivity, is a focal point for improvement of sheep breeding. Recent studies highlight the involvement of the Early Region 2 Binding Factor transcription factor 8 (E2F8) gene in female reproduction. Our group's recent genome-wide association study (GWAS) emphasizes the potential impact of the E2F8 gene on prolificacy traits in Australian White sheep (AUW). Herein, the purpose of this study was to assess the correlation of the E2F8 gene with litter size in AUW sheep breed. This work encompassed 659 AUW sheep, subject to genotyping through PCR-based genotyping technology. Furthermore, the results of PCR-based genotyping showed significant associations between the P1-del-32bp bp InDel and the fourth and fifth parities litter size in AUW sheep; the litter size of those with genotype ID were superior compared to those with DD and II genotypes. Thus, these results indicate that the P1-del-32bp InDel within the E2F8 gene can be useful in marker-assisted selection (MAS) in sheep.
Collapse
Affiliation(s)
- Leijing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Nazar Akhmet
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Didi Bo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Jiyao Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| |
Collapse
|
2
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Liu Z, Feng C, Li C, He T, Wu G, Fu C, Li H, Shen M, Liu H. IGF-I protects porcine granulosa cells from hypoxia-induced apoptosis by promoting homologous recombination repair through the PI3K/AKT/E2F8/RAD51 pathway. FASEB J 2024; 38:e23332. [PMID: 38095232 DOI: 10.1096/fj.202301464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Severe hypoxia induced by vascular compromise (ovarian torsion, surgery), obliteration of vessels (aging, chemotherapy, particularly platinum drugs) can cause massive follicle atresia. On the other hand, hypoxia increases the occurrence of DNA double-strand breaks (DSBs) and triggers cellular damage repair mechanisms; however, if the damage is not promptly repaired, it can also induce the apoptosis program. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone that plays essential roles in stimulating mammalian follicular development. Here, we report a novel role for IGF-I in protecting hypoxic GCs from apoptosis by promoting DNA repair through the homologous recombination (HR) process. Indeed, the hypoxic environment within follicles significantly inhibited the efficiency of HR-directed DNA repair. The presence of IGF-I-induced HR pathway to alleviate hypoxia-induced DNA damage and apoptosis primarily through upregulating the expression of the RAD51 recombinase. Importantly, we identified a new transcriptional regulator of RAD51, namely E2F8, which mediates the protective effects of IGF-I on hypoxic GCs by facilitating the transcriptional activation of RAD51. Furthermore, we demonstrated that the PI3K/AKT pathway is crucial for IGF-I-induced E2F8 expression, resulting in increased RAD51 expression and enhanced HR activity, which mitigates hypoxia-induced DNA damage and thereby protects against GCs apoptosis. Together, these findings define a novel mechanism of IGF-I-mediated GCs protection by activating the HR repair through the PI3K/AKT/E2F8/RAD51 pathway under hypoxia.
Collapse
Affiliation(s)
- Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tong He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Fu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongmin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Maylem ERS, Spicer LJ, Batalha IM, Schütz LF. Developmental and hormonal regulation of FBN1 and OR4M1 mRNA in bovine granulosa cells. Domest Anim Endocrinol 2023; 84-85:106791. [PMID: 37167929 PMCID: PMC10523934 DOI: 10.1016/j.domaniend.2023.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Recent studies have reported hormonal regulation of expression of fibrillin 1 (FBN1), the gene that encodes asprosin, in bovine theca cells, however, hormonal regulation of gene expression of FBN1 and the asprosin receptor, olfactory receptor 4M1 (OR4M1), has not been evaluated in granulosa cells (GC). This study was designed to characterize FBN1 and OR4M1 gene expression in GC during development of bovine dominant ovarian follicles, and to determine the hormonal regulation of FBN1 and OR4M1 mRNA expression in GC. GC FBN1 mRNA abundance was greater (P < 0.05) in medium (5.1-8 mm) estrogen inactive (EI) follicles than in large (>8.1 mm) or small (1-5 mm) EI follicles. In comparison, GC OR4M1 mRNA abundance was greater (P < 0.05) in small EI follicles than in large or medium EI follicles. Abundance of OR4M1 mRNA in GC of follicles collected on days 3 to 4 (early growth phase) and on days 5 to 6 (late growth phase) was similar, whereas FBN1 mRNA abundance was greater (P < 0.05) on days 5 to 6 vs days 3 to 4. Hormonal regulators for FBN1 mRNA abundance in cultured small-follicle GC were identified: TGFβ1 causing a 2.45-fold increase, WNT3A causing a 1.45-fold increase, and IGF1 causing a 65% decrease. Steroids, leptin, insulin, growth hormone, follicle stimulating hormone, fibroblast growth factor 9 and epidermal growth factor had no effect on FBN1 mRNA abundance. Abundance of OR4M1 mRNA in GC was regulated by progesterone with 3.55-fold increase, but other hormones did not affect GC OR4M1 mRNA abundance. Findings indicate that both FBN1 and OR4M1 gene expression are hormonally and developmentally regulated in bovine follicles, and thus may affect asprosin production and its subsequent role in ovarian follicular function in cattle.
Collapse
Affiliation(s)
- E R S Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA,; Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Muñoz, Nueva Ecija, Philippines
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA,.
| | - I M Batalha
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - L F Schütz
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
5
|
Lee DY, Chun JN, Cho M, So I, Jeon JH. Emerging role of E2F8 in human cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166745. [PMID: 37164180 DOI: 10.1016/j.bbadis.2023.166745] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
E2F8 is a multifaceted transcription factor that plays a crucial role in mediating the hallmarks of cancer, including sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Aberrant E2F8 expression is associated with poor clinical outcomes in most human cancers. However, E2F8 also exhibits tumor-suppressing activity; thus, the role of E2F8 in cell-fate determination is unclear. In this review, we highlight the recent progress in understanding the role of E2F8 in human cancers, which will contribute to building a conceptual framework and broadening our knowledge pertaining to E2F8. This review provides insight into future challenges and perspectives regarding the translation of biological knowledge into therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Minsoo Cho
- Independent researcher, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Chiminelli I, Spicer LJ, Maylem ERS, Caloni F. In Vitro Effects of Enniatin A on Steroidogenesis and Proliferation of Bovine Granulosa Cells. Toxins (Basel) 2022; 14:toxins14100714. [PMID: 36287982 PMCID: PMC9607026 DOI: 10.3390/toxins14100714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
The emerging Fusarium mycotoxins enniatins (ENNs) have been the focus of new research because of their well-documented existence in various cereal and grain products. Research findings indicate that reproductive disorders may be caused by exposure to Fusarium mycotoxins, but little work has evaluated ENNs on reproductive function. Therefore, to determine the effects of ENNA on the proliferation and steroidogenesis of granulosa cells (GC), experiments were conducted using bovine GC cultures. In vitro, ENNA (1−5 μM) inhibited (p < 0.05) hormone-induced GC progesterone and estradiol production. The inhibitory effect of ENNA on estradiol production was more pronounced in small- than large-follicle GC. In large-follicle GC, 0.3 μM ENNA had no effect (p > 0.10) whereas 1 and 3 μM ENNA inhibited GC proliferation. In small-follicle GC, ENNA (1−5 μM) dramatically decreased (p < 0.05) GC proliferation. Using cell number data, the IC50 of ENNA was estimated at 2 μM for both follicle sizes. We conclude that ENNA can directly inhibit ovarian function in cattle, decreasing the proliferation and steroid production of GC.
Collapse
Affiliation(s)
- Ilaria Chiminelli
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy
| | - Leon J. Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Excel Rio S. Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| |
Collapse
|
7
|
Nazar M, Abdalla IM, Chen Z, Ullah N, Liang Y, Chu S, Xu T, Mao Y, Yang Z, Lu X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals (Basel) 2022; 12:2542. [PMID: 36230283 PMCID: PMC9559277 DOI: 10.3390/ani12192542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle.
Collapse
Affiliation(s)
- Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Genome-Wide Association Study Candidate Genes on Mammary System-Related Teat-Shape Conformation Traits in Chinese Holstein Cattle. Genes (Basel) 2021; 12:genes12122020. [PMID: 34946969 PMCID: PMC8701322 DOI: 10.3390/genes12122020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
In the dairy industry, mammary system traits are economically important for dairy animals, and it is important to explain their fundamental genetic architecture in Holstein cattle. Good and stable mammary system-related teat traits are essential for producer profitability in animal fitness and in the safety of dairy production. In this study, we conducted a genome-wide association study on three traits—anterior teat position (ATP), posterior teat position (PTP), and front teat length (FTL)—in which the FarmCPU method was used for association analyses. Phenotypic data were collected from 1000 Chinese Holstein cattle, and the GeneSeek Genomic Profiler Bovine 100K single-nucleotide polymorphisms (SNP) chip was used for cattle genotyping data. After the quality control process, 984 individual cattle and 84,406 SNPs remained for GWAS work analysis. Nine SNPs were detected significantly associated with mammary-system-related teat traits after a Bonferroni correction (p < 5.92 × 10−7), and genes within a region of 200 kb upstream or downstream of these SNPs were performed bioinformatics analysis. A total of 36 gene ontology (GO) terms and 3 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched (p < 0.05), and these terms and pathways are mainly related to metabolic processes, immune response, and cellular and amino acid catabolic processes. Eleven genes including MMS22L, E2F8, CSRP3, CDH11, PEX26, HAL, TAMM41, HIVEP3, SBF2, MYO16 and STXBP6 were selected as candidate genes that might play roles in the teat traits of cows. These results identify SNPs and candidate genes that give helpful biological information for the genetic architecture of these teat traits, thus contributing to the dairy production, health, and genetic selection of Chinese Holstein cattle.
Collapse
|
9
|
Spicer LJ. Wingless-type mouse mammary tumor virus integration site regulation of bovine theca cells. J Anim Sci 2021; 99:6309027. [PMID: 34166505 DOI: 10.1093/jas/skab197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/14/2022] Open
Abstract
Ovarian paracrine mediation by components of the wingless-type mouse mammary tumor virus integration site ligands (WNT1 to 11) and their receptors, frizzled family members (FZD1 to 10), has been proposed. Secreted truncated forms of FZD proteins (e.g., secreted frizzled-related protein 4 [SFRP4]) block the action of WNT ligands. Dickkopf-1 (DKK1) is another WNT antagonist, and R-spondin-1 (RSPO1) is one of a group of four secreted proteins that enhance WNT/β-catenin signaling. Our hypothesis was that granulosa cells signal theca cells (TCs) via SFRP4, DKK1, RSPO1, and WNT secretion to regulate TC differentiation and proliferation. Therefore, in vitro experiments were conducted to study the effects of WNT family member 3A (WNT3A), WNT5A, RSPO1, DKK1, insulin-like growth factor 1 (IGF1), bone morphogenetic protein 7 (BMP7), Indian hedgehog (IHH), and fibroblast growth factor 9 (FGF9) on bovine TC proliferation and steroidogenesis. TCs of large (8 to 20 mm) and small (3 to 6 mm) follicles were collected from bovine ovaries; TC monolayers were established in vitro and treated with various doses of recombinant human WNT3A, WNT5A, RSPO1, DKK1, IGF1, FGF9, BMP7, IHH, and/or ovine luteinizing hormone (LH) in serum-free medium for 48 h. In experiment 1, using LH-treated TC, IGF1, IHH, and WNT3A increased (P < 0.05) cell numbers and androstenedione production, whereas WNT3A and BMP7 inhibited (P < 0.05) progesterone production. In experiment 2, FGF9 blocked (P < 0.05) the WNT3A-induced increase in androstenedione production in LH plus IGF1-treated TC. In experiment 3, RSPO1 further increased (P < 0.05) LH plus IGF1-induced progesterone and androstenedione production. In experiment 4, SFRP4 and DKK1 alone had no significant effect on TC proliferation or progesterone production of large-follicle TC but both blocked the inhibitory effect of WNT5A on androstenedione production. In contrast, DKK1 alone inhibited (P < 0.05) small-follicle TC androstenedione production whereas SFRP4 was without effect. We conclude that the ovarian TC WNT system is functional in cattle, with WNT3A increasing proliferation and androstenedione production of TC.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
10
|
Chiara Perego M, Bellitto N, Maylem ERS, Caloni F, Spicer LJ. Effects of selected hormones and their combination on progesterone and estradiol production and proliferation of feline granulosa cells cultured in vitro. Theriogenology 2021; 168:1-12. [PMID: 33826978 DOI: 10.1016/j.theriogenology.2021.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Little is known about the hormonal regulation of feline ovarian granulosa cell proliferation and steroidogenesis. The present study aimed to develop a hormone responsive granulosa cell culture system to measure steroidogenic and cell proliferation responses to help identify factors that might regulate ovarian function in queens. Five experiments were conducted each with 75 or more ovaries, three in spring and two in fall seasons. Granulosa cells were isolated and treated in vitro with various hormones in serum-free medium for 48 h after an initial 48 h plating in 10% fetal calf serum. In granulosa cells isolated from spring and fall collected feline ovaries, IGF1 alone and combined with FSH stimulated (P < 0.05) cell proliferation, whereas FSH alone had no effect (P > 0.10) on cell proliferation. Also, in granulosa cells collected in spring and fall, IGF1 alone and FSH alone increased (P < 0.05) estradiol production by severalfold, and a combination of FSH and IGF1 increased (P < 0.05) estradiol production above either FSH or IGF1 treatment alone. The FSH plus IGF1 treatment increased (P < 0.05) CYP19A1 mRNA abundance by 27-fold. In contrast, EGF decreased (P < 0.05) FSH plus IGF1-induced estradiol production by over 80% in granulosa cells of both spring and fall collected ovaries. In granulosa cells isolated from spring and fall collected ovaries, IGF1 plus FSH inhibited (P < 0.05) progesterone production. Melatonin increased (P < 0.05) FSH plus IGF1-induced cell proliferation and amplified (P < 0.05) the FSH plus IGF1-induced inhibition of progesterone production. However, melatonin and GH had no effect (P > 0.10) on estradiol production either alone or in combination with FSH plus IGF1 in both spring and fall. Prolactin, FGF9 and activin had no effect (P > 0.10) on cell proliferation or steroidogenesis. FGF2 decreased (P < 0.05) estradiol production without affecting progesterone production or cell numbers. Growth differentiation factor 9 (GDF9) increased (P < 0.05) progesterone production but had no effect (P > 0.10) on granulosa cell proliferation or estradiol production. In conclusion, the in vitro system described herewithin may be useful to assess and evaluate ovarian function in feline species and has identified EGF, FSH and IGF1 as major regulators of feline ovarian follicular function.
Collapse
Affiliation(s)
- M Chiara Perego
- Department of of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Nicholas Bellitto
- Department of Environmental Science and Policy, Università Degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Excel Rio S Maylem
- Department of of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Francesca Caloni
- Department of Environmental Science and Policy, Università Degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Leon J Spicer
- Department of of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
11
|
Liu X, Hu C. Novel Potential Therapeutic Target for E2F1 and Prognostic Factors of E2F1/2/3/5/7/8 in Human Gastric Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:824-838. [PMID: 32953933 PMCID: PMC7479313 DOI: 10.1016/j.omtm.2020.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
E2F transcription factors (E2Fs) were found to be related with cell activities and disease progression among a variety of different tumors, including regulating cell division and cell proliferation. In the analysis, it aimed to focus on transcriptional and survival information of E2Fs in gastric cancer (GC) from Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, Database for Annotation, Visualization and Integrated Discovery (DAVID), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Oncomine databases. It was found that the expression of E2F1/2/3/5/7/8 in GC tissues was obviously higher than the normal. Of interest, none of the E2Fs was related with pathological stages. Nevertheless, high expression of E2F2/3/5/7/8 was related with better survival data, except E2F6 regarding shorter first-progression (FP) survival. High expression levels of E2F2/5/7/8 have significant correlations with overall survival (OS) in patients with intestinal and diffuse GC, and this prognostic value is not affected by gender. Oppositely, the lower level of E2F1/4 illustrated superior survival data. Moreover, increased expression of E2F1 in GC tissues might play an important role in the development of GC. Collectively, E2F1 could be a potential therapeutic target for patients with GC. E2F1/2/3/5/7/8 might be original prognostic predictors of GC.
Collapse
Affiliation(s)
- Xuhong Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
12
|
Morrell BC, Perego MC, Maylem ERS, Zhang L, Schütz LF, Spicer LJ. Regulation of the transcription factor E2F1 mRNA in ovarian granulosa cells of cattle. J Anim Sci 2020; 98:5674948. [PMID: 31832639 DOI: 10.1093/jas/skz376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
The E2F family of transcription factors plays an important role in the control of the cell cycle, cell proliferation, and differentiation, and their role in ovarian function is just emerging. Although some evidence suggests a possible role of E2F1 in ovarian follicular development, what regulates its production in ovarian cells is unknown. Objectives of this study were to determine whether: (i) E2F1 gene expression in granulosa cells (GCs) and theca cells (TCs) change with follicular development and (ii) E2F1 mRNA abundance in TC and GC is hormonally regulated. Using real-time PCR, E2F1 mRNA abundance in GC was 5.5-fold greater (P < 0.05) in small (SM; 1 to 5 mm) than large (LG; >8 mm) follicles, but in TC, E2F1 expression did not differ among follicle sizes. SM-follicle GC had 2.1-fold greater (P < 0.05) E2F1 mRNA than TC. In SM-follicle GC, FGF9 induced a 7.6-fold increase in E2F1 mRNA abundance; however, FGF9 did not affect (P > 0.10) abundance of E2F1 mRNA in LG-follicle TC or GC. Follicle-stimulating hormone (FSH) had no effect (P > 0.10) on E2F1 gene expression in SM- or LG-follicle GC. SM-follicle GC were concomitantly treated with insulin-like growth factor 1 (30 ng/mL), FSH (30 ng/mL), and either 0 or 30 ng/mL of FGF9 with or without 50 µM of an E2F inhibitor (E2Fi; HLM0064741); FGF9 alone increased (P < 0.05) GC numbers, whereas E2Fi alone decreased (P < 0.05) GC numbers, and concomitant treatment of E2Fi with FGF9 blocked (P < 0.05) this stimulatory effect of FGF9. Estradiol production was inhibited (P < 0.05) by FGF9 alone and concomitant treatment of E2Fi with FGF9 attenuated (P < 0.05) this inhibitory effect of FGF9. SM-follicle GC treated with E2Fi decreased (P < 0.05) E2F1 mRNA abundance by 70%. Collectively, our studies show that GC E2F1 mRNA is developmentally and hormonally regulated in cattle. Inhibition of E2F1 reduced FGF9-induced GC proliferation and attenuated FGF9-inhibited estradiol production, indicating that E2F1 may be involved in follicular development in cattle.
Collapse
Affiliation(s)
- Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | - M Chiara Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | - Lingna Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|