1
|
Wu L, Wu M, Li Y, Xin Q, Wang Y, Shi X, Li X. R-spondin1 plays an indispensable role in ovarian development of Qi River crucian carp (Carassius auratus) by regulating estrogen synthesis. Theriogenology 2025; 235:134-144. [PMID: 39826263 DOI: 10.1016/j.theriogenology.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
R-spondin1 (Rspo1) is a member of the secreted furin-like domain-containing protein family, and it is recognized for its significance in mammalian ovarian development. However, its role in teleost ovarian development remains largely uninvestigated. The Qi River crucian carp (Carassius auratus) is a species capable of gynogenesis, and it encounters challenges of premature ovarian maturation in aquaculture settings. Previous research established the essential involvement of Rspo1 in oocyte growth in Qi River crucian carp, but the precise molecular mechanisms underlying its role remain poorly understood. In this study, we categorized the pre-spawning ovarian development process of premature Qi River crucian carp into five stages through meticulous examination of morphology and histology. Immunofluorescence analysis revealed colocalization of Rspo1 with Vasa protein in oogonia, primary growth stage, and cortical vacuolar stage oocytes, and it was also detected in somatic cells. After a 60-day period of RNA interference via injection of Rspo1 double-stranded RNA into late-previtellogenesis stage ovaries, a substantial proportion of oocytes were arrested in the primary growth stage and exhibited a marked reduction in the expression of germ cell marker genes and an increase in apoptosis signaling. RNA-sequencing and real-time PCR analyses indicated a potential association between genes involved in hormone synthesis, lipid storage, and cell proliferation with ovary development in Qi River crucian carp. Furthermore, a significant decrease in levels of serum estrogens and vitellogenin was observed after Rspo1 knockdown. Dual-fluorescence in situ hybridization analysis demonstrated co-expression of Rspo1 with cyp19a1a in ovarian germ and surrounding somatic cells. Furthermore, results of a promoter assay indicated that Rspo1 can dose-dependently activate cyp19a1a expression. Collectively, these findings suggest that Rspo1 plays a role in ovarian development and oocyte growth by modulating cyp19a1a expression and influencing estrogen synthesis. These results provide valuable insights into the molecular mechanisms underlying the involvement of Rspo1 in ovarian development in Qi River crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China.
| | - Mengfan Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yongjing Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China
| | - Qingqing Xin
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yuchi Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xi Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, PR China.
| |
Collapse
|
2
|
Gong X, Yan Q, Chen L. Transient receptor potential a1b regulates primordial germ cell numbers and sex differentiation in developing zebrafish. JOURNAL OF FISH BIOLOGY 2025; 106:921-931. [PMID: 39587668 DOI: 10.1111/jfb.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Temperature is a leading environmental factor determining the sex ratio of some animal populations, such as fish, amphibians, and reptiles. However, the underlying mechanism by which temperature affects gender is still poorly understood. Transient receptor potential a1b (Trpa1b) belongs to the ion channel family of transient receptor potentials and exhibits dual thermosensitivity to heat and cold. In this study, we have unveiled a novel function of the trpa1b gene. Zebrafish generated through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 with Trpa1b-null manifest a male-biased sex ratio. The quantity of primordial germ cells (PGCs) in zebrafish is closely linked to gender determination and gonadal development. Yet the role of the trpa1b gene in zebrafish reproductive development remains unexplored in the literature. Our investigation revealed a significant reduction in PGCs in Trpa1b mutant zebrafish compared to their wild-type counterparts 24-h postfertilization (hpf). Transcriptome sequencing of tissues near the reproductive crest of embryos at 1.25 days postfertilization (dpf) revealed differential changes in PGC-related marker genes and genes related to sperm cell development and differentiation. The relative expression of ddx4 and sycp3 genes was significantly downregulated, whereas amh was significantly upregulated at 20 dpf in trpa1b-/- zebrafish. The results of this study provide valuable insights and references for studying the molecular mechanism of sex determination in zebrafish. Undoubtedly, these results will further enhance our understanding of gender differentiation and gonadal development in fish and other vertebrates.
Collapse
Affiliation(s)
- Xiaoting Gong
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianqian Yan
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Wang J, Tao W, Kocher TD, Wang D. Sex chromosome turnover and biodiversity in fishes. J Genet Genomics 2024; 51:1351-1360. [PMID: 39233051 DOI: 10.1016/j.jgg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of sex chromosomes and their turnover in speciation remains a subject of ongoing debate in the field of evolutionary biology. Fishes are the largest group of vertebrates, and they exhibit unparalleled sexual plasticity, as well as diverse sex-determining (SD) genes, sex chromosomes, and sex-determination mechanisms. This diversity is hypothesized to be associated with the frequent turnover of sex chromosomes in fishes. Although it is evident that amh and amhr2 are repeatedly and independently recruited as SD genes, their relationship with the rapid turnover of sex chromosomes and the biodiversity of fishes remains unknown. We summarize the canonical models of sex chromosome turnover and highlight the vital roles of gene mutation and hybridization with empirical evidence. We revisit Haldane's rule and the large X-effect and propose the hypothesis that sex chromosomes accelerate speciation by multiplying genotypes via hybridization. By integrating recent findings on the turnover of SD genes, sex chromosomes, and sex-determination systems in fish species, this review provides insights into the relationship between sex chromosome evolution and biodiversity in fishes.
Collapse
Affiliation(s)
- Jingrong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Chen J, Zhao W, Cao L, Martins RST, Canário AVM. Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish. BMC Biol 2024; 22:163. [PMID: 39075492 PMCID: PMC11288053 DOI: 10.1186/s12915-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism. RESULTS We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic α-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic β-cells, improved glucose clearance and reduced adipocyte mass. CONCLUSIONS We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Wenting Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lei Cao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rute S T Martins
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Adelino V M Canário
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
5
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
7
|
Liu S, Han C, Huang J, Li M, Yang J, Li G, Lin H, Li S, Zhang Y. Genome-wide identification, evolution and expression of TGF-β signaling pathway members in mandarin fish (Siniperca chuatsi). Int J Biol Macromol 2023; 253:126949. [PMID: 37722635 DOI: 10.1016/j.ijbiomac.2023.126949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Members of the transforming growth factor β (TGF-β) signaling pathway regulate diverse cellular biological processes in embryonic and tissue development. We took mandarin fish (Siniperca chuatsi) as the research object to identify all members of the TGF-β signaling pathway, measure their expression pattern in the key period post hatching, and further explore their possible role in the process of sex regulation. Herein, we identified eighty-three TGF-β signaling pathway members and located them on chromosomes based on the genome of mandarin fish. TGF-β signaling pathway members were highly conserved since each TGF-β subfamily clustered with orthologs from other species. Transcriptome analysis, qRT-PCR and in situ hybridization demonstrated that most mandarin fish TGF-β signaling pathway members presented stage-specific and/or sex-dimorphic expression during gonadal development, and different members of the TGF-β signaling pathway participated in different stages of gonadal development. Taken together, our results provide new insight into the role of TGF-β signaling pathway members in the sex regulation of mandarin fish.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Chong Han
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjun Huang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meihui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiayu Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guifeng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China.
| |
Collapse
|
8
|
Clark B, Kuwalekar M, Fischer B, Woltering J, Biran J, Juntti S, Kratochwil CF, Santos ME, Almeida MV. Genome editing in East African cichlids and tilapias: state-of-the-art and future directions. Open Biol 2023; 13:230257. [PMID: 38018094 PMCID: PMC10685126 DOI: 10.1098/rsob.230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Muktai Kuwalekar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joost Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg 78457, Germany
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Scott Juntti
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudius F. Kratochwil
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | | | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Li X, Chen J, Zhao Y, He F, Zeng M, Guan G, Zhao X. The effect of letrozole overlapped with gonadotropin on IVF outcomes in women with DOR or aged over 40 years old with repeated cycles. J Ovarian Res 2023; 16:193. [PMID: 37723573 PMCID: PMC10506294 DOI: 10.1186/s13048-023-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Evaluating the efficacy of letrozole overlapped with gonadotropin-modified letrozole protocol (mLP) for diminished ovarian reserve (DOR) or advanced-age women with repeated cycles. METHODS This is a retrospectively registered, paired-match study including 243 women with DOR and 249 women aged over 40 years old who received in vitro fertilization (IVF) treatment. 123 women received stimulation with mLP (mLP group). GnRH agonist (GnRH-a) long, GnRH antagonist (GnRH-anta), and mild stimulation protocol were used as controls with 123 women in each group. We further analyzed 50 of 123 patients in the mLP group who have experienced more than one failed cycles with other ovarian stimulation protocols (non-mLP group). Clinical pregnancy rate (CPR), cumulative clinical pregnancy rate (CCPR), and live birth rate (LBR) were main outcomes. RESULTS The CPR in the mLP group (38.46%) was significantly higher than mild stimulation (17.11%), but not significantly different from GnRH-a long (26.13%) and GnRH-anta (29.17%) group. The CCPR showed an increasing trend in the mLP group (33.33%) although without significance when compared with controls. The CCRP of GnRH-a long, GnRH-anta, mild stimulation group were 21.68%, 29.03%, and 13.04%, respectively. In women with repeated cycles, mLP achieved the higher available embryo rate (P < 0.05), the top-quality embryo rate, the CPR (P < 0.001), and the LBR (P < 0.001). Further study showed a positive correlation between testosterone and the number of oocytes retrieved in the mLP group (r = 0.395, P < 0.01). CONCLUSION The mLP may be effective for aged or DOR women who have experienced previous cycle failure by improving the quality of embryos, the CPR, and the LBR. An increasing serum testosterone level may reflect follicular growth during ovarian stimulation.
Collapse
Affiliation(s)
- Xiaojia Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jingbo Chen
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yang Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Fengyi He
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Meijun Zeng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Liu S, Han C, Zhang Y. De novo assembly, characterization and comparative transcriptome analysis of gonads reveals sex-biased genes in Coreoperca whiteheadi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101115. [PMID: 37579624 DOI: 10.1016/j.cbd.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
The wild Coreoperca whiteheadi is considered as the primordial species in sinipercine fish, which has valuable genetic information. Unfortunately, C. whiteheadi was listed as a near-threatened species because of the environmental pollution, over-exploitation and species invasion. Therefore, more genetic information is needed to have a better understanding of gonadal development in C. whiteheadi. Here, the first gonadal transcriptomes analysis of C. whiteheadi was conducted and 277.14 million clean reads were generated. A total of 96,753 unigenes were successfully annotated. By comparing ovary and testis transcriptomes, a total of 21,741 differentially expressed genes (DEGs) were identified, of which 12,057 were upregulated and 9684 were downregulated in testes. Among them, we also identified about 53 differentially expressed sex-biased genes. Subsequently, the expression of twenty-four DEGs were confirmed by real-time fluorescence quantitative PCR. Furthermore, the histological analysis was conducted on ovaries and testes of one-year-old C. whiteheadi. Our results provided basic support for further studies on the function of sex-biased genes and the molecular mechanism of sex determination and reproduction in C. whiteheadi.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China.
| |
Collapse
|
11
|
Priscilla L, Malathi E, Moses Inbaraj R. Sex steroid profile during oocyte development and maturation in the intertidal worm Marphysa madrasi (Polychaeta: Eunicidae) from the east coast of India. Gen Comp Endocrinol 2023; 331:114118. [PMID: 36037874 DOI: 10.1016/j.ygcen.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Marphysa madrasi is a commercially valuable maturation diet in crustacean aquaculture. This study presents the first detailed investigation of oogenesis in the intertidal polychaete worm M. madrasi and reports the steroid profile during oocyte growth and development. Oogenesis is extraovarian type I, originating from coelomic epithelial cells, with four stages of development - primary growth, early vitellogenic, late vitellogenic, and maturation. The primary growth phase contains oogonial cells and previtellogenic oocyte clusters in the early, mid, and late stages of development form a dispersed ovary attached to blood vessels. The late previtellogenic oocytes detach from the ovary at the onset of vitellogenesis. The detached oocytes complete vitellogenesis and final maturation in the coelomic fluid as solitary free-floating cells without any connection with follicle cells. The worms display asynchronous reproduction with a heterogeneous population of developing oocytes. Steroid extracts from the polychaete homogenates in different stages of oogenesis were identified by HPLC and confirmed by LC-MS/MS. In M. madrasi, two vertebrate-type steroids, pregnenolone (P5) and 17α-hydroxyprogesterone (17-OHP) were detected and quantified. The P5 levels were low in immature worms but increased significantly by ∼ 8.3-fold in the previtellogenic stage and peaked during oocyte maturation. 17-OHP levels were low in immature worms but gradually increase as the oogenesis progress to the primary growth and early vitellogenic phase, with a significant increase (p < 0.001) during the late vitellogenic phase. Although an increase in the concentration of P5 and 17-OHP during vitellogenesis and maturation of oocytes points to a possible role in reproduction, the absence of other vertebrate-type steroids in the investigated polychaete signifies a plausible uptake of P5 and 17-OHP from the environment.
Collapse
Affiliation(s)
- Lyndsay Priscilla
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India; Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India
| | - E Malathi
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India
| | - R Moses Inbaraj
- Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India.
| |
Collapse
|
12
|
Li Y, Tang Y, Wang L, Li X, Deng L, Deng W, Zheng Y, Wang D, Wei L. Transcription factor Sox3 is required for oogenesis in the teleost fish Nile tilapia. Int J Biol Macromol 2022; 222:2639-2647. [DOI: 10.1016/j.ijbiomac.2022.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
13
|
Xiao H, Xu Z, Zhu X, Wang J, Zheng Q, Zhang Q, Xu C, Tao W, Wang D. Cortisol safeguards oogenesis by promoting follicular cell survival. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1563-1577. [PMID: 35167018 DOI: 10.1007/s11427-021-2051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The role of glucocorticoids in oogenesis remains to be elucidated. cyp11c1 encodes the key enzyme involved in the synthesis of cortisol, the major glucocorticoid in teleosts. In our previous study, we mutated cyp11c1 in tilapia and analyzed its role in spermatogenesis. In this study, we analyzed its role in oogenesis. cyp11c1+/- XX tilapia showed normal ovarian morphology but poor egg quality, as indicated by the mortality of embryos before 3 d post fertilization, which could be partially rescued by the supplement of exogenous cortisol to the mother fish. Transcriptome analyses revealed reduced expression of maternal genes in the eggs of the cyp11c1+/- XX fish. The cyp11c1-/- females showed impaired vitellogenesis and arrested oogenesis due to significantly decreased serum cortisol. Further analyses revealed decreased serum E2 level and expression of amh, an important regulator of follicular cell development, and increased follicular cell apoptosis in the ovaries of cyp11c1-/- XX fish, which could be rescued by supplement of either exogenous cortisol or E2. Luciferase assays revealed a direct regulation of cortisol and E2 on amh transcription via GRs or ESRs. Taken together, our results demonstrate that cortisol safeguards oogenesis by promoting follicular cell survival probably via Amh signaling.
Collapse
Affiliation(s)
- Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhen Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xi Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jingrong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Werry N, Russell SJ, Gillis DJ, Miller S, Hickey K, Larmer S, Lohuis M, Librach C, LaMarre J. Characteristics of miRNAs Present in Bovine Sperm and Associations With Differences in Fertility. Front Endocrinol (Lausanne) 2022; 13:874371. [PMID: 35663333 PMCID: PMC9160602 DOI: 10.3389/fendo.2022.874371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
Small non-coding RNAs have been linked to different phenotypes in bovine sperm, however attempts to identify sperm-borne molecular biomarkers of male fertility have thus far failed to identify a robust profile of expressed miRNAs related to fertility. We hypothesized that some differences in bull fertility may be reflected in the levels of different miRNAs in sperm. To explore such differences in fertility that are not due to differences in visible metrics of sperm quality, we employed Next Generation Sequencing to compare the miRNA populations in Bos taurus sperm from bulls with comparable motility and morphology but varying Sire Conception Rates. We identified the most abundant miRNAs in both populations (miRs -34b-3p; -100-5p; -191-5p; -30d-4p; -21-5p) and evaluated differences in the overall levels and specific patterns of isomiR expression. We also explored correlations between specific pairs of miRNAs in each population and identified 10 distinct pairs of miRNAs that were positively correlated in bulls with higher fertility and negatively correlated in comparatively less fertile individuals. Furthermore, 8 additional miRNA pairs demonstrated the opposite trend; negatively correlated in high fertility animals and positively correlated in less fertile bulls. Finally, we performed pathway analysis to identify potential roles of miRNAs present in bull sperm in the regulation of specific genes that impact spermatogenesis and embryo development. Together, these results present a comprehensive picture of the bovine sperm miRNAome that suggests multiple potential roles in fertility.
Collapse
Affiliation(s)
- Nicholas Werry
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| | | | - Daniel J. Gillis
- School of Computer Science, The University of Guelph, Guelph, ON, Canada
| | | | | | | | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, The University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Transcriptomes of testis and pituitary from male Nile tilapia (O. niloticus L.) in the context of social status. PLoS One 2022; 17:e0268140. [PMID: 35544481 PMCID: PMC9094562 DOI: 10.1371/journal.pone.0268140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
African cichlids are well established models for studying social hierarchies in teleosts and elucidating the effects social dominance has on gene expression. Ascension in the social hierarchy has been found to increase plasma levels of steroid hormones, follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) as well as gonadosomatic index (GSI). Furthermore, the expression of genes related to gonadotropins and steroidogenesis and signaling along the brain-pituitary-gonad axis (BPG-axis) is affected by changes of an animal’s social status. In this study, we use RNA-sequencing to obtain an in-depth look at the transcriptomes of testes and pituitaries from dominant and subordinate male Nile tilapia living in long-term stable social hierarchies. This allows us to draw conclusions about factors along the brain-pituitary-gonad axis that are involved in maintaining dominance over weeks or even months. We identify a number of genes that are differentially regulated between dominant and subordinate males and show that in high-ranking fish this subset of genes is generally upregulated. Genes differentially expressed between the two social groups comprise growth factors, related binding proteins and receptors, components of Wnt-, Tgfβ- and retinoic acid-signaling pathway, gonadotropin signaling and steroidogenesis pathways. The latter is backed up by elevated levels of 11-ketotestosterone, testosterone and estradiol in dominant males. Luteinizing hormone (Lh) is found in higher concentration in the plasma of long-term dominant males than in subordinate animals. Our results both strengthen the existing models and propose new candidates for functional studies to expand our understanding of social phenomena in teleost fish.
Collapse
|
16
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Jiang DN, Peng YX, Liu XY, Mustapha UF, Huang YQ, Shi HJ, Li MH, Li GL, Wang DS. Homozygous Mutation of gsdf Causes Infertility in Female Nile Tilapia ( Oreochromis niloticus). Front Endocrinol (Lausanne) 2022; 13:813320. [PMID: 35242110 PMCID: PMC8886716 DOI: 10.3389/fendo.2022.813320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gonadal somatic cell-derived factor (Gsdf) is a member of the TGF-β superfamily, which exists mainly in fishes. Homozygous gsdf mutations in Japanese medaka and zebrafish resulted in infertile females, and the reasons for their infertility remain unknown. This study presents functional studies of Gsdf in ovary development using CRISPR/Cas9 in Nile tilapia (Oreochromis niloticus). The XX wild type (WT) female fish regularly reproduced from 12 months after hatching (mah), while the XX gsdf-/- female fish never reproduced and were infertile. Histological observation showed that at 24 mah, number of phase IV oocyte in the XX gsdf-/- female fish was significantly lower than that of the WT fish, although their gonadosomatic index (GSI) was similar. However, the GSI of the XX gsdf-/- female at 6 mah was higher than that of the WT. The mutated ovaries were hyperplastic with more phase I oocytes. Transcriptome analysis identified 344 and 51 up- and down-regulated genes in mutants compared with the WT ovaries at 6 mah. Some TGF-β signaling genes that are critical for ovary development in fish were differentially expressed. Genes such as amh and amhr2 were up-regulated, while inhbb and acvr2a were down-regulated in mutant ovaries. The cyp19a1a, the key gene for estrogen synthesis, was not differentially expressed. Moreover, the serum 17β-estradiol (E2) concentrations between XX gsdf-/- and WT were similar at 6 and 24 mah. Results from real-time PCR and immunofluorescence experiments were similar and validated the transcriptome data. Furthermore, Yeast-two-hybrid assays showed that Gsdf interacts with TGF-β type II receptors (Amhr2 and Bmpr2a). Altogether, these results suggest that Gsdf functions together with TGF-β signaling pathway to control ovary development and fertility. This study contributes to knowledge on the function of Gsdf in fish oogenesis.
Collapse
Affiliation(s)
- Dong-Neng Jiang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - You-Xing Peng
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Xing-Yong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Umar Farouk Mustapha
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yuan-Qing Huang
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Hong-Juan Shi
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Ming-Hui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guang-Li Li
- Guangdong Province Famous Fish Reproduction Regulation and Breeding Engineering Technology Research Center, Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Liu X, Dai S, Wu J, Wei X, Zhou X, Chen M, Tan D, Pu D, Li M, Wang D. Roles of anti-Müllerian hormone and its duplicates in sex determination and germ cell proliferation of Nile tilapia. Genetics 2021; 220:6486528. [PMID: 35100374 PMCID: PMC9208641 DOI: 10.1093/genetics/iyab237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Duplicates of amh are crucial for fish sex determination and differentiation. In Nile tilapia, unlike in other teleosts, amh is located on X chromosome. The Y chromosome amh (amhΔ-y) is mutated with 5 bp insertion and 233 bp deletion in the coding sequence, and tandem duplicate of amh on Y chromosome (amhy) has been identified as the sex determiner. However, the expression of amh, amhΔ-y, and amhy, their roles in germ cell proliferation and the molecular mechanism of how amhy determines sex is still unclear. In this study, expression and functions of each duplicate were analyzed. Sex reversal occurred only when amhy was mutated as revealed by single, double, and triple mutation of the 3 duplicates in XY fish. Homozygous mutation of amhy in YY fish also resulted in sex reversal. Earlier and higher expression of amhy/Amhy was observed in XY gonads compared with amh/Amh during sex determination. Amhy could inhibit the transcription of cyp19a1a through Amhr2/Smads signaling. Loss of cyp19a1a rescued the sex reversal phenotype in XY fish with amhy mutation. Interestingly, mutation of both amh and amhy in XY fish or homozygous mutation of amhy in YY fish resulted in infertile females with significantly increased germ cell proliferation. Taken together, these results indicated that up-regulation of amhy during the critical period of sex determination makes it the sex-determining gene, and it functions through repressing cyp19a1a expression via Amhr2/Smads signaling pathway. Amh retained its function in controlling germ cell proliferation as reported in other teleosts, while amhΔ-y was nonfunctionalized.
Collapse
Affiliation(s)
- Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiahong Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mimi Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deyong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Qin Z, Li Z, Yang S, Wang F, Gao T, Tao W, Zhou L, Wang D, Sun L. Genome-wide identification, evolution of histone lysine demethylases (KDM) genes and their expression during gonadal development in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110674. [PMID: 34624518 DOI: 10.1016/j.cbpb.2021.110674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022]
Abstract
Histone lysine demethylases (KDM) are responsible for histone demethylation and are involved in gene expression regulation. Previous studies have shown that histone lysine demethylation plays an important role in gonadal development of vertebrates. The KDM family consists of eight subfamilies, i.e., kdm1, kdm2, kdm3, kdm4, kdm5, kdm6, kdm7 and JmjC-only subfamily. In this study, 13 to 63 KDM genes in 23 representative species were identified based on the available version of genome assembly. Phylogenetic relationships, domain architecture, and synteny of these genes were comprehensively analyzed and the results suggested KDM genes probably originated from the early diverging metazoan and significantly expanded in vertebrates with multiple whole genome duplication, especially in the third-round whole genome duplication (3R-WGD) and polyploidization of teleosts. The subfamilies of kdm2, kdm3, kdm4, kdm5, kdm6 and kdm7 were duplicated with 1R-2R events, and duplicates of kdm2a, kdm4a, kdm5b and kdm6b were resulted from 3R-WGD. Based on transcriptome data, the KDM genes were found to be dominantly expressed in the ovary and testis. More than 80% of KDM genes displayed sexual dimorphic expression, with 15 genes dominantly expressed in ovaries, and 12 genes dominantly expressed in testes. Importantly, from transcriptome data, qRT-PCR and fluorescence in situ hybridization during sex reversal, genes with higher expression in ovary than testis, such as kdm1b and two JmjC-only subfamily members hspbap1 and riox1, were downregulated, while other genes, such as kdm3c, kdm5bb, kdm6ba, kdm6bb and kdm7b, with higher expression in testis than ovary, were upregulated in ovotestis, indicating these genes play critical roles in the gonadal development and sex reversal. This study provided new insights into the evolution of the KDM genes and a fundamental clue for understanding their important roles in sex differentiation and gonadal development in teleosts.
Collapse
Affiliation(s)
- Zuliang Qin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Zhiqiang Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Shuangyi Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Feilong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Tian Gao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
20
|
Functional Activity of Recombinant Forms of Amh and Synergistic Action with Fsh in European Sea Bass Ovary. Int J Mol Sci 2021; 22:ijms221810092. [PMID: 34576257 PMCID: PMC8467395 DOI: 10.3390/ijms221810092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023] Open
Abstract
Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12–15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.
Collapse
|
21
|
Duan W, Gao FX, Chen ZW, Gao Y, Gui JF, Zhao Z, Shi Y. A sex-linked SNP mutation in amhr2 is responsible for male differentiation in obscure puffer (Takifugu obscurus). Mol Biol Rep 2021; 48:6035-6046. [PMID: 34341900 DOI: 10.1007/s11033-021-06606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anti-Mullerian hormone receptor type II (Amhr2) is a key receptor of Amh signaling in regulating gonad development. The amhr2 gene has been identified in numerous species, including a few teleost fishes. However, the roles of Amhr2 in Amh signaling in fish are poorly studied. METHODS AND RESULTS In this study, an amhr2 homolog from obscure puffer (Takifugu obscurus) was identified, and its molecular characteristics were systematically analyzed. Expression analysis revealed that amhr2 was highly expressed in the gonads of adult pufferfish and significantly upregulated during sex differentiation. Significantly, a sex-linked SNP site was verified in obscure puffer amhr2. Females exhibited a homozygous genotype (C/C), while males possessed a heterozygous genotype (C/G), resulting in an amino acid variation (His/Asp384) in the kinase domain of Amhr2. Then, the functions of the different Amhr2 genotypes were further investigated. The male genotype protein (Amhr2D384) showed an enhanced ability to interact with the type I receptor (Bmpr1a) compared to the female genotype (Amhr2H384). The phosphorylation levels of Smads and activity of the target gene (id3) induced by the male genotype were also much higher than those induced by the female genotype. These results confirmed that the male genotype had an enhanced effect on the Amh signaling pathway compared with the female genotype. CONCLUSIONS This study provides direct experimental evidence for the roles of different Amhr2 genotypes in pufferfish and suggests that amhr2 is responsible for male sex differentiation in obscure puffer.
Collapse
Affiliation(s)
- Wen Duan
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Fan-Xiang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zi-Wei Chen
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Jian-Fang Gui
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
22
|
Okoli AS, Blix T, Myhr AI, Xu W, Xu X. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res 2021; 31:1-21. [PMID: 34304349 PMCID: PMC8821480 DOI: 10.1007/s11248-021-00274-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Aquaculture is becoming the primary source of seafood for human diets, and farmed fish aquaculture is one of its fastest growing sectors. The industry currently faces several challenges including infectious and parasitic diseases, reduced viability, fertility reduction, slow growth, escapee fish and environmental pollution. The commercialization of the growth-enhanced AquAdvantage salmon and the CRISPR/Cas9-developed tilapia (Oreochromis niloticus) proffers genetic engineering and genome editing tools, e.g. CRISPR/Cas, as potential solutions to these challenges. Future traits being developed in different fish species include disease resistance, sterility, and enhanced growth. Despite these notable advances, off-target effect and non-clarification of trait-related genes among other technical challenges hinder full realization of CRISPR/Cas potentials in fish breeding. In addition, current regulatory and risk assessment frameworks are not fit-for purpose regarding the challenges of CRISPR/Cas notwithstanding that public and regulatory acceptance are key to commercialization of products of the new technology. In this study, we discuss how CRISPR/Cas can be used to overcome some of these limitations focusing on diseases and environmental release in farmed fish aquaculture. We further present technical limitations, regulatory and risk assessment challenges of the use of CRISPR/Cas, and proffer research strategies that will provide much-needed data for regulatory decisions, risk assessments, increased public awareness and sustainable applications of CRISPR/Cas in fish aquaculture with emphasis on Atlantic salmon (Salmo salar) breeding.
Collapse
Affiliation(s)
- Arinze S Okoli
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.
| | - Torill Blix
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway.,The Norwegian College of Fishery Science, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Anne I Myhr
- GenØk -Centre for Biosafety, SIVA Innovation Centre, Tromsø, Norway
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao, 266061, China
| |
Collapse
|
23
|
Zhang Z, Wu K, Ren Z, Ge W. Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor. Development 2020; 147:dev189811. [PMID: 33060133 DOI: 10.1242/dev.189811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Anti-Müllerian hormone (Amh) plays an important role in gonadal function. Amh deficiency causes severe gonadal dysgenesis and dysfunction in zebrafish, with gonadal hypertrophy in both sexes. However, its mechanism of action remains unknown. Intriguingly, the Amh cognate type II receptor (Amhr2) is missing in the zebrafish genome, in sharp contrast to other species. Using a series of zebrafish mutants (amh, fshb, fshr and lhcgr), we provided unequivocal evidence for actions of Amh, via modulation of gonadotropin signaling, on both germ cell proliferation and differentiation. The gonadal hypertrophy in amh mutants was abolished in the absence of Fshr in females or Fshr/Lhcgr in males. Furthermore, we demonstrated that knockout of bmpr2a, but not bmpr2b, phenocopied all phenotypes of the amh mutant in both sexes, including gonadal hypertrophy, hyperproliferation of germ cells, retarded gametogenesis and reduced fshb expression. In summary, the present study provided comprehensive genetic evidence for an intimate interaction of gonadotropin and Amh pathways in gonadal homeostasis and gametogenesis and for Bmpr2a as the possible missing link for Amh signaling in zebrafish.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kun Wu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiqin Ren
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
24
|
Zhang Z, Zhu B, Chen W, Ge W. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish. Mol Cell Endocrinol 2020; 517:110963. [PMID: 32745576 DOI: 10.1016/j.mce.2020.110963] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
Anti-Müllerian hormone (AMH/Amh) plays a role in gonadal differentiation and function across vertebrates. In zebrafish we demonstrated that Amh deficiency caused severe gonadal dysgenesis and dysfunction. The mutant gonads showed extreme hypertrophy with accumulation of early germ cells in both sexes, namely spermatogonia in the testis and primary growth oocytes in the ovary. In amh mutant females, the folliculogenesis was normal in young fish but receded progressively in adults, which was accompanied by progressive decrease in follicle-stimulating hormone (fshb) expression. Interestingly the expression of fshb increased in the pituitary of juvenile amh mutant males but decreased in adults. The upregulation of fshb in mutant male juveniles was likely one of the mechanisms for triggering gonadal hypergrowth, whereas the downregulation of fshb in adults might involve a negative feedback by gonadal inhibin. Further analysis using mutants of fshb and growth differentiation factor 9 (gdf9) provided evidence for a role of FSH in triggering ovarian hypertrophy in young female amh mutant as well. In summary, the present study provided comprehensive genetic evidence for dual roles of Amh in controlling zebrafish gonadal homeostasis and gametogenesis in both sexes. Amh suppresses proliferation or accumulation of early germ cells (spermatogonia in testis and primary growth oocytes in ovary) while promoting their exit to advanced stages, and its action may involve both endocrine and paracrine pathways.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
25
|
Regulation of Female Folliculogenesis by Tsp1a in Nile Tilapia ( Oreochromis niloticus). Int J Mol Sci 2020; 21:ijms21165893. [PMID: 32824362 PMCID: PMC7460569 DOI: 10.3390/ijms21165893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
TSP1 was reported to be involved in multiple biological processes including the activation of TGF-β signaling pathways and the regulation of angiogenesis during wound repair and tumor growth, while its role in ovarian folliculogenesis remains to be elucidated. In the present study, Tsp1a was found to be expressed in the oogonia and granulosa cells of phase I to phase IV follicles in the ovaries of Nile tilapia by immunofluorescence. tsp1a homozygous mutants were generated by CRISPR/Cas9. Mutation of tsp1a resulted in increased oogonia, reduced secondary growth follicles and delayed ovary development. Expression of the cell proliferation marker PCNA was significantly up-regulated in the oogonia of the mutant ovaries. Furthermore, transcriptomic analysis revealed that expressions of DNA replication related genes were significantly up-regulated, while cAMP and MAPK signaling pathway genes which inhibit cell proliferation and promote cell differentiation were significantly down-regulated. In addition, aromatase (Cyp19a1a) expression and serum 17β-estradiol (E2) concentration were significantly decreased in the mutants. These results indicated that lacking tsp1a resulted in increased proliferation and inhibited differentiation of oogonia, which in turn, resulted in increased oogonia, reduced secondary growth follicles and decreased E2. Taken together, our results indicated that tsp1a was essential for ovarian folliculogenesis in Nile tilapia.
Collapse
|
26
|
Genome-wide investigation of Dmrt gene family in large yellow croaker (Larimichthys crocea). Theriogenology 2020; 156:272-282. [PMID: 32791392 DOI: 10.1016/j.theriogenology.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
The Dmrt (Doublesex and Mab-3 related transcription factor) gene family is a class of crucial transcription factors characterized by a conserved DM (Doublesex/Mab-3) domain. Previous researches indicate this gene family is involved in various physiological processes, especially in sex determination/differentiation and gonad development. Despite the vital roles of the Dmrt gene family in physiological processes, the comprehensive characterization and analysis of the dmrt genes in large yellow croaker (Larimichthys crocea), one of the most commercially important marine fish in China, have not been described. In this study, we performed the first genome-wide systematic analysis of L. crocea dmrt genes through the bioinformatics method. A total of seven members of the Dmrt gene family including Lcdmrt1, Lcdmrt2a, Lcdmrt2b, Lcdmrt3, Lcdmrt4, Lcdmrt5, and Lcdmrt6 were excavated based on the genome data of L. crocea. Further analysis revealed that the dmrt genes of L. crocea were distributed unevenly across four chromosomes. There were three dmrt genes (Lcdmrt1, Lcdmrt2a, and Lcdmrt3) on 3rd chromosome, one (Lcdmrt6) on 13th chromosome, one (Lcdmrt4) on 14th chromosome, two on (Lcdmrt5 and Lcdmrt2b) 17th chromosome. The gene structure analysis indicated that the number of introns of different dmrt genes of L. crocea had some differences: Lcdmrt1 had four introns, Lcdmrt2a, Lcdmrt2b, and Lcdmrt6 had two introns, Lcdmrt3, Lcdmrt4, and Lcdmrt5 had only one intron. The expression pattern analysis with published gonad transcriptome datasets and further confirmed by qRT-PCR revealed that these members of the Dmrt gene family except for Lcdmrt4 were all sexually dimorphic and preferred expressing in testis. Furthermore, the expression pattern analysis also revealed that the expression level of Lcdmrt1 and Lcdmrt6 was significantly higher than that of other members, suggesting that these two genes may play a more important role in testis. Overall, our studies provide a comprehensive insight into the Dmrt gene family members and a basis for the further study of their biological functions in L. crocea.
Collapse
|
27
|
Wang W, Liang S, Zou Y, Wu Z, Wang L, Liu Y, You F. Amh dominant expression in Sertoli cells during the testicular differentiation and development stages in the olive flounder Paralichthys olivaceus. Gene 2020; 755:144906. [PMID: 32554048 DOI: 10.1016/j.gene.2020.144906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17β-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.
Collapse
Affiliation(s)
- Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
28
|
Thönnes M, Vogt M, Steinborn K, Hausken KN, Levavi-Sivan B, Froschauer A, Pfennig F. An ex vivo Approach to Study Hormonal Control of Spermatogenesis in the Teleost Oreochromis niloticus. Front Endocrinol (Lausanne) 2020; 11:443. [PMID: 32793114 PMCID: PMC7366826 DOI: 10.3389/fendo.2020.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
As the male reproductive organ, the main task of the testis is the production of fertile, haploid spermatozoa. This process, named spermatogenesis, starts with spermatogonial stem cells, which undergo a species-specific number of mitotic divisions until starting meiosis and further morphological maturation. The pituitary gonadotropins, luteinizing hormone, and follicle stimulating hormone, are indispensable for vertebrate spermatogenesis, but we are still far from fully understanding the complex regulatory networks involved in this process. Therefore, we developed an ex vivo testis cultivation system which allows evaluating the occurring changes in histology and gene expression. The experimental circulatory flow-through setup described in this work provides the possibility to study the function of the male tilapia gonads on a cellular and transcriptional level for at least 7 days. After 1 week of culture, tilapia testis slices kept their structure and all stages of spermatogenesis could be detected histologically. Without pituitary extract (tilPE) however, fibrotic structures appeared, whereas addition of tilPE preserved spermatogenic cysts and somatic interstitium completely. We could show that tilPE has a stimulatory effect on spermatogonia proliferation in our culture system. In the presence of tilPE or hCG, the gene expression of steroidogenesis related genes (cyp11b2 and stAR2) were notably increased. Other testicular genes like piwil1, amh, or dmrt1 were not expressed differentially in the presence or absence of gonadotropins or gonadotropin containing tilPE. We established a suitable system for studying tilapia spermatogenesis ex vivo with promise for future applications.
Collapse
Affiliation(s)
- Michelle Thönnes
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Marlen Vogt
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Katja Steinborn
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Krist N. Hausken
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Froschauer
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Frank Pfennig
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Frank Pfennig
| |
Collapse
|