1
|
Biswas C, Adhikari M, Pramanick K. Toxicological effects of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107000. [PMID: 38875953 DOI: 10.1016/j.aquatox.2024.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Nodularin is a potent cyanotoxin that has been detected in aquatic environments as well as in the body of aquatic organisms throughout the world, but its effects on the reproductive system are yet to be explored. The present study investigated the toxic effects of environmentally relevant concentrations of nodularin on the reproductive endocrine system of female zebrafish (Danio rerio). After exposure to nodularin for 14 days, decreased gonadosomatic Index (GSI), germinal vesicle breakdown (GVBD), and decreased level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), 17β-estradiol (E2) level and increased testosterone (T) content in female zebrafish suggested that nodularin may disrupt both oocyte growth and maturation. In support of this data, alteration in different marker gene expression on the hypothalamic-pituitary-gonadal-liver (HPGL) axis was observed. Transcriptional levels of genes related to steroidogenesis including cytochrome P450 aromatase (cyp19a1a) in the ovary and primary vitellogenin genes (vtg1, vtg2, and vtg3) in the liver were down-regulated and marker genes for oxidative stress (sod, cat, and gpx) were up-regulated on HPGL axis. These findings revealed for the first time that nodularin is a potent endocrine-disrupting compound posing oxidative stress and causes reproductive endocrine toxicity in female zebrafish, emphasizing the importance of assessing its environmental risks.
Collapse
Affiliation(s)
- Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
2
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
3
|
He Y, Carver JJ, Erickson T, Le Pabic P, Zhu Y. Dynamic and broad expression of adamts9 in developing and adult zebrafish. Dev Dyn 2023; 252:1449-1461. [PMID: 37436116 PMCID: PMC10784420 DOI: 10.1002/dvdy.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Previous studies showed that Adamts9 is involved in multiple functions including ovulation, spine formation, primordial germ cell migration, and development of primary ovarian follicles in animals. However, systemic examination and high-resolution analyses of adamts9 expression are missing due to lack of a sensitive reporter assay. RESULTS In the present study, we created a new transgenic zebrafish reporter line Tg(adamts9:EGFP) and assayed its expression in various tissues and cells during development and in adults at high-resolution using confocal imaging. Reporter expression was validated with real-time quantitative PCR, whole mount in situ hybridization, and immunohistochemistry for endogenous adamts9. Strong expression of the adamts9:EGFP transgene was found in a wide range of adult and embryonic zebrafish tissues/cells including ovaries, testes, brains, eyes, pectoral fins, intestine, skin, gill, muscle, and heart; while lower expression was observed in the liver and growing ovarian follicles (stages II and III). CONCLUSIONS Our results of a broad and dynamic expression pattern for this evolutionary conserved metalloprotease suggest involvement of adamts9 in the development and physiological functions of various tissues in animals.
Collapse
Affiliation(s)
- Yuanfa He
- College of Fisheries, Southwest University, No. 2 TianSheng Road, Beibei District, Chongqing, P.R. China
- Department of Biology, East Carolina University, 101 E. 10 St., Greenville, NC 27858, USA
| | - Jonathan J Carver
- Department of Biology, East Carolina University, 101 E. 10 St., Greenville, NC 27858, USA
| | - Timothy Erickson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, 101 E. 10 St., Greenville, NC 27858, USA
| |
Collapse
|
4
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
5
|
Huang J, Sun C, Teng Liu D, Zhao NN, Shavit JA, Zhu Y, Chen SX. Nuclear Progestin Receptor-mediated Linkage of Blood Coagulation and Ovulation. Endocrinology 2022; 163:bqac057. [PMID: 35511048 PMCID: PMC9653010 DOI: 10.1210/endocr/bqac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 01/22/2023]
Abstract
Ovulation is a dramatic remodeling process that includes rupture of blood capillaries and clotting, but coagulation is not thought to directly regulate this process. Herein, we report remarkable increases of coagulation factors V (f5, ~3145-fold) and tissue factor (f3a, ~120-fold) in zebrafish ovarian follicle cells during ovulation. This increase was mediated through the nuclear progestin receptor (Pgr), which is essential for ovulation in zebrafish, and was totally abolished in ovarian follicular cells from pgr-/- mutants. In addition, promoter activities of f5 and f3a were significantly enhanced by progestin (DHP) via Pgr. Similar regulation of human F5 promoter activity was induced via human PGRB, suggesting a conserved mechanism. Site-directed mutagenesis of the zebrafish f5 promoter further demonstrated a direct regulation of coagulation factors via progestin response elements. Moreover, a stark increase of erythrocytes occurred in capillaries meshed in wild-type preovulatory follicles but was absent in pgr-/- mutants. Interestingly, anticoagulants significantly inhibited ovulation both in vitro and in vivo, respectively. Furthermore, reduced fecundity was observed in f5+/- female zebrafish. Taken together, our study provides plausible evidence for steroid regulation of coagulation factors, and a new hypothesis for blood clotting-triggered ovulation in vertebrates.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Nan Nan Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
| | - Jordan A Shavit
- Departments of Pediatrics and Human Genetics, University of
Michigan, Ann Arbor, Michigan 48109, USA
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- Department of Biology, East Carolina University,
Greenville, North Carolina 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and
Earth Sciences, Xiamen University, Xiamen, Fujian
361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and
Technology, Xiamen University, Xiamen, Fujian
361102, China
| |
Collapse
|
6
|
Zhang S, Yao Z, Li X, Zhang Z, Liu X, Yang P, Chen N, Xia X, Lyu S, Shi Q, Wang E, Ru B, Jiang Y, Lei C, Chen H, Huang Y. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics 2022; 23:460. [PMID: 35729510 PMCID: PMC9215082 DOI: 10.1186/s12864-022-08645-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide. RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, FST, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2). CONCLUSION In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.
Collapse
Affiliation(s)
- Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zhi Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xinmiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou Henan, 450002, China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou Henan, 450008, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, China.
| |
Collapse
|
7
|
Takahashi T, Ogiwara K. Signal pathway of LH-induced expression of nuclear progestin receptor in vertebrate ovulation. Gen Comp Endocrinol 2022; 321-322:114025. [PMID: 35292264 DOI: 10.1016/j.ygcen.2022.114025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Nuclear progestin receptor (PGR), which is induced in the follicles destined to undergo ovulation, is believed to be obligatory for rupture of the follicles during ovulation in vertebrates. Studies in some mammals and teleost medaka have revealed the outline of the central signaling pathway that leads to the PGR expression in the preovulatory follicles at ovulation. In this review, we summarize the current knowledge on what signaling mediators are involved in the LH-induced follicular expression of PGR at ovulation in these animals. LH-inducibility of follicular PGR expression is conserved. In both group of animals, activation of the LH receptor on the granulosa cell surface with LH commonly results in the increase of intracellular cAMP levels, while the downstream signaling cascades activated by high level of cAMP are totally different between mice and medaka. PGR is currently presumed to be induced via PKA/CREB-mediated transactivation and ERK1/2-dependent signaling in mice, but the receptor is induced via EPAC/RAP and AKT/CREB pathways in the teleost medaka. The differences and similarities in the signaling pathways for PGR expression between them is discussed from comparative and evolutionary aspects. We also discussed questions concerning PGR expression and its regulation needed to be investigated in future.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Tsakoumis E, Ahi EP, Schmitz M. Impaired leptin signaling causes subfertility in female zebrafish. Mol Cell Endocrinol 2022; 546:111595. [PMID: 35139421 DOI: 10.1016/j.mce.2022.111595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Reproduction is an energetically costly event across vertebrates and tightly linked to nutritional status and energy reserves. In mammals, the hormone leptin is considered as a link between energy homeostasis and reproduction. However, its role in fish reproduction is still unclear. In this study, we investigated the possible role of leptin in the regulation of reproduction in zebrafish, using a loss of function leptin receptor (lepr) strain. Impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. lepr mutant females laid significantly fewer eggs, with low fertilization rates compared to wild-type females. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutants. Interestingly, the expression of luteinizing hormone beta (lhb) in the pituitary was significantly lower in mutant females. Analysis of candidate genes in the ovaries and isolated fully grown follicles revealed differential expression of genes involved in steroidogenesis, oocyte maturation and ovulation in the mutants, which are known to be regulated by LH signaling. Moreover, subfertility in lepr mutants could be partially restored by administration of human chorionic gonadotropin. In conclusion, our results show that leptin deficiency does not affect early stages of follicular development, but leptin might be essential in later steps, such as in oocyte maturation and ovulation. To our knowledge, this is the first time that leptin is associated to reproductive deficiencies in zebrafish.
Collapse
Affiliation(s)
- Emmanouil Tsakoumis
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.
| | - Monika Schmitz
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Geng T, Sun Y, Cheng L, Cao Y, Zhang M, Hong Z, Ma L, Zhang Y. Downregulation of LHCGR Attenuates COX-2 Expression and Induces Luteinized Unruptured Follicle Syndrome in Endometriosis. Front Endocrinol (Lausanne) 2022; 13:853563. [PMID: 35600595 PMCID: PMC9114297 DOI: 10.3389/fendo.2022.853563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
An association between endometriosis and luteinized unruptured follicle syndrome (LUFs) has long been identified. Although inactivating mutation of luteinizing hormone/choriogonadotropin receptor (LHGCR) results in LUFs, whether LHCGR contributes to promoting LUFs in endometriosis remains elusive. To investigate the effect of LHCGR signaling in the development of endometriosis-associated LUFs and dissect the underlying mechanism in vivo mouse endometriosis model was established to measure the effect on ovarian folliculogenesis. In vitro cultures of primary human GCs collected from patients undergoing in vitro fertilization were performed and treated with human chorionic gonadotropin (hCG), dibutyryl cyclic-AMP (db-cAMP), LHCGR or CCAAT/enhancer binding protein-α (C/EBPα) small interfering RNA to identify the potential mechanisms. KGN cell line was used to investigate the mechanistic features of transcriptional regulation. Results showed an increased incidence of LUFs was observed in mice with endometriosis. The expression of LHCGR was decreased in the GCs of endometriosis mice. In in vitro cell models, LHCGR signaling increased the expression of C/EBPα and cyclooxygenase-2(COX-2), while inhibiting C/EBPα mitigated the induced COX-2 expression. Mechanically, C/EBPα bounded to the promoter region of COX-2 and increased the transcriptional activity under the stimulation of hCG or db-cAMP. Taken together, this study demonstrated that the LHCGR signaling was reduced in GCs of endometriosis and resulted in a decrease in gonadotropin-induced COX-2 expression. Our study might provide new insights into the dysfunction of GCs in endometriosis.
Collapse
Affiliation(s)
- Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifan Sun
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Cao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanzhen Zhang,
| |
Collapse
|
11
|
Zhu Y. Metalloproteases in gonad formation and ovulation. Gen Comp Endocrinol 2021; 314:113924. [PMID: 34606745 PMCID: PMC8576836 DOI: 10.1016/j.ygcen.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
12
|
Baker SJC, Corrigan E, Melnyk N, Hilker R, Van Der Kraak G. Nuclear progesterone receptor regulates ptger4b and PLA2G4A expression in zebrafish (Danio rerio) ovulation. Gen Comp Endocrinol 2021; 311:113842. [PMID: 34252451 DOI: 10.1016/j.ygcen.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20β-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20β-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20β-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20β-P.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Emily Corrigan
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Nicholas Melnyk
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Renee Hilker
- Department of Animal Biosciences, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
13
|
Carver JJ, He Y, Zhu Y. Delay in primordial germ cell migration in adamts9 knockout zebrafish. Sci Rep 2021; 11:8545. [PMID: 33879810 PMCID: PMC8058341 DOI: 10.1038/s41598-021-88024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/05/2021] [Indexed: 11/09/2022] Open
Abstract
Adamts9 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 9) is one of a few metalloproteinases structurally conserved from C. elegans to humans and is indispensable in germ cell migration in invertebrates. However, adamts9's roles in germ cell migration in vertebrates has not been examined. In the present study, we found zygotic expression of adamts9 started around the germ ring stage and reached peak levels at 3 days post fertilization (dpf) in zebrafish. The migration of primordial germ cells (PGC) was completed within 24 hours (h) in wildtype siblings, while a delay in PGC migration was found at 15 and 24-h post-fertilization (hpf) in the Adamts9 knockout (KO). However, the delayed PGC migration in Adamts9 KO disappeared at 48 hpf. Our study suggests a conserved function of Adamts9 in germ cell migration among invertebrates and vertebrates. In addition, our results also suggest that Adamts9 is not essential for germ cell migration as reported in C. elegans, possibly due to expansion of Adamts family members and compensatory roles from other metalloproteinases in vertebrates. Further studies are required in order to elucidate the functions and mechanisms of metalloproteinases in germ cell migration and gonad formation in vertebrates.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC, 27858, USA
| | - Yuanfa He
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC, 27858, USA.,College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yong Zhu
- Department of Biology, Howell Science Complex, East Carolina University, 1000 E. 5th Street, Greenville, NC, 27858, USA.
| |
Collapse
|
14
|
Maradonna F, Gioacchini G, Notarstefano V, Fontana CM, Citton F, Dalla Valle L, Giorgini E, Carnevali O. Knockout of the Glucocorticoid Receptor Impairs Reproduction in Female Zebrafish. Int J Mol Sci 2020; 21:E9073. [PMID: 33260663 PMCID: PMC7729492 DOI: 10.3390/ijms21239073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
The pleiotropic effects of glucocorticoids in metabolic, developmental, immune and stress response processes have been extensively investigated; conversely, their roles in reproduction are still less documented. It is well known that stress or long-lasting therapies can cause a strong increase in these hormones, negatively affecting reproduction. Moreover, the need of glucocorticoid (GC) homeostatic levels is highlighted by the reduced fertility reported in the zebrafish glucocorticoid receptor mutant (nr3c1ia30/ia30) line (hereafter named gr-/-). Starting from such evidence, in this study, we have investigated the role of glucocorticoid receptor (Gr) in the reproduction of female zebrafish. Key signals orchestrating the reproductive process at the brain, liver, and ovarian levels were analyzed using a multidisciplinary approach. An impairment of the kiss-GnRH system was observed at the central level in (gr-/-) mutants as compared to wild-type (wt) females while, in the liver, vitellogenin (vtg) mRNA transcription was not affected. Changes were instead observed in the ovary, particularly in maturing and fully grown follicles (classes III and IV), as documented by the mRNA levels of signals involved in oocyte maturation and ovulation. Follicles isolated from gr-/- females displayed a decreased level of signals involved in the acquisition of competence and maturation, causing a reduction in ovulation with respect to wt females. Fourier transform infrared imaging (FTIRI) analysis of gr-/- follicle cytoplasm showed major changes in macromolecule abundance and distribution with a clear alteration of oocyte composition. Finally, differences in the molecular structure of the zona radiata layer of gr-/- follicles are likely to contribute to the reduced fertilization rate observed in mutants.
Collapse
Affiliation(s)
- Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Camilla Maria Fontana
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Filippo Citton
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Luisa Dalla Valle
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| |
Collapse
|
15
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|