1
|
Wang QJ, Yi HM, Ou JY, Wang R, Wang MM, Wang PH, He XL, Tang WH, Chen JH, Yu Y, Zhang CP, Ren CH, Zhang ZJ. Environmental Heat Stress Decreases Sperm Motility by Disrupting the Diurnal Rhythms of Rumen Microbes and Metabolites in Hu Rams. Int J Mol Sci 2024; 25:11161. [PMID: 39456942 PMCID: PMC11508439 DOI: 10.3390/ijms252011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress (HS) has become a common stressor, owing to the increasing frequency of extreme high-temperature weather triggered by global warming, which has seriously affected the reproductive capacity of important livestock such as sheep. However, little is known about whether HS reduces sperm motility by inducing circadian rhythm disorders in rumen microorganisms and metabolites in sheep. In this study, the year-round reproduction of two-year-old Hu rams was selected, and the samples were collected in May and July 2022 at average environmental temperatures between 18.71 °C and 33.58 °C, respectively. The experiment revealed that the mean temperature-humidity index was 86.34 in July, indicating that Hu rams suffered from HS. Our research revealed that HS significantly decreased sperm motility in Hu rams. Microbiome analysis further revealed that HS reshaped the composition and circadian rhythm of rumen microorganisms, leading to the circadian disruption of microorganisms that drive cortisol and testosterone synthesis. Serum indicators further confirmed that HS significantly increased the concentrations of cortisol during the daytime and decreased the testosterone concentration at the highest body temperature. Untargeted metabolomics analysis revealed that the circadian rhythm of rumen fluid metabolites in the HS group was enriched by the cortisol and steroid synthesis pathways. Moreover, HS downregulated metabolites, such as kaempferol and L-tryptophan in rumen fluid and seminal plasma, which are associated with promotion of spermatogenesis and sperm motility; furthermore, these metabolites were found to be strongly positively correlated with Veillonellaceae_UCG_001. Overall, this study revealed the relationship between the HS-induced circadian rhythm disruption of rumen microorganisms and metabolites and sperm motility decline. Our findings provide a new perspective for further interventions in enhancing sheep sperm motility with regard to the circadian time scale.
Collapse
Affiliation(s)
- Qiang-Jun Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Huan-Ming Yi
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Jing-Yu Ou
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Ru Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Ming-Ming Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Peng-Hui Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Xiao-Long He
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Wen-Hui Tang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Jia-Hong Chen
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Yang Yu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Y.); (C.-P.Z.)
| | - Chun-Ping Zhang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Y.); (C.-P.Z.)
| | - Chun-Huan Ren
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Zi-Jun Zhang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| |
Collapse
|
2
|
Koh YC, Pan MH. Food-Borne Polycyclic Aromatic Hydrocarbons and Circadian Disruption. ACS OMEGA 2024; 9:31298-31312. [PMID: 39072055 PMCID: PMC11270680 DOI: 10.1021/acsomega.4c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Circadian disruption has been found to increase the risk of metabolic diseases, brain disorders, and cancer. The aryl hydrocarbon receptor (AhR), responsible for xenobiotic metabolism, is known to be activated by certain environmental stimuli, including polycyclic aromatic hydrocarbons (PAHs). Exposure to these stimuli may lead to diseases related to circadian disruption, with AhR activation suggested as a leading cause. Both the aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor nuclear translocator-like (BMAL1) are class II basic helix-loop-helix/Per-ARNT-SIM (bHLH-PAS) proteins. These proteins form heterodimers with stimulated class I bHLH-PAS proteins, including circadian locomotor output cycles kaput (CLOCK) and AhR. Due to their sequential similarity, the overactivation of AhR by toxicants, such as PAHs, may lead to the formation of heterodimers with BMAL1, potentially causing circadian disruption. Dysregulation of BMAL1 can affect a wide range of metabolic genes, emphasizing its crucial roles. However, this issue has not been adequately addressed. Previous studies have reported that the inhibitory effects of phytochemicals on AhR activation can ameliorate diseases induced by environmental toxicants. Additionally, some phytochemicals have shown preventive effects on circadian misalignment. Therefore, this Review aims to explore potential strategies to prevent circadian disruption induced by food-borne toxicants, such as benzo[a]pyrene; to generate new ideas for future studies; and to highlight the importance of investigating these preventive strategies.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 106017, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 106017, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404327, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 413305, Taiwan
| |
Collapse
|
3
|
Yang D, Xu K, Wang W, Chen P, Liu C, Liu S, Xu W, Xiao W. Protective effects of L-theanine and dihydromyricetin on reproductive function in male mice under heat stress. Food Funct 2024; 15:7093-7107. [PMID: 38873879 DOI: 10.1039/d4fo00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat stress can impair the male reproductive function. L-Theanine and dihydromyricetin have biological activities against heat stress; however, their effects on reproductive function in heat-stressed males are unclear. In this study, male mice were given L-theanine, dihydromyricetin, or a combination of both for 28 days, followed by 2 h of heat stress daily for 7 days. All interventions alleviated heat stress-induced testicular damage, improving the testicular organ index, sperm density, acrosome integrity, sperm deformity rate, and hormone levels. Treatment increased the antioxidant enzyme activity and decreased the markers of oxidative and inflammatory stress in the testes. A combination dose of 200 + 200 mg kg-1 d-1 showed the best protective effect. The potential mechanism involves the regulation of HSP27 and HSP70, which regulate the levels of reproductive hormones through the StAR/Cyp11a1/Hsd3b1/Cyp17a1/Hsd17b3 pathway, alleviate inflammation and oxidative stress through the P38/NF-κB/Nrf2/HO-1 pathway, and regulate the Bcl-2/Fas/Caspase3 apoptotic pathway. Overall, L-theanine and dihydromyricetin may play a protective role against heat stress-induced reproductive dysfunction, suggesting their potential use in heat stress-resistant foods.
Collapse
Affiliation(s)
- Difei Yang
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Kaihang Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenmao Wang
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Peijian Chen
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Chao Liu
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Sha Liu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Zhang Z, Cheng J, Yang L, Li X, Li Q. Period circadian regulator 2-mediated steroid hormone synthesis by regulating transcription of steroidogenic acute regulatory protein in porcine granulosa cells. J Anim Sci 2024; 102:skae185. [PMID: 38982717 PMCID: PMC11303873 DOI: 10.1093/jas/skae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
Steroidogenesis is associated with circadian clock genes. However, the regulation of steroid hormone production in sow granulosal cells by Per2, a crucial circadian regulator, remains unexplored. In this study, we have identified the presence of Per2 in ovarian granulosa cells and have observed its circadian expression pattern. Employing siRNA to interfere with Per2 expression, our investigation revealed that Per2 knockdown notably elevated progesterone (P4) levels along with increasing the expression of StAR but interference of Per2 did not alter the rhythm of clock-related gene (Bmal1, Clock, Per1, and Cry1) in granulosa cells. Subsequent mechanistic analysis showed that Per2 formed complexes with PPARγ and interference with Per2 promoted the formation of the PPARγ:RXRα heterodimer. Importantly, we uncovered that PPARγ:RXRα heterodimer could control the expression of StAR via direct peroxisome proliferator response element binding to its promoter to regulate its activity, and knockdown of Per2 promoted the transcription of StAR via increasing the binding of PPARγ:RXRα ligands. Altogether, these findings indicated a noncanonical role of Per2 in controlling PPARγ:RXRα binding to regulate transcription of StAR and progesterone synthesis, thus revealing potential avenues of pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
5
|
Yang C, Deng Z, Zeng Q, Chang X, Wu X, Li G. BMAL1 involved in autophagy and injury of thoracic aortic endothelial cells of rats induced by intermittent heat stress through the AMPK/mTOR/ULK1 pathway. Biochem Biophys Res Commun 2023; 661:34-41. [PMID: 37086572 DOI: 10.1016/j.bbrc.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Physiological activities of the body exhibit an obvious biological rhythm. At the core of the circadian rhythm, BMAL1 is the only clock gene whose deletion leads to abnormal physiological functions. However, whether intermittent heat stress influences cardiovascular function by altering the circadian rhythm of clock genes has not been reported. This study aimed to investigate whether intermittent heat stress induces autophagy and apoptosis, and the effects of BMAL1 on thoracic aortic autophagy and apoptosis. An intermittent heat stress model was established in vitro, and western blotting and immunofluorescence were used to detect the expression of autophagy, apoptosis, the AMPK/mTOR/ULK1 pathway, and BMAL1. After BMAL1 silencing, RT-qPCR was performed to detect the expression levels of autophagy and apoptosis-related genes. Our results suggest that heat stress induces autophagy and apoptosis in RTAECs. In addition, intermittent heat stress increased the phosphorylation of AMPK and ULK1, but reduced the phosphorylation of mTOR, AMPK inhibitor Compound C reversed the phosphorylation of AMPK, mTOR, and ULK1, and Beclin1 and LC3-II/LC3-I were downregulated. Furthermore, BMAL1 expression was elevated in vitro and shBMAL1 decreased autophagy and apoptosis. We revealed that intermittent heat stress induces autophagy and apoptosis, and that BMAL1 may be involved in the occurrence of autophagy and apoptosis.
Collapse
Affiliation(s)
- Chunli Yang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Nursing Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ziwei Deng
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qihang Zeng
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoyu Chang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaomin Wu
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
6
|
Strain and Age Dependent Entrainable Range of Circadian Behavior in C57BL/6 and BALB/c Mice. Physiol Behav 2022; 255:113917. [PMID: 35853482 DOI: 10.1016/j.physbeh.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The mammalian circadian system has a plasticity in a certain range, rather than a strict 24-hour cycle, with considerable variations among species, strains, and ages. As the most widely used mouse strains in circadian research, C57BL/6 and BALB/c mice were well known to have different internal periods and responses to various non-24-hour light-dark cycles. However, their entrainable range of circadian behavior was not specifically studied, neither was the effect of aging. Besides, it is not well known if mice with appeared behavioral adaptation are really healthy. In the current study, we exposed C57BL/6 and BALB/c mice at 3 months and 18 months old to a series of short (T cycles < 24 h) and long (T cycles > 24 h) light-dark cycles. Wheel running activities were monitored continuously for calculation of the entrainable range and glucose homeostasis was investigated to reflect their health status. Our results showed that the range in both young and old C57BL/6 mice is between T23 and T26. By contrast, due to the strong adaptability to extreme LD cycles, the entrainable range on a circadian scale in both young and old BALB/c mice cannot be well determined. Despite the adaptation appeared at the behavioral level, glucose homeostasis revealed by glucose tolerance test and insulin tolerance test was impaired in mice upon T cycle treatment. In summary, our study explored the entrainment range in two popular mouse strains and suggested that behavioral adaptation may not well reflect their health status.
Collapse
|
7
|
Lipshutz SE, Howell CR, Buechlein AM, Rusch DB, Rosvall KA, Derryberry EP. How thermal challenges change gene regulation in the songbird brain and gonad: implications for sexual selection in our changing world. Mol Ecol 2022; 31:3613-3626. [PMID: 35567363 DOI: 10.1111/mec.16506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
In a rapidly warming world, exposure to high temperatures may impact fitness, but the gene regulatory mechanisms that link sublethal heat to sexually selected traits are not well understood, particularly in endothermic animals. Our experiment used zebra finches (Taeniopygia guttata), songbirds that experience extreme temperature fluctuations in their native Australia. We exposed captive males to an acute thermal challenge (43°C) compared with thermoneutral (35°C) and lower (27°C) temperatures. We found significantly more heat dissipation behaviors at 43°C, a temperature previously shown to reduce song production and fertility, and more heat retention behaviors at 27°C. Next, we characterized transcriptomic responses in tissues important for mating effort - the posterior telencephalon, for its role in song production, and the testis, for its role in fertility and hormone production. Differential expression of hundreds of genes in the testes, but few in the brain, suggest the brain is less responsive to extreme temperatures. Nevertheless, gene network analyses revealed that expression related to dopaminergic signaling in the brain co-varied with heat dissipation behaviors, providing a mechanism by which temporary thermal challenges may alter motivational circuits for song production. In both brain and testis, we observed correlations between thermally sensitive gene networks and individual differences in thermoregulatory behavior. Although we cannot directly relate these gene regulatory changes to mating success, our results suggest that individual variation in response to thermal challenges could impact sexually selected traits in a warming world.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Clara R Howell
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
8
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Gu J, Sun F. The potential impacts of circadian rhythm disturbances on male fertility. Front Endocrinol (Lausanne) 2022; 13:1001316. [PMID: 36277693 PMCID: PMC9582279 DOI: 10.3389/fendo.2022.1001316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
A circadian rhythm is an internalized timing system that synchronizes the cellular, behavioral, and physiological processes of organisms to the Earth's rotation. Because all physiological activities occur at a specific time, circadian rhythm disturbances can lead to various pathological disorders and diseases. Growing evidence has shown that the circadian clock is tightly connected to male fertility, and circadian perturbations contribute to infertility. The night shiftwork, insufficient sleep, and poor sleep quality are common causes of circadian disturbances, and many studies have reported that they impair sperm quality and increase the risk of male infertility. However, research on the impacts of light, body temperature, and circadian/circannual rhythms is relatively lacking, although some correlations have been demonstrated. Moreover, as the index of sperm quality was diverse and study designs were non-uniform, the conclusions were temporarily inconsistent and underlying mechanisms remain unclear. A better understanding of whether and how circadian disturbances regulate male fertility will be meaningful, as more scientific work schedules and rational lifestyles might help improve infertility.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Ye Tian
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiang Gu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Fa Sun, ; Jiang Gu,
| | - Fa Sun
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Fa Sun, ; Jiang Gu,
| |
Collapse
|
9
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
10
|
Expression of cell proliferation regulatory factors bricd5, tnfrsf21, cdk1 correlates with expression of clock gene cry1 in testes of Hu rams during puberty. Mol Biol Rep 2021; 48:7379-7385. [PMID: 34626314 DOI: 10.1007/s11033-021-06747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers. METHODS AND RESULTS We analyzed testicular tissues from Hu sheep aged 0-180 days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5' flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90 days to 180 days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation. CONCLUSIONS There is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.
Collapse
|
11
|
Nagamachi A, Kanai A, Nakamura M, Okuda H, Yokoyama A, Shinriki S, Matsui H, Inaba T. Multiorgan failure with abnormal receptor metabolism in mice mimicking Samd9/9L syndromes. J Clin Invest 2021; 131:140147. [PMID: 33373325 DOI: 10.1172/jci140147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant sterile α motif domain containing 9 (Samd9) and Samd9L (Samd9/9L) syndromes are a large subgroup of currently established inherited bone marrow failure syndromes that includes myelodysplasia, infection, growth restriction, adrenal hypoplasia, genital phenotypes, and enteropathy (MIRAGE), ataxia pancytopenia, and familial monosomy 7 syndromes. Samd9/9L genes are located in tandem on chromosome 7 and have been known to be the genes responsible for myeloid malignancies associated with monosomy 7. Additionally, as IFN-inducible genes, Samd9/9L are crucial for protection against viruses. Samd9/9L syndromes are caused by gain-of-function mutations and develop into infantile myelodysplastic syndromes associated with monosomy 7 (MDS/-7) at extraordinarily high frequencies. We generated mice expressing Samd9LD764N, which mimic MIRAGE syndrome, presenting with growth retardation, a short life, bone marrow failure, and multiorgan degeneration. In hematopoietic cells, Samd9LD764N downregulates the endocytosis of transferrin and c-Kit, resulting in a rare cause of anemia and a low bone marrow reconstitutive potential that ultimately causes MDS/-7. In contrast, in nonhematopoietic cells we tested, Samd9LD764N upregulated the endocytosis of EGFR by Ship2 phosphatase translocation to the cytomembrane and activated lysosomes, resulting in the reduced expression of surface receptors and signaling. Thus, Samd9/9L is a downstream regulator of IFN that controls receptor metabolism, with constitutive activation leading to multiorgan dysfunction.
Collapse
Affiliation(s)
- Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Megumi Nakamura
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Okuda
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, Japan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Fantinato P, Geraldo ACAPDM, dos Santos TMDCL, Vilela RA, Tribucci AMDO, de Andrade AFC, Arruda RP, Titto EAL. Shade availability on pasture does not affect semen characteristics of Brahman bulls ( Bos taurus indicus). BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2021; 43:e003721. [PMID: 35749065 PMCID: PMC9179191 DOI: 10.29374/2527-2179.bjvm003721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/05/2022] Open
Abstract
Testicular degeneration by heat is the leading cause of infertility in bulls. Beef cattle are generally farmed under hot and humid conditions, and consequently, the thermotolerance of each breed must be considered in their natural environment. This study aimed to evaluate the reproductive characteristics of Brahman bulls maintained in the grazing system, with or without shadow availability. Ten Brahman bulls aging between 24 and 30 months were allocated in two different paddocks, with or without shadow availability. The heat tolerance test was performed on three non-consecutive typical summer days. The semen samples were collected at four times points in a 14 days interval. The climate conditions were monitored throughout the experiment; and clinical evaluation, testicular consistence and scrotal circumference were measured before every semen collection. In addition, semen was evaluated regarding volume, aspect, turbulence, motility, straight movement, sperm concentration, and morphological exam. The studied Brahman bulls showed a high thermolysis capacity, high heat tolerance, and no differences in semen quality were observed between groups.
Collapse
Affiliation(s)
- Paulo Fantinato
- Veterinarian, Departamento de Zootecnia (ZAZ), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP). Campus “Fernando Costa”, Pirassununga, SP, Brazil.
- Correspondence Paulo Fantinato Neto Departamento de Medicina Veterinária - ZMV, Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo - USP Av. Duque de Caxias Norte, 225, Campus “Fernando Costa” CEP 13635-900 - Pirassununga (SP), Brasil E-mail:
| | | | | | - Reíssa Alves Vilela
- Zootechnist, ZAZ, FZEA, USP. Campus “Fernando Costa”, Pirassununga, SP, Brazil.
| | | | - André Furugen Cesar de Andrade
- Veterinarian, Departamento de Reprodução Animal (VRA), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), USP. Campus “Fernando Costa”, Pirassununga, SP, Brazil.
| | - Rubens Paes Arruda
- Veterinarian, DSc., VRA, FMVZ, USP. Campus “Fernando Costa”, Pirassununga, SP, Brazil.
| | | |
Collapse
|
13
|
Jegasothy R, Sengupta P, Dutta S, Jeganathan R. Climate change and declining fertility rate in Malaysia: the possible connexions. J Basic Clin Physiol Pharmacol 2020; 32:911-924. [PMID: 33580644 DOI: 10.1515/jbcpp-2020-0236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/04/2020] [Indexed: 12/24/2022]
Abstract
Climate change is an incessant global phenomenon and has turned contentious in the present century. Malaysia, a developing Asian country, has also undergone significant vicissitudes in climate, which has been projected with significant deviations in forthcoming decades. As per the available studies, climate changes may impact on the fertility, either via direct effects on the gonadal functions and neuroendocrine regulations or via several indirect effects on health, socioeconomic status, demeaning the quality of food and water. Malaysia is already observing a declining trend in the Total fertility rate (TFR) over the past few decades and is currently recorded below the replacement level of 2.1 which is insufficient to replace the present population. Moreover, climate changes reportedly play a role in the emergence and cessation of various infectious diseases. Besides its immediate effects, the long-term effects on health and fertility await to be unveiled. Despite the huge magnitude of the repercussion of climate changes in Malaysia, research that can explain the exact cause of the present reduction in fertility parameters in Malaysia or any measures to preserve the national population is surprisingly very scarce. Thus, the present review aims to elucidate the possible missing links by which climate changes are impairing fertility status in Malaysia.
Collapse
Affiliation(s)
- Ravindran Jegasothy
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Sulagna Dutta
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, MAHSA University, Kuala Lumpur, Malaysia
| | | |
Collapse
|