1
|
Lin X, Nie X, Deng P, Wang L, Hu C, Jin N. Whispers of the polycystic ovary syndrome theater: Directing role of long noncoding RNAs. Noncoding RNA Res 2024; 9:1023-1032. [PMID: 39022674 PMCID: PMC11254504 DOI: 10.1016/j.ncrna.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 07/20/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifaceted endocrine disorder that implicates a spectrum of clinical manifestations, including hormonal imbalance, metabolic dysfunction, and even compromised ovarian granulosa cell (GC) activity. The underlying molecular mechanisms of PCOS remain elusive, presenting a significant barrier to effective diagnosis and treatment. This review delves into the emerging role of long non-coding RNAs (lncRNAs) in the pathophysiology of PCOS, articulating their intricate interactions with mRNAs, microRNAs, and other epigenetic regulators that collectively influence the hormonal and metabolic milieu of PCOS. We examine the dynamic regulatory networks orchestrated by lncRNAs that impact GC function, steroidogenesis, insulin resistance, and inflammatory pathways. By integrating findings from recent studies, we illuminate the potential of lncRNAs as biomarkers for PCOS and highlight their contribution to the disorder, offering a detailed perspective on the lncRNA-mediated modulation of gene expression and pathogenic pathways. Understanding targeted lncRNA interactions with PCOS proposes novel avenues for therapeutic intervention to ameliorate the reproductive and metabolic disturbances characteristic of the syndrome.
Collapse
Affiliation(s)
- Xiuying Lin
- Department of Pathology and Pathophysiology, Yan Bian University, Yanbian, Jilin, China
- Jilin Province People's Hospital, Changchun, Jilin, China
| | - Xinyu Nie
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Deng
- Medical Department, Jilin Provincial Cancer Hospital, Changchun, Jilin, China
| | - Luyao Wang
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ningyi Jin
- Department of Pathology and Pathophysiology, Yan Bian University, Yanbian, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences Changchun, Jilin, China
| |
Collapse
|
2
|
Zhang T, Fang J, Hu J, Kong Y, Jiang R, Wang H, Yang G, Yao G. Downregulation of CASC15 attenuates the symptoms of polycystic ovary syndrome by affecting granulosa cell proliferation and regulating ovarian follicular development. Mol Cell Endocrinol 2024; 592:112322. [PMID: 38942281 DOI: 10.1016/j.mce.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a type of follicular dysplasia with an unclear pathogenesis, posing certain challenges in its diagnosis and treatment. Cancer susceptibility candidate 15 (CASC15), a long non-coding RNA closely associated with tumour development, has been implicated in PCOS onset and development. Therefore, this study aimed to investigate the molecular mechanisms underlying PCOS by downregulating CASC15 expression in both in vitro and in vivo models. We explored the potential regulatory relationship between CASC15 expression and PCOS by examining cell proliferation, cell cycle dynamics, cell autophagy, steroid hormone secretion capacity, and overall ovarian function in mice. We found that CASC15 expression in granulosa cells derived from patients with PCOS was significantly higher than those of the normal group (P < 0.001). In vitro experiments revealed that downregulating CASC15 significantly inhibited cell proliferation, promoted apoptosis, induced G1-phase cell cycle arrest, and influenced cellular autophagy levels. Moreover, downregulating CASC15 affected the follicular development process in newborn mouse ovaries. In vivo studies in mice demonstrated that disrupting CASC15 expression improved PCOS-related symptoms such as polycystic changes and hyperandrogenism, and significantly affected ovulation induction and embryo implantation in pregnant mice. Overall, CASC15 was highly expressed in granulosa cells of patients with PCOS and its downregulation improved PCOS-related symptoms by influencing granulosa cell function and follicular development in mice.
Collapse
Affiliation(s)
- Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junnan Fang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Kong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Wang L, Li B, Cheng D. Influence of Long Non-Coding RNAs on Human Oocyte Development. Pharmgenomics Pers Med 2024; 17:337-345. [PMID: 38979513 PMCID: PMC11229482 DOI: 10.2147/pgpm.s449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Recent research findings have highlighted the pivotal roles played by lncRNAs in both normal human development and disease pathogenesis. LncRNAs are expressed in oocytes and early embryos, and their expression levels change dynamically once the embryonic genome is activated during early human embryonic development. Abnormal expression of lncRNAs was found in follicular fluid, granulosa cells and oocytes of patients, and these lncRNAs were related to cell proliferation and apoptosis, nuclear maturation and follicle development. The expression levels of some lncRNAs in cumulus cells demonstrate correlations with the quality of oocytes and early embryos. This paper aims to present a comprehensive overview of the influence of LncRNAs on the developmental process of human oocytes as well as their involvement in certain infertility-related diseases.
Collapse
Affiliation(s)
- Leitong Wang
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Baoshan Li
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Dongkai Cheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| |
Collapse
|
5
|
Banikazemi Z, Heidar Z, Rezaee A, Taghavi SP, Zadeh Modarres S, Asemi Z, Goleij P, Jahed F, Mazaheri E, Taghizadeh M. Long non-coding RNAs and female infertility: What do we know? Pathol Res Pract 2023; 250:154814. [PMID: 37757620 DOI: 10.1016/j.prp.2023.154814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ten percent of people who are of reproductive age experience infertility. Sometimes the most effective therapies, including technology for assisted reproduction, may lead to unsuccessful implantation. Because of the anticipated epigenetic alterations of in vitro as well as in vitro fertilization growth of embryos, these fertility techniques have also been linked to unfavorable pregnancy outcomes linked to infertility. In this regard, a variety of non-coding RNAs such as long noncoding RNAs (lncRNAs) act as epigenetic regulators in the various physiological and pathophysiological events such as infertility. LncRNAs have been made up of cytoplasmic and nuclear nucleotides; RNA polymerase II transcribes these, which are lengthier than 200 nt. LncRNAs perform critical roles in a number of biological procedures like nuclear transport, X chromosome inactivation, apoptosis, stem cell pluripotency, as well as genomic imprinting. A significant amount of lncRNAs were linked into a variety of biological procedures as high throughput sequencing technology advances, including the development of the testes, preserving spermatogonial stem cells' capacity for differentiation along with self-renewal, and controlling spermatocyte meiosis. All of them point to possible utility of lncRNAs to be biomarkers and treatment aims for female infertility. Herein, we summarize various lncRNAs that are involved in female infertility.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Heidar
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahrzad Zadeh Modarres
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Fatemeh Jahed
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Yang Z, Wu S, He S, Han L, Zhou M, Yang J, Chen J, Wu G. LncRNA AOC4P impacts the differentiation of macrophages and T-lymphocyte by regulating the NF-κB pathways of KGN cells: Potential pathogenesis of polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13776. [PMID: 37766402 DOI: 10.1111/aji.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disease, which is an important cause of female infertility worldwide. PCOS patients are in a state of chronic low-grade inflammation, and immune imbalance is considered as a potential cause of its pathogenesis. METHODS The expression of AOC4P in PCOS and normal ovarian granulosa cells (GCs) was detected by real-time quantitative PCR. KGN cells were induced by dihydrotestosterone at 500 ng/mL to construct the PCOS model. After lentivirus-infected, KGN cells were constructed with AOC4P overexpression cell lines, the proliferation and apoptosis levels of KGN cells in AOC4P and NC groups were detected. Human monocyte cell line (THP-1)-derived macrophages and peripheral blood mononuclear cells (PBMC) were co-cultured with KGN cells for 48 h, respectively, and the differentiation of macrophages and CD4+ T cells were detected by flow cytometry. RESULTS Decreased AOC4P expression was found in PCOS patients. After constructing the PCOS cell model, we observed that overexpression of AOC4P promoted KGN cell proliferation and inhibited apoptosis. After co-culture with AOC4P overexpressed KGN cells, M1 macrophages decreased, M2 macrophages increased, T helper cells type 1 (Th1)/Th2 ratio increased, and regulatory T cell (Treg) cells increased. Finally, we found that AOC4P inhibited the activation of the nuclear factor κ B (NF-κB) pathway in KGN cells. CONCLUSIONS In this study, we found that AOC4P regulated the NF-κB signaling pathway by inhibiting the phosphorylation of P65, thereby affecting the proliferation and apoptosis of GCs, altering the differentiation of macrophages and T cells, thus contributing to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhe Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Gengxiang Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
7
|
Li T, Zhang T, Gao H, Wang H, Yan H, Wan Z, Liu R, Yin C. Tempol modulates lncRNA-miRNA-mRNA ceRNA networks in ovaries of DHEA induced PCOS rats. J Steroid Biochem Mol Biol 2023; 226:106175. [PMID: 36374793 DOI: 10.1016/j.jsbmb.2022.106175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in reproductive age women. Our previous results demonstrated that tempol was able to ameliorate PCOS phenotype in rats. However, the exact pathophysiological effect of tempol on PCOS remains largely unknown. To extend this research, deep RNA-sequencing was performed to investigate the long noncoding RNA (lncRNA) associated ceRNA mechanisms in the ovarian tissues of control rats, dehydropiandrosterone (DHEA) induced PCOS rats and tempol treated PCOS rats. Our results identified total 164, 79, and 914 significantly dysregulated lncRNAs, miRNAs, and mRNAs in three groups, respectively. The total of 7 lncRNAs, 8 mRNAs and 5 miRNAs were involved in lncRNA-associated ceRNA networks were constructed. Among them, mRNAs including C1qtnf1, Dipk2a, IL4r and lncRNAs including MSTRG.16751.2, MSTRG.8065.2 had high RNA connectivity in the ceRNA network, which also showed significant alterations in these three groups by using qPCR validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the involvement of the identified ceRNA networks in regulating the development of PCOS from distinct origins, such as metabolic pathway, immune cell differentiation. The study presents the first systematic dissection of lncRNA-associated ceRNA profiles in tempol treated PCOS rats. The identified ceRNA networks could provide insights that help facilitate PCOS diagnosis and treatment.
Collapse
Affiliation(s)
- Tianhe Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Tingting Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huimin Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Zhihui Wan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ruixia Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
8
|
Pangath M, Unnikrishnan L, Throwba PH, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. The Epigenetic Correlation among Ovarian Cancer, Endometriosis and PCOS: A Review. Crit Rev Oncol Hematol 2022; 180:103852. [DOI: 10.1016/j.critrevonc.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
9
|
Liu C, Ding X, Wei C, Pei Y, Meng F, Zhong Y, Liu Y. LncRNA LNCOC1 is Upregulated in Melanoma and Serves as a Potential Regulatory Target of miR-124 to Suppress Cancer Cell Invasion and Migration. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:751-762. [PMID: 35502349 PMCID: PMC9056108 DOI: 10.2147/ccid.s359786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
Background A cascade of genes and pathways have been reported in the precise regulation of malignant melanoma (MM). Previous study has demonstrated that lncRNA LNCOC1 is an oncogenic factor in the pathogenesis and development of various cancers. The present study explored the functionalities of LNCOC1 and its interactions with miR-124 in MM. Methods A total of 65 melanoma patients were enrolled in this study. The expression of LNCOC1 and miR-124 after cell transfection were detected by RT-qPCR. The migration rates of SK-MEL-3 and A375 cells after transient transfection with LNCOC1 expression vector and miR-124 mimic was detected by trans-well assay. Results LNCOC1 was accumulated to high levels in melanoma, and it was significantly correlated with the low survival rate of melanoma patients. Our bioinformatics data showed that miR-124 could target LNCOC1. Overexpression of miR-124 could downregulate LNCOC1. However, up-regulated the expression of LNCOC1 did not affect the expression of miR-124. Our correlation analysis also revealed that the expression of LNCOC1 and miR-124 were inversely correlated in both melanoma tissues and non-tumor tissues. The trans-well invasion and migration assays indicated that overexpression of miR-124 inhibited the melanoma cell invasion and migration. However, overexpression of LNCOC1 promoted melanoma cell invasion and migration. Conclusion LNCOC1 is upregulated in melanoma, which can be considered as a potential target of miR-124 in modulating melanoma cell invasion and migration. LNCOC1 may also be an interfering target of MM therapy.
Collapse
Affiliation(s)
- Changhai Liu
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Xiangsheng Ding
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Cuie Wei
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yongdong Pei
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Fanjun Meng
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yuren Zhong
- Department of Burn and Plastic Surgery, The First Affiliated of Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Yi Liu
- Department of Burn Plastic Surgery and Wound Repair, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
10
|
Tamaddon M, Azimzadeh M, Tavangar SM. microRNAs and long non-coding RNAs as biomarkers for polycystic ovary syndrome. J Cell Mol Med 2022; 26:654-670. [PMID: 34989136 PMCID: PMC8817139 DOI: 10.1111/jcmm.17139] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as the most common metabolic/endocrine disorder among women of reproductive age. Its complicated causality assessment and diagnostic emphasized the role of non‐coding regulatory RNAs as molecular biomarkers in studying, diagnosing and even as therapeutics of PCOS. This review discusses a comparative summary of research into microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs) that are molecularly or statistically related to PCOS. We categorize the literature in terms of centering on either miRNAs or lncRNAs and discuss the combinatory studies and promising ideas as well. Additionally, we compare the pros and cons of the prominent research methodologies used for each of the abovementioned research themes and discuss how errors can be stopped from propagation by selecting correct methodologies for future research. Finally, it can be concluded that research into miRNAs and lncRNAs has the potential for identifying functional networks of regulation with multiple mRNAs (and hence, functional proteins). This new understanding may eventually afford clinicians to control the molecular course of the pathogenesis better. With further research, RNA (with statistical significance and present in the blood) may be used as biomarkers for the disease, and more possibilities for RNA therapy agents can be identified.
Collapse
Affiliation(s)
- Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Azimzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li D, Xu W, Wang X, Dang Y, Xu L, Lu G, Chan WY, Leung PC, Zhao S, Qin Y. lncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:1092-1106. [PMID: 34786213 PMCID: PMC8571528 DOI: 10.1016/j.omtn.2021.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/25/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The list of long non-coding RNAs (lncRNAs) that participate in the function of ovarian granulosa cells (GCs) is rapidly expanding, but the mechanisms through which lncRNAs regulate GC function are not yet fully understood. Here, we recognized a minimally expressed lncRNA RP4-545C24.1 (which we named DDGC) in GCs from patients with biochemical premature ovarian insufficiency (bPOI). We further explored the role of lncRNA DDGC in GC function and its contribution to the development of bPOI. Mechanistically, silencing DDGC downregulated RAD51 by competitively binding with miR-589-5p, and this resulted in significant inhibition of DNA damage repair capacity. In addition, decreased expression of DDGC promoted ubiquitin-mediated degradation of Wilms tumor 1 (WT1) protein through interactions with heat shock protein 90 (HSP90), which led to aberrant differentiation of GCs. Moreover, DDGC was able to ameliorate the etoposide-induced DNA damage and apoptosis in vivo. Taken together, these findings provide new insights into the contribution of lncRNAs in POI pathogenesis.
Collapse
Affiliation(s)
- Duan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Weiwei Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoyan Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Lan Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Peter C.K. Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China
- Correspondence: Yingying Qin, PhD, Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Long noncoding RNAs as a piece of polycystic ovary syndrome puzzle. Mol Biol Rep 2021; 48:3845-3851. [PMID: 33993404 DOI: 10.1007/s11033-021-06196-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and affects 5-10% of reproductive-age women. Chronic anovulation, polycystic ovaries, and hyperandrogenism are the important features of this syndrome. Furthermore, hyperinsulinemia and central obesity are frequent in PCOS women. In recent years, noncoding RNAs detection provided new ideas to explain the etiology of female reproductive disorders. Long noncoding RNAs (lncRNAs) as a subset of noncoding RNAs are associated with the pathogenesis of manifold reproductive-related disorders. Various investigations emphasized the potential involvement of lncRNAs in PCOS development. Therefore, in this paper, we will summarize the function of numerous lncRNAs in the apoptosis and proliferation of granulosa cells (GCs), insulin resistance (IR), and steroidogenesis in PCOS.
Collapse
|
13
|
Tu M, Wu Y, Mu L, Zhang D. Long non-coding RNAs: novel players in the pathogenesis of polycystic ovary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:173. [PMID: 33569475 PMCID: PMC7867878 DOI: 10.21037/atm-20-5044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of transcripts (>200 nucleotides) lacking protein-coding capacity. Based on the complex three-dimensional structure, lncRNAs are involved in many biological processes and can regulate the expression of target genes at chromatin modification, transcriptional and post-transcriptional levels. LncRNAs have been studied in multiple diseases but little is known about their role(s) in polycystic ovary syndrome (PCOS), the most common endocrinological disorder in reproductive-aged women around the world. In this review, we characterized and explored the potential mechanisms of lncRNAs in the pathogenesis of PCOS. We found that lncRNAs play a molecular role in PCOS mainly by functioning as the competitive endogenous RNA (ceRNA) and are significantly correlated with some clinical phenotypes. We summarized in detail regarding aberrant lncRNAs in different specimens of women with PCOS [i.e., granulosa cells (GCs), cumulus cells (CCs), follicular fluid (FF), peripheral blood] and various PCOS rodent models [i.e., dehydroepiandrosterone (DHEA) and letrozole induced models]. In clinical practice, detection of lncRNAs in serum might enable early diagnosis. Furthermore, new lncRNA-based classifications might be emerging as potent predictors of a particular phenotype in PCOS. Overall, we proposed new insights for the application of precision medicine approaches to the management of PCOS.
Collapse
Affiliation(s)
- Mixue Tu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangshan Mu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|