1
|
Hong Q, Fan M, Cai R, Shi W, Xie F, Chen Y, Li C. SOX4 regulates proliferation and apoptosis of human ovarian granulosa-like tumor cell line KGN through the Hippo pathway. Biochem Biophys Res Commun 2024; 705:149738. [PMID: 38447391 DOI: 10.1016/j.bbrc.2024.149738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.
Collapse
Affiliation(s)
- Qiang Hong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Mengmeng Fan
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Rui Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wenhui Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fenfen Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuanhua Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Cong Li
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Dong S, Jiang S, Hou B, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. miR-128-3p Regulates Follicular Granulosa Cell Proliferation and Apoptosis by Targeting the Growth Hormone Secretagogue Receptor. Int J Mol Sci 2024; 25:2720. [PMID: 38473968 DOI: 10.3390/ijms25052720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3' untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene.
Collapse
Affiliation(s)
- Shucan Dong
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shengwei Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Biwei Hou
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Wu M, Li R, Qin J, Wang Z, Guo J, Lv F, Wang G, Huang Y. ERO1α promotes the proliferation and inhibits apoptosis of colorectal cancer cells by regulating the PI3K/AKT pathway. J Mol Histol 2023; 54:621-631. [PMID: 37776473 DOI: 10.1007/s10735-023-10149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/22/2023] [Indexed: 10/02/2023]
Abstract
Endoplasmic reticulum oxidoreductin 1α (ERO1α) is an oxidase that exists in the endoplasmic reticulum and plays an important role in regulating oxidized protein folding and tumor malignant progression. However, the specific role and mechanism of ERO1α in the progression of colorectal cancer (CRC) have not yet been fully elucidated. In this study, 280 specimens of CRC tissues and adjacent noncancerous tissues were collected to detect the expression of ERO1α and analyze the clinical significance. ERO1α was stably knocked-down in RKO and HT29 CRC cells to investigate its function and mechanism in vitro and in vivo. We found that ERO1α was remarkably upregulated in CRC tissues and high ERO1α expression is associated with N stage and poor prognosis of CRC patients. ERO1α knockdown in CRC cells significantly inhibited the proliferation and induced apoptosis while inactivating the PI3K/AKT pathway. Rescue assays revealed that AKT activator 740Y-P could reverse the effects on proliferation and apoptosis of ERO1α knockdown in CRC cells. In vivo tumorigenicity assay also confirmed that ERO1α knockdown suppressed tumor growth. Taken together, our findings demonstrated ERO1α promotes the proliferation and inhibits apoptosis of CRC cells by regulating the PI3K/AKT pathway. High expression of ERO1α is associated with poor prognosis in CRC patients, and ERO1α could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Min Wu
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
- Department of Medical Oncology II, The Third People's Hospital of Honghe Prefecture, Gejiu, Honghe, China
| | - Ruixue Li
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Jianyan Qin
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Ziyuan Wang
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Jiasen Guo
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Fenghong Lv
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China
| | - Guoqin Wang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China.
| | - Youguang Huang
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), No. 519, Kunzhou Road, Kunming, 650118, China.
| |
Collapse
|
4
|
Chen F, Sun J, Wang Y, Grunberger JW, Zheng Z, Khurana N, Xu X, Zhou X, Ghandehari H, Zhang J. Silica nanoparticles induce ovarian granulosa cell apoptosis via activation of the PERK-ATF4-CHOP-ERO1α pathway-mediated IP3R1-dependent calcium mobilization. Cell Biol Toxicol 2023; 39:1715-1734. [PMID: 36346508 PMCID: PMC10604358 DOI: 10.1007/s10565-022-09776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Ambient particulate matters (PMs) have adverse effects in human and animal female reproductive health. Silica nanoparticles (SNPs), as a major component of PMs, can induce follicular atresia via the promotion of ovarian granulosa cell apoptosis. However, the molecular mechanisms of apoptosis induced by SNPs are not very clear. This work focuses on revealing the mechanisms of ER stress on SNP-induced apoptosis. Our results showed that spherical Stöber SNPs (110 nm, 25.0 mg/kg b.w.) induced follicular atresia via the promotion of granulosa cell apoptosis by intratracheal instillation in vivo; meanwhile, SNPs decreased the viability and increase apoptosis in granulosa cells in vitro. SNPs were taken up and accumulated in the vesicles of granulosa cells. Additionally, our results found that SNPs increased calcium ion (Ca2+) concentration in granulosa cell cytoplasm. Furthermore, SNPs activated ER stress via an increase in the PERK and ATF6 pathway-related protein levels and IP3R1-dependent calcium mobilization via an increase in IP3R1 level. In addition, 4-PBA restored IP3R1-dependent calcium mobilization and decreased apoptosis via the inhibition of ER stress. The ATF4-C/EBP homologous protein (CHOP)-ER oxidoreductase 1 alpha (ERO1α) pathway regulated SNP-induced IP3R1-dependent calcium mobilization and cell apoptosis via ATF4, CHOP, and ERO1α depletion in ovarian granulosa cells. Herein, we demonstrate that ER stress cooperated in SNP-induced ovarian toxicity via activation of IP3R1-mediated calcium mobilization, leading to apoptosis, in which the PERK-ATF4-CHOP-ERO1α pathway plays an essential role in ovarian granulosa cells.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jiarong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yujing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jason William Grunberger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Zhen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xin Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zheng Z, Zuo W, Ye R, Grunberger JW, Khurana N, Xu X, Ghandehari H, Chen F. Silica Nanoparticles Promote Apoptosis in Ovarian Granulosa Cells via Autophagy Dysfunction. Int J Mol Sci 2023; 24:5189. [PMID: 36982262 PMCID: PMC10049489 DOI: 10.3390/ijms24065189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Although silica nanoparticles (SNPs) are generally thought to be biocompatible and safe, the adverse effects of SNPs were also reported in previous studies. SNPs cause follicular atresia via the induction of ovarian granulosa cell apoptosis. However, the mechanisms for this phenomenon are not well understood. This study focuses on exploring the relationship between autophagy and apoptosis induced by SNPs in ovarian granulosa cells. Our results showed that 25.0 mg/kg body weight (b.w.)/intratracheal instillation of 110 nm in diameter spherical Stöber SNPs caused ovarian granulosa cell apoptosis in follicles in vivo. We also found that SNPs mainly internalized into the lumens of the lysosomes in primary cultured ovarian granulosa cells in vitro. SNPs induced cytotoxicity via a decrease in viability and an increase in apoptosis in a dose-dependent manner. SNPs increased BECLIN-1 and LC3-II levels, leading to the activation of autophagy and increased P62 level, resulting in the blockage of autophagic flux. SNPs increased the BAX/BCL-2 ratio and cleaved the caspase-3 level, resulting in the activation of the mitochondrial-mediated caspase-dependent apoptotic signaling pathway. SNPs enlarged the LysoTracker Red-positive compartments, decreased the CTSD level, and increased the acidity of lysosomes, leading to lysosomal impairment. Our results reveal that SNPs cause autophagy dysfunction via lysosomal impairment, resulting in follicular atresia via the enhancement of apoptosis in ovarian granulosa cells.
Collapse
Affiliation(s)
- Zhen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenlong Zuo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Rongrong Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jason William Grunberger
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nitish Khurana
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Papapanou M, Syristatidi K, Gazouli M, Eleftheriades M, Vlahos N, Siristatidis C. The Effect of Stimulation Protocols (GnRH Agonist vs. Antagonist) on the Activity of mTOR and Hippo Pathways of Ovarian Granulosa Cells and Its Potential Correlation with the Outcomes of In Vitro Fertilization: A Hypothesis. J Clin Med 2022; 11:6131. [PMID: 36294452 PMCID: PMC9605084 DOI: 10.3390/jcm11206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Controlled ovarian hyperstimulation (COH) is essential for the success of in vitro fertilization (IVF). Evidence showing the comparison of different COH protocols remains predominantly of low certainty and derives from unspecified infertile and highly heterogeneous populations. Thus, personalized approaches to examine the response of patients to the various COH protocols need to be investigated. Data from in vitro and animal studies have identified the mechanistic target of rapamycin (mTOR) and Hippo signaling pathways play a key role in follicular homeostasis and oocyte quality. To be specific, current data indicate the controlled activation of mTOR and the controlled inhibition of the Hippo pathway within the ovarian granulosa cells (GC). Both are reported to lead to a nurturing follicular microenvironment, increase oocyte quality, and potentially improve reproductive outcomes. As intracellular markers, phosphorylated/unphosphorylated levels of the pathways' main downstream mediators could be included among the candidate "personalized" predictors of patients' response to COH protocols and final IVF outcomes. Based on these hypotheses, we make a preliminary attempt to investigate their validity: We propose a prospective cohort study to compare the levels of certain phosphorylated/unphosphorylated components of the investigated pathways (mTOR, ribosomal protein S6 kinase beta-1 (p70S6K-1), yes-associated protein-1 (YAP-1), and transcriptional coactivator with PDZ-binding motif (TAZ)) within the follicular fluid-isolated GC between women undergoing gonadotropin-releasing hormone (GnRH) antagonist/"short" protocols and those receiving GnRH agonist/"long 21" protocols. A case-control design comparing these levels between women achieving pregnancy and those who did not is further planned. Additional analyses addressing the population's expected heterogeneity are planned after the completion of the pilot phase, during which 100 participants undergoing IVF are intended to be recruited. At this stage, these hypotheses are solely based on in vitro/animal data, and thus, similar studies on humans in this respect are necessary for the investigation of their potential validity.
Collapse
Affiliation(s)
- Michail Papapanou
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
- Obstetrics, Gynecology and Reproductive Medicine Working Group, Society of Junior Doctors, 15123 Athens, Greece
| | - Kalliopi Syristatidi
- School of Medicine, University of St. Andrews, North Haugh, St. Andrews KY16 9TF, UK
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 176 Michalakopoulou Str., 11527 Athens, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
| | - Nikolaos Vlahos
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
| | - Charalampos Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, 76 Vas. Sofias Av., 11528 Athens, Greece
- Second Department of Obstetrics and Gynecology, “Aretaieion” Hospital, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
| |
Collapse
|
7
|
Zhang J, Ye R, Grunberger JW, Jin J, Zhang Q, Mohammadpour R, Khurana N, Xu X, Ghandehari H, Chen F. Activation of Autophagy by Low-Dose Silica Nanoparticles Enhances Testosterone Secretion in Leydig Cells. Int J Mol Sci 2022; 23:ijms23063104. [PMID: 35328525 PMCID: PMC8949068 DOI: 10.3390/ijms23063104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
Silica nanoparticles (SNPs) can cause abnormal spermatogenesis in male reproductive toxicity. However, the toxicity and toxicological mechanisms of SNPs in testosterone synthesis and secretion in Leydig cells are not well known. Therefore, this study aimed to determine the effect and molecular mechanism of low doses of SNPs in testosterone production in Leydig cells. For this, mouse primary Leydig cells (PLCs) were exposed to 100 nm Stöber nonporous spherical SNPs. We observed significant accumulation of SNPs in the cytoplasm of PLCs via transmission electron microscopy (TEM). CCK-8 and flow cytometry assays confirmed that low doses (50 and 100 μg/mL) of SNPs had no significant effect on cell viability and apoptosis, whereas high doses (more than 200 μg/mL) decreased cell viability and increased cell apoptosis in PLCs. Monodansylcadaverine (MDC) staining showed that SNPs caused the significant accumulation of autophagosomes in the cytoplasm of PLCs. SNPs activated autophagy by upregulating microtubule-associated protein light chain 3 (LC3-II) and BCL-2-interacting protein (BECLIN-1) levels, in addition to downregulating sequestosome 1 (SQSTM1/P62) level at low doses. In addition, low doses of SNPs enhanced testosterone secretion and increased steroidogenic acute regulatory protein (StAR) expression. SNPs combined with rapamycin (RAP), an autophagy activator, enhanced testosterone production and increased StAR expression, whereas SNPs combined with 3-methyladenine (3-MA) and chloroquine (CQ), autophagy inhibitors, had an opposite effect. Furthermore, BECLIN-1 depletion inhibited testosterone production and StAR expression. Altogether, our results demonstrate that low doses of SNPs enhanced testosterone secretion via the activation of autophagy in PLCs.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.Y.); (J.J.); (Q.Z.); (X.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rongrong Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.Y.); (J.J.); (Q.Z.); (X.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jason William Grunberger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.W.G.); (R.M.); (N.K.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiaqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.Y.); (J.J.); (Q.Z.); (X.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Qianru Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.Y.); (J.J.); (Q.Z.); (X.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Raziye Mohammadpour
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.W.G.); (R.M.); (N.K.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.W.G.); (R.M.); (N.K.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.Y.); (J.J.); (Q.Z.); (X.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.W.G.); (R.M.); (N.K.); (H.G.)
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.Y.); (J.J.); (Q.Z.); (X.X.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-87979030; Fax: +86-514-87972218
| |
Collapse
|
8
|
Li Y. Gypenoside A attenuates dysfunction of pancreatic β cells by activating PDX1 signal transduction via the inhibition of miR-150-3p both in vivo and in vitro. J Biochem Mol Toxicol 2022; 36:e23004. [PMID: 35191145 DOI: 10.1002/jbt.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Saponin gypenoside A (GP) has shown its potential to handle diabetes mellitus. MicroRNA-150-3p (miR-150-3p) is closely related to the dysfunction of pancreatic β cells by targeting PDX1. Given the function of GP is related to its regulation on different miRs, the current study assessed the role of miR-150-3p as a therapeutic target for the hypoglycemic effects of GP. Pancreatic β cell dysfunction was induced in mice using the high-fatty diet (HFD) method and then handled with GP. Changes in insulin release and resistance and the activity of the miR-150-3p/PDX1 axis were detected. The expression of miR-150-3p was induced to confirm its central in the effects of GP. The results of in vivo tests were then validated with in vitro assays. HFD administration suppressed glucose tolerance, delayed insulin release, and induced insulin resistance and pancreas apoptosis in mice, which was indicative of the dysfunction of β pancreatic cells. Changes in pancreatic β function were associated with the increased expression of miR-150-3p and suppressed expression of PDX1. After the administration of GP, the impairments of the pancreas were alleviated and the expression of miR-150-3p was inhibited, contributing to the restored level of PDX1. The injection of miR-150-3p agomir counteracted the protective effects of GP. In in vitro assays, the pretransfection of miR-150-3p mimetics also counteracted the protective effects of GP on pancreatic β cells against palmitic acid. Collectively, miR-150-3p played a key role in the protective effects of GP against pancreatic β cell dysfunction by inhibiting PDX1 expression.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
The Differential Metabolomes in Cumulus and Mural Granulosa Cells from Human Preovulatory Follicles. Reprod Sci 2021; 29:1343-1356. [PMID: 34374964 PMCID: PMC8907092 DOI: 10.1007/s43032-021-00691-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/04/2021] [Indexed: 01/11/2023]
Abstract
This study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.
Collapse
|
10
|
Zhou X, He Y, Li N, Bai G, Pan X, Zhang Z, Zhang H, Li J, Yuan X. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis 2021; 12:653. [PMID: 34175894 PMCID: PMC8236063 DOI: 10.1038/s41419-021-03941-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
In female mammals, the proliferation, apoptosis, and estradiol-17β (E2) secretion of granulosa cells (GCs) have come to decide the fate of follicles. DNA methylation and RSPO2 gene of Wnt signaling pathway have been reported to involve in the survival of GCs and follicular development. However, the molecular mechanisms for how DNA methylation regulates the expression of RSPO2 and participates in the follicular development are not clear. In this study, we found that the mRNA and protein levels of RSPO2 significantly increased during follicular development, but the DNA methylation level of RSPO2 promoter decreased gradually. Inhibition of DNA methylation or DNMT1 knockdown could decrease the methylation level of CpG island (CGI) in RSPO2 promoter and upregulate the expression level of RSPO2 in porcine GCs. The hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of transcription factor E2F1 and promoted the transcriptional activity of RSPO2. Moreover, RSPO2 promoted the proliferation of GCs with increasing the expression level of PCNA, CDK1, and CCND1 and promoted the E2 secretion of GCs with increasing the expression level of CYP19A1 and HSD17B1 and inhibited the apoptosis of GCs with decreasing the expression level of Caspase3, cleaved Caspase3, cleaved Caspase8, cleaved Caspase9, cleaved PARP, and BAX. In addition, RSPO2 knockdown promoted the apoptosis of GCs, blocked the development of follicles, and delayed the onset of puberty with decreasing the expression level of Wnt signaling pathway-related genes (LGR4 and CTNNB1) in vivo. Taken together, the hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of E2F1 and enhanced the transcription of RSPO2, which further promoted the proliferation and E2 secretion of GCs, inhibited the apoptosis of GCs, and ultimately ameliorated the development of follicles through Wnt signaling pathway. This study will provide useful information for further exploration on DNA-methylation-mediated RSPO2 pathway during follicular development.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guofeng Bai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| |
Collapse
|
11
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L, Gao Y. The MAMs Structure and Its Role in Cell Death. Cells 2021; 10:cells10030657. [PMID: 33809551 PMCID: PMC7999768 DOI: 10.3390/cells10030657] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles. These organelles are associated in space and time, and either cooperate or antagonize each other with regards to cell function. Crosstalk between organelles has become a significant topic in research over recent decades. We believe that signal transduction between organelles, especially the endoplasmic reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for protein folding and modification, the endoplasmic reticulum can influence a range of physiological processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular "energy factory," are also involved in cell death processes. Some researchers regard the ER as the sensor of cellular stress and the mitochondria as an important actuator of the stress response. The scientific community now believe that bidirectional communication between the ER and the mitochondria can influence cell death. Recent studies revealed that the death signals can shuttle between the two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and the transduction of death signals between the ER and the mitochondria. Clarifying the structure and function of MAMs will provide new concepts for studying the pathological mechanisms associated with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the structure and function of MAMs and its roles involved in cell death, especially in apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Chong Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Hongyang Zhao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Yichun He
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Beiwu Lan
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.S.); (Y.G.)
| | - Yufei Gao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
- Correspondence: (L.S.); (Y.G.)
| |
Collapse
|