1
|
Kelu JJ, Hughes SM. Muscle peripheral circadian clock drives nocturnal protein degradation via raised Ror/Rev-erb balance and prevents premature sarcopenia. Proc Natl Acad Sci U S A 2025; 122:e2422446122. [PMID: 40324095 DOI: 10.1073/pnas.2422446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/04/2025] [Indexed: 05/07/2025] Open
Abstract
How central and peripheral circadian clocks regulate protein metabolism and affect tissue mass homeostasis has been unclear. Circadian shifts in the balance between anabolism and catabolism control muscle growth rate in young zebrafish independent of behavioral cycles. Here, we show that the ubiquitin-proteasome system (UPS) and autophagy, which mediate muscle protein degradation, are each upregulated at night under the control of the muscle peripheral clock. Perturbation of the muscle transcriptional molecular clock disrupts nocturnal proteolysis, increases muscle growth measured over 12 h, and compromises muscle function. Mechanistically, the shifting circadian balance of Ror and Rev-erb regulates nocturnal UPS, autophagy, and muscle growth through altered TORC1 activity. Although environmental zeitgebers initially mitigate defects, lifelong muscle clock inhibition reduces muscle size and growth rate, accelerating aging-related loss of muscle mass and function. Circadian misalignment such as shift work, sleep deprivation, or dementia may thus unsettle muscle proteostasis, contributing to muscle wasting and sarcopenia.
Collapse
Affiliation(s)
- Jeffrey J Kelu
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
2
|
Ribeiro FM, Arnaldo L, P Milhomem L, S Aguiar S, Franco OL. The intricate relationship between circadian rhythms and gastrointestinal peptides in obesity. Peptides 2025; 185:171356. [PMID: 39929256 DOI: 10.1016/j.peptides.2025.171356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
There are different molecular pathways that regulate appetite, particularly the role of the hypothalamus, circadian rhythms, and gastrointestinal peptides. The hypothalamus integrates signals from orexigenic peptides like neuropeptide Y (NPY) and agouti-related protein (AgRP), which stimulate appetite, and anorexigenic peptides such as pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART), which promote satiety. These signals are influenced by peripheral hormones like leptin, ghrelin, insulin, and cortisol, as well as gut peptides including glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK). The circadian rhythm, regulated by proteins like circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), modulates the secretion of these peptides, aligning feeding behaviors with the sleep-wake cycle. In obesity, these regulatory systems are disrupted, leading to leptin resistance, increased ghrelin sensitivity, and altered gut peptide secretion. This results in heightened appetite and impaired satiety, contributing to overeating and metabolic dysfunction. Additionally, circadian disruptions further impair metabolic processes, exacerbating obesity. The present article underscores the importance of understanding the molecular interplay between circadian rhythms and gastrointestinal peptides, particularly in the context of obesity. While some molecular interactions, such as the regulation of GLP-1 and PYY by reverberation of circadian rhythm α (REV-ERBα) and retinoic acid-related orphan receptor α (RORα), are well-established, clinical studies are scarce. Future research is expected to explore these pathways in obesity management, especially with the rise of incretin-based treatments like semaglutide. A deeper understanding of hypothalamic molecular mechanisms could lead to novel pharmacological and non-pharmacological therapies for obesity.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Luiz Arnaldo
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil
| | - Lana P Milhomem
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Samuel S Aguiar
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Octavio L Franco
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Di T, Guo M, Xu J, Feng C, Du Y, Wang L, Chen Y. Circadian clock genes REV-ERBα regulates the secretion of IL-1β in deciduous tooth pulp stem cells by regulating autophagy in the process of physiological root resorption of deciduous teeth. Dev Biol 2024; 510:8-16. [PMID: 38403101 DOI: 10.1016/j.ydbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/15/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Physiological root resorption is a common occurrence during the development of deciduous teeth in children. Previous research has shown that the regulation of the inflammatory microenvironment through autophagy in DDPSCs is a significant factor in this process. However, it remains unclear why there are variations in the autophagic status of DDPSCs at different stages of physiological root resorption. To address this gap in knowledge, this study examines the relationship between the circadian clock of DDPSCs, the autophagic status, and the periodicity of masticatory behavior. Samples were collected from deciduous teeth at various stages of physiological root resorption, and DDPSCs were isolated and cultured for analysis. The results indicate that the circadian rhythm of important autophagy genes, such as Beclin-1 and LC3, and the clock gene REV-ERBα in DDPSCs, disappears under mechanical stress. Additionally, the study found that REV-ERBα can regulate Beclin-1 and LC3. Evidence suggests that mechanical stress is a trigger for the regulation of autophagy via REV-ERBα. Overall, this study highlights the importance of mechanical stress in regulating autophagy of DDPSCs via REV-ERBα, which affects the formation of the inflammatory microenvironment and plays a critical role in physiological root resorption in deciduous teeth.
Collapse
Affiliation(s)
- Tiankai Di
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Stomatology, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, China
| | - Mingzhu Guo
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, 266001, China
| | - Jinlong Xu
- The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, China
| | - Chao Feng
- Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, China; Department of Clinical Laboratory, The 969th Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, China
| | - Yang Du
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lulu Wang
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yujiang Chen
- State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases&Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
4
|
Jiayao C, Jiaoling W, Chengyu H, Guixiang W, Linquan Z. Mechanisms of weight-loss effect in obese mice by the endogenous cannabinoid receptor 2 agonist beta-caryophyllene. Obes Res Clin Pract 2023; 17:499-510. [PMID: 37919194 DOI: 10.1016/j.orcp.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND AND AIMS The endogenous cannabinoid system (ECS) is involved in the regulation of a variety of physiological activities in the body, such as metabolism and energy uptake, and cannabinoid receptor 2 (CNR2) is one of these receptors that is predominantly distributed in the periphery. β-caryophyllene (BCP) is an agonist of CNR2 which is known to possess pharmacological activities such as anti-inflammatory and antioxidant properties. In this study, we wanted to investigate whether BCP possesses pharmacological effects on obese mice and its mechanism. METHODS Reversed feeding rhythm, propylthiouracil was delivered intraperitoneally, and BCP was gavaged once daily for four weeks to establish a hyperlipidemic obese mouse model. A glucose tolerance test, lipid level measurements, liver, peritoneal, and subcutaneous fat removal, HE and Oil Red O staining of the liver, and immunohistochemistry (IHC) staining with an anti-CNR2 antibody were all carried out. The liver was examined using tools like GO and KEGG databases for differentially expressed genes and signaling pathways linked to medication effectiveness. RESULTS BCP had significant effects on weight reduction and improvement of dyslipidemia. What's more, it significantly reduced body fat percentage, improved steatosis and ballooning of liver cells, and reduced fat accumulation, while inhibiting the proliferation of peri-abdominal adipocytes. BCP exerted its effects to improve dyslipidemia and reduce body weight probably through circadian regulation and cholesterol metabolic pathways. Finally, and its efficacy in improving dyslipidemia and reducing body weight may be mainly through activating CNR2, activating SIRT1/PGC-1α/PPARγ and SIRT1/AMPK pathways. CONCLUSION BCP activates the CNR2, SIRT1/PGC-1α/PPARγ signaling pathway, and SIRT1/AMPK signaling pathway to exert dyslipidemia-improving and weight-loss effects.
Collapse
Affiliation(s)
- Chen Jiayao
- Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Wang Jiaoling
- Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Huang Chengyu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Wang Guixiang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Zang Linquan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Burgermeister E. Mitogen-Activated Protein Kinase and Exploratory Nuclear Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:14546. [PMID: 37833991 PMCID: PMC10572424 DOI: 10.3390/ijms241914546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The three major mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK/SAPK) are upstream regulators of the nuclear receptor superfamily (NRSF). These ligand-activated transcription factors are divided into subclasses comprising receptors for endocrine hormones, metabolic compounds (e.g., vitamins, diet), xenobiotics, and mediators released from host immune reactions such as tissue injury and inflammation. These internal and external cues place the NRSF at the frontline as sensors and translators of information from the environment towards the genome. For most of the former "orphan" receptors, physiological and synthetic ligands have been identified, opening intriguing opportunities for combination therapies with existing cancer medications. Hitherto, only preclinical data are available, warranting further validation in clinical trials in patients. The current review summarized the existing literature covering the expression and function of NRSF subclasses in human solid tumors and hematopoietic malignancies and their modulatory effects on innate (e.g., macrophages, dendritic cells) and adaptive (i.e., T cell subsets) immune cells, encouraging mechanistic and pharmacological studies in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
6
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Li Y, Zhao Z, Tan YY, Wang X. Dynamical analysis of the effects of circadian clock on the neurotransmitter dopamine. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16663-16677. [PMID: 37920028 DOI: 10.3934/mbe.2023742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The circadian clock is an autonomous timing system that regulates the physiological and behavioral activities of organisms. Dopamine (DA) is an important neurotransmitter that is associated with many biological activities such as mood and movement. Experimental studies have shown that the circadian clock influences the DA system and disorders in the circadian clock lead to DA-related diseases. However, the regulatory mechanism of the circadian clock on DA is far from clear. In this paper, we apply an existing circadian-dopamine mathematical model to explore the effects of the circadian clock on DA. Based on numerical simulations, we find the disturbance of the circadian clock, including clock gene mutations, jet lag and light pulses, leads to abnormal DA levels. The effects of mutations in some clock genes on the mood and behavior of mice are closely related to DA disruptions. By sensitivity analysis of DA levels to parameter perturbation, we identify key reactions that affect DA levels, which provides insights into modulating DA disorders. Sudden changes in external light influence the circadian clock, bringing about effects on the DA system. Jet lag causes transient DA rhythm desynchronization with the environment and the influence of jet lag in different directions on DA level and phase varies. Light pulses affect the amplitude and phase shift of DA, which provides a promising method for treating DA disorders through light exposure. This study helps to better understand the impact of the circadian clock on the DA system and provides theoretical support for the treatment of DA disorders.
Collapse
Affiliation(s)
- Ying Li
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhao Zhao
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yuan-Yuan Tan
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xue Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 203306, China
| |
Collapse
|
8
|
Yang Y, Bai Y, Wang X, Guo Y, Yu Z, Feng D, Zhang F, Li D, Han P. Clock gene NR1D1 might be a novel target for the treatment of bladder cancer. Urol Oncol 2023; 41:327.e9-327.e18. [PMID: 37208228 DOI: 10.1016/j.urolonc.2023.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE To explore the role of circadian clock gene NR1D1 (REV-erbα) in bladder cancer (BC). METHODS Firstly, the association of NR1D1 level with clinical characteristics and prognosis was investigated among patients diagnosed with BC. Secondly, CCK-8, transwell, and colony formation experiments were performed among BC cells treated with Rev-erbα agonist (SR9009), as well as lentivirus and siRNA, for which NR1D1 were overexpressed (OE) and knocked down (KD), respectively. Thirdly, cell cycle and apoptosis were tested by flowcytometry. PI3K/AKT/mTOR pathway proteins were determined in OE-NR1D1 cells. Finally, OE-NR1D1 and OE-Control BC cells were subcutaneously implanted in BALB/c nude mice. The tumor size and protein levels were compared between groups. A P < 0.05 was considered as statistically significant. RESULTS Patients with NR1D1 positive status had a longer disease-free survival than those with negative expression. The cell viability, migration, and colony formation of BC cells after treated with SR9009 were significantly suppressed. OE-NR1D1 cells had obviously inhibited cell viability, migration, and colony formation, while those were found strengthened in KD-NR1D1 cells. Besides, KD-NR1D1 cells were observed with a lower proportion of dead cells and G0/G1 cells, but a higher ratio of G2/M. The changes of p-AKT, p-S6, p-4EBP1, and FASN involved in PI3K/AKT/mTOR pathway were detected in OE- and KD-NR1D1 BC cells. Finally, in vivo data demonstrated that overexpression of NR1D1 suppressed the tumorigenicity of BC cells. CONCLUSION NR1D1 played a role of tumor suppressor and it might become a novel target for the treatment of BC.
Collapse
Affiliation(s)
- Yubo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoming Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaochuan Guo
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Zhihai Yu
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
9
|
Chang SW, Yoshihara T, Tsuzuki T, Natsume T, Kakigi R, Machida S, Naito H. Circadian rhythms modulate the effect of eccentric exercise on rat soleus muscles. PLoS One 2022; 17:e0264171. [PMID: 35213577 PMCID: PMC8880858 DOI: 10.1371/journal.pone.0264171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
We investigated whether time-of-day dependent changes in the rat soleus (SOL) muscle size, after eccentric exercises, operate via the mechanistic target of rapamycin (mTOR) signaling pathway. For our first experiment, we assigned 9-week-old male Wistar rats randomly into four groups: light phase (zeitgeber time; ZT6) non-trained control, dark phase (ZT18) non-trained control, light phase-trained, and dark phase-trained. Trained animals performed 90 min of downhill running once every 3 d for 8 weeks. The second experiment involved dividing 9-week-old male Wistar rats to control and exercise groups. The latter were subjected to 15 min of downhill running at ZT6 and ZT18. The absolute (+12.8%) and relative (+9.4%) SOL muscle weights were higher in the light phase-trained group. p70S6K phosphorylation ratio was 42.6% higher in the SOL muscle of rats that had exercised only in light (non-trained ZT6). Collectively, the degree of muscle hypertrophy in SOL is time-of-day dependent, perhaps via the mTOR/p70S6K signaling.
Collapse
Affiliation(s)
- Shuo-wen Chang
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Physical Education, National University of Tainan, Tainan, Taiwan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Takamasa Tsuzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Toshiharu Natsume
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- School of Medicine, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Sciences, Josai International University, Chiba, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- * E-mail:
| |
Collapse
|
10
|
Hu Y, He T, Zhu J, Wang X, Tong J, Li Z, Dong J. The Link between Circadian Clock Genes and Autophagy in Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2021; 2021:2689600. [PMID: 34733115 PMCID: PMC8560276 DOI: 10.1155/2021/2689600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a progressive respiratory disease, is characterized by the alveolar epithelium injury and persistent airway inflammation. It is documented that oscillation and dysregulated expression of circadian clock genes, like Bmal1, Per1, and Per2, involved in COPD pathogenies, including chronic inflammation and imbalanced autophagy level, and targeting the associations of circadian rhythm and autophagy is promising strategies in the management and treatment of COPD. Herein, we reviewed the mechanisms of the circadian clock and the unbalance of the autophagic level in COPD, as well as the link between the two, so as to provide further theoretical bases for the study on the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
| | - Tiantian He
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Hefei City, Anhui Province, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
| | - Xiaole Wang
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
| | - Jiabing Tong
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei City, Anhui Province, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, No. 117, Meishan Road, Hefei City, Anhui Province, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Meishan Road, Hefei City, Anhui Province, China
| | - Jingcheng Dong
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|