1
|
Chen B, Wang T, Gao J, Chen Y, Chang H, Shu Y, Zhang Y, Li J, Weng W. Acupuncture relieves postoperative pain of mixed hemorrhoids through the P2X7/ERK axis in dorsal root ganglion. Physiol Behav 2025; 291:114806. [PMID: 39814121 DOI: 10.1016/j.physbeh.2025.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Haemorrhoids are a common anorectal disease primarily treated through surgery, often leading to complications such as pain. The efficacy of acupuncture in relieving postoperative pain in mixed haemorrhoids has not been well-documented. This study included 90 patients undergoing haemorrhoid surgery and their Visual Analogue Score (VAS), inflammatory factor levels, Hamilton Depression Rating Scale (HAMD), and analgesic drug use were accessed. A rat incisional pain model was also constructed to monitor behavioral responses, with assessments including Sucrose Preference Test (SPT) and Open Field Test (OFT). The levels of ATP and proinflammatory cytokines in the dorsal root ganglion (DRG) were measured using luciferase assay and ELISA. We also examined P2×7 and ERK1/2 levels in DRG tissues of anal incisional pain rat model. In a Chronic Constriction Injury (CCI) rat model treated with BzATP, a potent agonist for P2×7 receptors, followed by acupuncture for 15 days, postoperative pain and behavioral responses were observed and assessed, alongside mechanistic studies of ATP and inflammatory factors in DRG tissues. Patients receiving acupuncture had significantly lower VAS scores, reduced levels of inflammatory factors, improved depression scores, and decreased analgesic drug use. In the animal model, acupuncture increased pain thresholds, improved behavioral responses, reduced ATP content and inflammatory factors, and modulated the P2×7/ERK axis. In the CCI model, BzATP increased P2×7 and ERK1/2 levels, pain sensitivity, and anxiety, which were mitigated by acupuncture. Our data suggest that acupuncture significantly alleviates postoperative pain following haemorrhoid surgery and modulates the pain response through the P2×7/ERK axis.
Collapse
Affiliation(s)
- Bin Chen
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Tian Wang
- Department of Anesthesiology, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Jie Gao
- Department of Acupuncture, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Yan Chen
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Haijing Chang
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Yi Shu
- Department of Anorectal Surgery, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Yaling Zhang
- Department of Acupuncture, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Jiahuan Li
- Department of Acupuncture, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China
| | - Weiqun Weng
- Department of Nursing, Nantong First People's Hospital, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
2
|
Ma Y, Ma Y, Li P, Ma F, Yu M, Xu J, Yang Y. Wnt5a alleviates the symptoms of PCOS by modulating PI3K/AKT/mTOR pathway-mediated autophagy in granulosa cells. Cell Signal 2025; 127:111575. [PMID: 39710088 DOI: 10.1016/j.cellsig.2024.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a metabolic and endocrine disease that entails dysregulated ovulation, hyperandrogenism, and polycystic ovaries. While Wnt5a has been suggested to play key roles in follicular development and female fertility under normal conditions, its functions in the context of PCOS have yet to be established. This study was thus designed to explore the impact of Wnt5a on ovarian granulosa cell autophagy in PCOS, providing in vitro evidence in support of its role in this setting. METHODS DHT-induced granulosa (KGN) cells were used as an in vitro model, and Wnt5a and autophagy-related protein levels in these cells were detected via Western blotting. Downregulating the expression of Wnt5a in KGN cells (by interference and inhibitor) was also performed, and Western blotting, RT-PCR, and immunofluorescence strategies were used to detect autophagy-related and PI3K/AKT/mTOR pathway-associated factors in this setting. In vivo, BOX5 was tested as a therapeutic inhibitor of Wnt5a in a murine model of DHEA-induced PCOS. Changes in ovarian morphology were detected through hematoxylin staining, while E2 and T hormone levels were quantified by ELISA, and autophagy-related factors in these animals were quantified through Western blotting, immunofluorescence, and immunohistochemistry. RESULTS Wnt5a and autophagy-related protein levels rose significantly in DHT-induced KGN cells. Following downregulation of the Wnt5a in these cells, a significant decrease in autophagy-related factor levels was noted relative to the DHT group, together with significant increases in pathway-related factors. In mice, BOX5 treatment was sufficient to restore serum levels of androgen and to improve polycystic ovarian changes, while also suppressing the levels of autophagy-associated factors within ovarian granulosa cells. CONCLUSION Wnt5a downregulation suppresses autophagy in PCOS granulosa cells through the activation of the PI3K/AKT/mTOR pathway, in addition to remediating polycystic ovarian changes and normalizing serum levels of sex hormones.
Collapse
Affiliation(s)
- Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yuqin Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Pengfei Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Fucheng Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Miao Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China; School of Life Sciences, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Shi L, Ying H, Dai Y, Rong Y, Chen J, Zhou F, Wang S, Xu S, Tong X, Zhang S. Upregulated let-7 expression in the follicular fluid of patients with endometriomas leads to dysfunction of granulosa cells through targeting of IGF1R. Hum Reprod 2025; 40:119-137. [PMID: 39521729 DOI: 10.1093/humrep/deae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/07/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY QUESTION What molecular mechanisms underlie the decline in ovarian reserve as the number and quality of oocytes decrease in patients with ovarian endometriomas (OEM)? SUMMARY ANSWER Elevated expression of the let-7 micro(mi)RNAs in the follicular microenvironment of OEM-affected ovaries targets the expression of type 1 insulin-like growth factor receptor (IGF1R) in granulosa cell (GC) and disrupts their proliferation, steroid hormone secretion levels, adenosine triphosphate (ATP) energy metabolism, and reactive oxygen species (ROS) oxidative stress levels. WHAT IS KNOWN ALREADY Patients with OEM exhibit diminished ovarian reserve, characterized by reduced oocyte quantity and quality. Fibrotic changes in the ovarian tissue surrounding the OEM create a disruptive microenvironment for follicular growth and development. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study aimed to elucidate the molecular mechanisms underlying the impact of OEM on follicular development. Initially, miRNA expression profiles in follicular fluid (FF) samples were sequenced from patients with infertility related to OEM (N = 3) and male factor (MF) infertility (N = 3), with the latter serving as the control group. Differentially expressed miRNAs were validated in additional samples from each group (N = 55 in OEM group and N = 45 in MF group) to confirm candidate miRNAs. The study also investigated indicators associated with GCs dysfunction in vitro on rat GCs. Subsequently, rat models of OEM were established through endometrial allogeneic transplantation, and fertility experiments were conducted to assess the let-7/IGF1R axis response to OEM in vivo. Patient samples were collected between May 2018 and April 2019, and the mechanistic study was conducted over the subsequent three years. PARTICIPANTS/MATERIALS, SETTING, METHODS FF and GC samples were obtained from infertile patients undergoing IVF treatment for OEM and MF related infertility. miRNA expression profiles in FF samples were analyzed using second-generation high-throughput sequencing technology, and candidate miRNAs were validated through quantitative PCR (qPCR). In the in vitro experiments conducted with rat GCs, cell proliferation was assessed using the CCK-8 assay, while steroid hormone concentrations were measured using chemiluminescence. ATP content was determined with an ATP assay kit, and levels of ROS were quantified using flow cytometry. A dual luciferase reporter gene assay was employed to identify the target gene of let-7 based on the construction of a IGF1R reporter gene plasmid using 293T cells. Western blotting was utilized to evaluate the expression of IGF1R in GCs, as well as its downstream proteins, and changes in signaling pathways following let-7 agomir/antagomir transfection and/or Igf1r silencing. In the in vivo OEM rat models, alterations in ovarian structure and cyst morphology were observed using hematoxylin and eosin staining. The expressions of let-7 and Igf1r in GCs were evaluated through qPCR, while variations in IGF1R expression were investigated with immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE The cohort of patients with ovarian OEM in this study exhibited significantly decreased antral follicle counts, oocyte retrieval numbers, and normal fertilization rates compared to the control group with MF. The expression of the let-7 miRNA family was markedly upregulated in the FF and GCs of OEM patients. Transfection of rat GCs with let-7 agonists diminished the functions of GCs, including disrupted cell proliferation, mitochondrial oxidative phosphorylation, and steroid hormone secretion, while transfection of rat GCs with let-7 antagonists caused the opposite effects. Luciferase reporter gene experiments confirmed that let-7 complementarily bound to the 3'-untranslated regions of IGF1R. Stimulation of let-7 expression in rat GCs led to a significant decrease in IGF1R expression, while inhibition of let-7 increased IGF1R expression. The expression of IGF1R in the GCs of OEM patients was also significantly reduced compared to MF patients. Silencing of Igf1r led to the dysfunction of GCs, similar to the effects of let-7 agonization, as demonstrated by the downregulation of key proteins involved in cell proliferation (CCND2 and CCND3) and oestradiol synthesis, as well as an increase in progesterone synthesis (StAR), while implicating the PI3K-Akt and MAPK signaling pathways. The antagonistic effect of let-7 on GCs was ineffective when Igf1r was silenced. Conversely, the agonistic effect of let-7 on GCs could be reversed by stimulation with the IGF1R ligand IGF-1. These findings suggested that let-7 regulated the proliferation, differentiation, and ATP synthesis of GCs through targeting IGF1R. The OEM rat model demonstrated alterations in ovarian morphology and structure, along with reduced fertility. Let-7 expression was significantly upregulated in GCs of OEM rats compared to normal rats, while Igf1r and IGF1R expression in pre-ovulatory follicular GCs were notably downregulated, supporting the notion that elevated let-7 expression in the follicular microenvironment of OEM inhibited IGF1R, leading to abnormal GC function and impacting fertility at the molecular level. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The synthesis and secretion mechanisms of steroid hormones are intricate and complex. Some enzymes that regulate oestrogen synthesis also play a role in progesterone synthesis. Moreover, certain receptors can respond to multiple hormone signals. Therefore, in this study, the expression patterns of key enzymes such as CYP17A, CYP11A1, HSD3B2, StAR, and receptors including AR, LHCGR, FSHR, ESR2, might be influenced by various factors and might not demonstrate complete consistency. WIDER IMPLICATIONS OF THE FINDINGS Future research will concentrate on investigating the potential impact of ovarian stromal cells on the external microenvironment of follicle growth. Additionally, screening for small molecule drugs that target let-7 and IGF1R actions can be conducted to intervene and modify the ovarian microenvironment, ultimately enhancing ovarian function. STUDY FUNDING/COMPETING INTEREST(S) This study received funding from the National Natural Science Foundation of China (grant number 82301851 to L.B.S., grant numbers U23A20403 and U20A20349 to S.Y.Z., and grant number 82371637 to Y.D.D.) and the Natural Science Foundation of Zhejiang Province (grant LTGY23H040010 to F.Z.). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Hanqi Ying
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Shasha Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Shiqian Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, PR China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, PR China
| |
Collapse
|
4
|
Zhang W, Zhou Q. Fructus Arctii Mitigates Depressive Disorder via the Let-7e-Modulated Toll-Like Receptor (TLR) Signaling Pathway. Brain Behav 2024; 14:e70132. [PMID: 39538967 PMCID: PMC11560858 DOI: 10.1002/brb3.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Depressive disorder is a common and serious public health challenge globally. Fructus arctii is a traditional medicinal plant ingredient with diverse pharmacological effects. This study aimed to investigate the therapeutic potential of Fructus arctii in alleviating depressive-like behaviors. MATERIALS AND METHODS We established a chronic unpredictable mild stress (CUMS)-induced depression mouse model to assess the antidepressant effects of Fructus arctii. BV2 cells treated with lipopolysaccharide (LPS) were used to mimic neuronal damage. Behavioral tests, including the sucrose preference test, tail-suspension test, and forced swim test, were conducted to evaluate the impact of Fructus arctii on depressive-like behaviors. Let-7e expression was detected by RT-qPCR, and TLR4 signaling pathway activation was evaluated by western blot analysis, which also assessed the inflammatory response by measuring levels of IL-6, IL-1β, MCP-1, TNF-α, and iNOS. Immunohistological analysis was conducted to detect the expression of microglia markers. Luciferase reporter assays verified the interaction between let-7e and TLR4. RESULTS Fructus arctii administration effectively alleviated depressive-like behaviors induced by CUMS in mice, as evidenced by improved sucrose preference and reduced immobility time in behavioral tests. Mechanistically, Fructus arctii reversed the CUMS-induced downregulation of let-7e and upregulation of TLR4 and MyD88 protein levels in mice hippocampus tissues. In addition, Fructus arctii suppressed microglial activation and reduced the levels of inflammatory factors by upregulating let-7e. Let-7e was verified to bind to TLR4, thereby negatively regulating its expression. TLR4 overexpression reversed the suppressive effect of let-7e upregulation on inflammatory reactions and microglial activation. Furthermore, intracerebroventricular injection of let-7e agomiR alleviated depressive-like behavior and inhibited microglial activation in vivo. CONCLUSION In summary, Fructus arctii mitigates depression by regulating the let-7e/TLR4/MyD88 pathway, offering new insights into potential depression therapies.
Collapse
Affiliation(s)
- Weifang Zhang
- Department of AnesthesiologyAffiliated Hospital of Nantong UniversityNantongJiangsuChina
| | - Qin Zhou
- Department of Pediatric PsychiatryThe Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University/Xuzhou Eastern People's HospitalXuzhouJiangsuChina
| |
Collapse
|
5
|
Meng J, Zhao Y, Song X, An Q, Wu Z. Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Anim Biotechnol 2024; 35:2259967. [PMID: 37750325 DOI: 10.1080/10495398.2023.2259967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In goats, most follicles in the ovaries will be atresia and only a few dominant follicles (DFs) may eventually mature and ovulate at a follicular wave. To investigate the potential microRNAs (miRNAs) that regulate the expression of genes associated with follicular dominance or atresia, small RNA sequencing was performed on granulosa cells of DF and subordinate follicle at the first follicular wave in goats. A total of 108 differentially expressed miRNAs were detected in the two types of follicle granulosa cells: 16 upregulated miRNAs and 92 downregulated miRNAs. Kyoto Encyclopedia of Genes and Genomes analysis of the target genes showed that TKTL1, LOC102187810, LOC102184409 and ALDOA are closely associated with follicle dominance and are involved in the pentose phosphate pathway. Furthermore, a coexpression network of miRNAs and follicular dominance-related genes was constructed. The qPCR results well correlated with the small RNA sequencing data. Our findings provide new insight for exploring the molecular mechanism of miRNAs in regulating follicular development in goats.
Collapse
Affiliation(s)
- Jinzhu Meng
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, P.R. China
| | - Yuanyuan Zhao
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Xingchao Song
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Qingming An
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| | - Zhenyang Wu
- Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, P.R. China
| |
Collapse
|
6
|
Ma LZ, Wang A, Lai YH, Zhang J, Zhang XF, Chen SL, Zhou XY. USP14 inhibition promotes DNA damage repair and represses ovarian granulosa cell senescence in premature ovarian insufficiency. J Transl Med 2024; 22:834. [PMID: 39261935 PMCID: PMC11389224 DOI: 10.1186/s12967-024-05636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a condition characterized by a substantial decline or loss of ovarian function in women before the age of 40. However, the pathogenesis of POI remains to be further elucidated, and specific targeted drugs which could delay or reverse ovarian reserve decline are urgently needed. Abnormal DNA damage repair (DDR) and cell senescence in granulosa cells are pathogenic mechanisms of POI. Ubiquitin-specific protease 14 (USP14) is a key enzyme that regulates the deubiquitylation of DDR-related proteins, but whether USP14 participates in the pathogenesis of POI remains unclear. METHODS We measured USP14 mRNA expression in granulosa cells from biochemical POI (bPOI) patients. In KGN cells, we used IU1 and siRNA-USP14 to specifically inhibit USP14 and constructed a cell line stably overexpressing USP14 to examine its effects on DDR function and cellular senescence in granulosa cells. Next, we explored the therapeutic potential of IU1 in POI mouse models induced by D-galactose. RESULTS USP14 expression in the granulosa cells of bPOI patients was significantly upregulated. In KGN cells, IU1 treatment and siUSP14 transfection decreased etoposide-induced DNA damage levels, promoted DDR function, and inhibited cell senescence. USP14 overexpression increased DNA damage, impaired DDR function, and promoted cell senescence. Moreover, IU1 treatment and siUSP14 transfection increased nonhomologous end joining (NHEJ), upregulated RNF168, Ku70, and DDB1, and increased ubiquitinated DDB1 levels in KGN cells. Conversely, USP14 overexpression had the opposite effects. Intraperitoneal IU1 injection alleviated etoposide-induced DNA damage in granulosa cells, ameliorated the D-galactose-induced POI phenotype, promoted DDR, and inhibited cell senescence in ovarian granulosa cells in vivo. CONCLUSIONS Upregulated USP14 in ovarian granulosa cells may play a role in POI pathogenesis, and targeting USP14 may be a potential POI treatment strategy. Our study provides new insights into the pathogenesis of POI and a novel POI treatment strategy.
Collapse
Affiliation(s)
- Lin-Zi Ma
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Yun-Hui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China.
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China.
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, No. 1 Panfu Road, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
7
|
Tang C, Zhang Y. Detailed role of Let-7e in human diseases. Pathol Res Pract 2024; 260:155436. [PMID: 39018928 DOI: 10.1016/j.prp.2024.155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
As part of the epigenetic machinery, microRNAs (miRNAs) are extensively utilized by eukaryotes. By modulating gene expression in a variety of ways, these short RNAs mediate crucial physiological processes. This suggests that abnormalities in miRNA biogenesis and expression can be traced back to a variety of diseases. In addition, miRNAs are promising clinical candidates, especially for preclinical diagnosis. The Let family of miRNAs was one of the first to be discovered. As a prominent member of this category, extensive research has been conducted on Let-7e. The vast majority of evidence indicates an association between let-7e dysregulation and the onset and progression of disease, including malignancies. Because their effect depends on the genetic profile of disease and the affected tissue, different miRNAs play diverse roles in various diseases. However, what counts in miRNA studies is that just one miRNA may target numerous mRNAs in a cell at the exact time, therefore summarizing the effect of a single miRNA in human diseases can provide better insights into disease detection and treatment. The goal of this study is to gain a deeper understanding of how let-7e functions in human cells so that it can be utilized more effectively in clinical settings for diagnosis, prognosis, and treatment. We have reviewed the research on let-7e, focusing on the molecular underpinnings of biological processes controlled by this miRNA that contribute to the development and etiology of numerous disorders.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuling Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
8
|
Xu Z, Liu Q, Ning C, Yang M, Zhu Q, Li D, Wang T, Li F. miRNA profiling of chicken follicles during follicular development. Sci Rep 2024; 14:2212. [PMID: 38278859 PMCID: PMC10817932 DOI: 10.1038/s41598-024-52716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role as transcription regulators in various aspects of follicular development, including steroidogenesis, ovulation, apoptosis, and gene regulation in poultry. However, there is a paucity of studies examining the specific impact of miRNAs on ovarian granulosa cells (GCs) across multiple grades in laying hens. Consequently, this study aims to investigate the roles of miRNAs in chicken GCs. By constructing miRNA expression profiles of GCs at 10 different time points, encompassing 4 pre-hierarchical, 5 preovulatory, and 1 postovulatory follicles stage, we identified highly expressed miRNAs involved in GC differentiation (miR-148a-3p, miR-143-3p), apoptosis (let7 family, miR-363-3p, miR-30c-5p, etc.), and autophagy (miR-128-3p, miR-21-5p). Furthermore, we discovered 48 developmentally dynamic miRNAs (DDMs) that target 295 dynamic differentially expressed genes (DDGs) associated with follicular development and selection (such as oocyte meiosis, progesterone-mediated oocyte maturation, Wnt signaling pathway, TGF-β signaling pathway) as well as follicular regression (including autophagy and cellular senescence). These findings contribute to a more comprehensive understanding of the intricate mechanisms underlying follicle recruitment, selection, and degeneration, aiming to enhance poultry's reproductive capacity.
Collapse
Affiliation(s)
- Zhongxian Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maosen Yang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Feng Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
9
|
Stringer JM, Alesi LR, Winship AL, Hutt KJ. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Hum Reprod Update 2023; 29:434-456. [PMID: 36857094 PMCID: PMC10320496 DOI: 10.1093/humupd/dmad005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.
Collapse
Affiliation(s)
- Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Li T, Zhang T, Gao H, Wang H, Yan H, Wan Z, Liu R, Yin C. Tempol modulates lncRNA-miRNA-mRNA ceRNA networks in ovaries of DHEA induced PCOS rats. J Steroid Biochem Mol Biol 2023; 226:106175. [PMID: 36374793 DOI: 10.1016/j.jsbmb.2022.106175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in reproductive age women. Our previous results demonstrated that tempol was able to ameliorate PCOS phenotype in rats. However, the exact pathophysiological effect of tempol on PCOS remains largely unknown. To extend this research, deep RNA-sequencing was performed to investigate the long noncoding RNA (lncRNA) associated ceRNA mechanisms in the ovarian tissues of control rats, dehydropiandrosterone (DHEA) induced PCOS rats and tempol treated PCOS rats. Our results identified total 164, 79, and 914 significantly dysregulated lncRNAs, miRNAs, and mRNAs in three groups, respectively. The total of 7 lncRNAs, 8 mRNAs and 5 miRNAs were involved in lncRNA-associated ceRNA networks were constructed. Among them, mRNAs including C1qtnf1, Dipk2a, IL4r and lncRNAs including MSTRG.16751.2, MSTRG.8065.2 had high RNA connectivity in the ceRNA network, which also showed significant alterations in these three groups by using qPCR validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the involvement of the identified ceRNA networks in regulating the development of PCOS from distinct origins, such as metabolic pathway, immune cell differentiation. The study presents the first systematic dissection of lncRNA-associated ceRNA profiles in tempol treated PCOS rats. The identified ceRNA networks could provide insights that help facilitate PCOS diagnosis and treatment.
Collapse
Affiliation(s)
- Tianhe Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Tingting Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huimin Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Zhihui Wan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ruixia Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
11
|
miR-450-5p and miR-202-5p Synergistically Regulate Follicle Development in Black Goat. Int J Mol Sci 2022; 24:ijms24010401. [PMID: 36613843 PMCID: PMC9820456 DOI: 10.3390/ijms24010401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Follicle maturation is a complex biological process governed by numerous factors, and researchers have observed follicle development by studying the proliferation and apoptosis of follicular granulosa cells (GCs). However, the regulatory mechanisms of GCs proliferation and death during follicle development are largely unknown. To investigate the regulatory mechanisms of lncRNAs, mRNAs, and microRNAs, RNA sequencing (RNA-seq) and small RNA-seq were performed on large (>10 mm) and small follicles (<3 mm) of Leizhou black goat during estrus. We discovered two microRNAs, miR-450-5p and miR-202-5p, which can target GCs in goats and may be involved in follicle maturation, and the effects of miR-450-5p and miR-202-5p on ovarian granulosa cell lines were investigated (KGN). Using cell counting kit-8 (CCK-8) assays, 5-Ethynyl-2’-deoxyuridine (EdU) assay and flow cytometry, miR-202-5p overexpression could suppress the proliferation and induce apoptosis of GCs, whereas miR-450-5p overexpression induced the opposite effects. The dual-luciferase reporter assay confirmed that miR-450-5p could directly target the BMF gene (a BCL2 modifying factor), and miR-202-5p targeted the BCL2 gene. A considerable rise in phosphorylated Akt (p-AKT) protein was observed following the downregulation of BMF by miR-450-5p mimics. After BMF gene RNAi therapy, a notable elevation in p-AKT was detected. Mimics of miR-202-5p inhibited BCL2 protein expression, significantly decreasing p-AMPK protein expression. These results imply that during the follicular development in black goats, the miR-450-5p-BMF axis favored GC proliferation on a wide scale, while the miR-202-5p-BCL2 axis triggered GC apoptosis.
Collapse
|
12
|
Miao Y, Wan W, Zhu K, Pan M, Zhao X, Ma B, Wei Q. Effects of 4-vinylcyclohexene diepoxide on the cell cycle, apoptosis, and steroid hormone secretion of goat ovarian granulosa cells. In Vitro Cell Dev Biol Anim 2022; 58:220-231. [PMID: 35386089 DOI: 10.1007/s11626-022-00663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
4-Vinylcyclohexene diepoxide (VCD) is a potentially hazardous industrial chemical that may enter a goat's body in various ways during industrial breeding. Ovarian granulosa cells (GCs) play a critical role in supporting follicle development and hormone synthesis. However, there are few studies on the effect of VCD on goat ovarian GCs. In this study, goat ovarian GCs were isolated and treated with VCD. The results showed that treatment with VCD increased the proportion of S phase and G2/M cells, but decreased the proportion of G1 phase. VCD treatment significantly inhibited the expression of cyclin A and cyclin-dependent kinase 2 (CDK2). But the expression levels of p21 and p27 were increased. VCD could induce an apparent increase in the proportion of apoptosis and the level of cleaved caspase 3. Treatment with VCD significantly reduced the progesterone and estrogen concentration in the medium in which goat ovarian GCs were cultured. Correspondingly, the expression level of steroidogenic acute regulatory protein (STAR) was significantly downregulated. Treatment with 0.25 and 0.5 mM VCD, the protein expression level of insulin-like growth factor 1 receptor (IGF1R) and Akt were significantly decreased. Moreover, treatment with 0.25 mM VCD significantly inhibited the phosphorylation of Akt. In conclusion, VCD exposure had cytotoxic effects such as decreased cell viability, disordered cell cycle, increased apoptosis, and interference with steroid hormone synthesis on goat GCs. These cytotoxic effects of VCD on goat GCs may be due to the downregulation of IGF1R and the inhibition of IGF1R/Akt signaling pathway.
Collapse
Affiliation(s)
- Yuyang Miao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Wenjing Wan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
13
|
Wu YX, Lin YS, Li SC, Yao X, Cheng M, Zhu L, Liu HY. microRNA-194 is increased in polycystic ovary syndrome granulosa cell and induce KGN cells apoptosis by direct targeting heparin-binding EGF-like growth factor. Reprod Biol Endocrinol 2021; 19:170. [PMID: 34814928 PMCID: PMC8609843 DOI: 10.1186/s12958-021-00850-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine-related follicular developmental disorder that affects 50 %-70 % of reproductive-aged women diagnosed with ovulation-related infertility. Abnormal proliferation and apoptosis of granulosa cells (GCs) are thought to be the critical factors leading to abnormal maturation of follicles. It has been shown that microRNAs (miRNAs) exert a significant influence in the pathogenesis of PCOS; however, the relationship between miRNA, PCOS, and GC apoptosis is not entirely understood. METHODS To clarify the effect of miR-194 in PCOS, CCK-8, Ki67 staining, AO/EB, and flow cytometry assays were used to assess cell growth, proliferation, and apoptosis in KGN cells, which were artificially stimulated to overexpress miR-194. Luciferase reporter assays and rescue experiments were used to elucidate the mechanism underlying miR-194 in PCOS. RESULTS miR-194 expression was significantly up-regulated in rat models of PCOS and the ovarian GCs of PCOS patients. miR-194 suppression promoted KGN cell growth and proliferation. miR-194 overexpression also induced cell apoptosis, while miR-194 downregulation had an opposite effect. Furthermore, up-regulating heparin-binding EGF-like growth factor (HB-EGF) expression rescued the pro-apoptotic effects of miR-194 upregulation on KGN cells. CONCLUSIONS miR-194 is increased in PCOS granulosa cell and may function as a novel biomarker and therapeutic target for KGN cells via HB-EGF regulation.
Collapse
Affiliation(s)
- Yi-Xuan Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Shan Lin
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si-Chen Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xi Yao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingwei Cheng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Ying Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangdong, Guangzhou, China.
| |
Collapse
|