1
|
Lin S, Luo Y, Mao X, He W, Xu C, Zeng M. Homeobox B4 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on endotoxin-associated acute lung injury in rats. Am J Med Sci 2024; 368:242-252. [PMID: 38795966 DOI: 10.1016/j.amjms.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Alveolar capillary endothelial cell (EC) injury has a pivotal role in driving acute respiratory distress syndrome (ARDS) progression and maintaining endothelial homeostasis. A previous ex vivo study revealed that overexpression of homeobox B4 (HOXB4) in bone marrow mesenchymal stem cells (BMSCs) enhanced protection against lipopolysaccharide (LPS)-induced EC injury by activating the Wnt/β-catenin pathway. This in vivo study was performed to verify whether BMSCs overexpressing HOXB4 exert similar protective effects on LPS-induced acute lung injury (ALI) in an animal model. METHODS The ALI rat model was established by intraperitoneal injection of LPS. Wildtype BMSCs or BMSCs overexpressing HOXB4 were then injected via the tail vein. The lung characteristics of rats were visualized by computed tomography. Lung histopathological characteristics and collagen deposition were assessed by hematoxylin-eosin and Masson's staining, respectively, which were combined with the lung wet/dry ratio and proinflammatory factor levels in bronchoalveolar lavage fluid to further evaluate therapeutic effects. Expression of β-catenin and VE-cadherin was assessed by western blotting and immunofluorescence. RESULTS Compared with wildtype BMSCs, overexpression of HOXB4 optimized the therapeutic effects of BMSCs, which manifested as improvements in lung exudation and histopathological features, reduced lung collagen deposition, amelioration of lung permeability, attenuation of lung inflammation, and enhanced expression of β-catenin and VE-cadherin proteins. CONCLUSIONS HOXB4-overexpressing BMSCs optimized the protective effect against LPS-induced ALI by partially activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| |
Collapse
|
2
|
Li Y, Zhao L, Li S, Ruan D, Xiong L, Tang J, Hu M, Wang Y, Huang W, Li L, Zhao Z. Skin-derived precursor conditioned medium alleviated photoaging via early activation of TGF-β/Smad signaling pathway by thrombospondin1: In vitro and in vivo studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112873. [PMID: 38412778 DOI: 10.1016/j.jphotobiol.2024.112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Photoaging is one major exogenous factor of skin aging. Efficacy and safety of current anti-photoaging therapies remained to be improved. Our previous studies indicated that skin-derived precursors (SKPs) alleviated photodamage by early activation of TGF-β/Smad signaling pathway via thrombospondin1 (TSP1). However, the research concerning SKP conditioned medium (SKP-CM) has never been reported. In the current study, we aimed to explore the anti-photoaging effects of SKP-CM both in vitro and in vivo, and to elucidate the possible mechanisms. Mouse SKP-CM (mSKP-CM) collection was optimized by a comparative method. The concentration of protein and growth factors in mSKP-CM was detected using BCA protein assay kit and growth factor protein chip. The anti-photoaging effects of mSKP-CM and its regulation of key factors in the TGF-β/Smad signaling pathway were explored using UVA + UVB photoaged mouse fibroblasts (mFBs) and nude mice dorsal skin. The research revealed that mSKP-CM contained significantly higher-concentration of protein and growth factors than mouse mesenchymal stem cell conditioned medium (mDMSC-CM). mSKP-CM alleviated mFBs photoaging by restoring cell viability and relieving senescence and death. ELISA, qRT-PCR, and western blot results implied the potential mechanisms were associated with the early activation of TGF-β/Smad signaling pathway by TSP1. In vivo experiments demonstrated that compared with the topical intradermal mDMSC-CM injection and retinoic acid cream application, the photodamaged mice dorsal skin intradermally injected with mSKP-CM showed significantly better improvement. Consistent with the in vitro results, both western blot and immunohistochemistry results confirmed that protein expression of TSP1, smad2/3, p-smad2/3, TGF-β1, and collagen I increased, and matrix metalloproteinases decreased. In summary, both in vitro and in vivo experiments demonstrated that mSKP-CM alleviated photoaging through an early activation of TGF-β/Smad signaling pathway via TSP1. SKP-CM may serve as a novel and promising cell-free therapeutical approach for anti-photoaging treatment and regenerative medicine.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology, Sichuan Second Hospital of TCM, Chengdu, Sichuan 610041, China; Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingyun Zhao
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Danhua Ruan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lidan Xiong
- Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Tang
- Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Meng Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Wang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Center of Cosmetics Evaluation, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiwei Zhao
- Department of Anatomy, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Guo M, Li S, Li C, Mao X, Tian L, Yang X, Xu C, Zeng M. Overexpression of Wnt5a promoted the protective effect of mesenchymal stem cells on Lipopolysaccharide-induced endothelial cell injury via activating PI3K/AKT signaling pathway. BMC Infect Dis 2024; 24:335. [PMID: 38509522 PMCID: PMC10953236 DOI: 10.1186/s12879-024-09204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.
Collapse
Grants
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- the Guangdong Basic and Applied Basic Research Foundation, China (2024)
Collapse
Affiliation(s)
- Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shiqi Li
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chuan Li
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liru Tian
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xintong Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
4
|
Yu T, Cui Y, Xin S, Fu Y, Ding Y, Hao L, Nie H. Mesenchymal stem cell conditioned medium alleviates acute lung injury through KGF-mediated regulation of epithelial sodium channels. Biomed Pharmacother 2023; 169:115896. [PMID: 37984305 DOI: 10.1016/j.biopha.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Acute lung injury (ALI) is a progressive inflammatory injury, and mesenchymal stem cells (MSCs) can be used to treat ALI. MSC-conditioned medium (MSC-CM) contains many cytokines, in which keratinocyte growth factor (KGF) is a soluble factor that plays a role in lung development. We aim to explore the protective effects of MSCs secreted KGF on ALI, and investigate the involvement of epithelial sodium channel (ENaC), which are important in alveolar fluid reabsorption. Both lipopolysaccharides (LPS)-induced mouse and alveolar organoid ALI models were established to confirm the potential therapeutic effect of MSCs secreted KGF. Meanwhile, the expression and regulation of ENaC were determined in alveolar type II epithelial (ATII) cells. The results demonstrated that MSC-CM and KGF could alleviate the extent of inflammation-related pulmonary edema in ALI mice, which was abrogated by a KGF neutralizing antibody. In an alveolar organoid ALI model, KGF in MSC-CM could improve the proliferation and decrease the differentiation of ATII cells. At the cellular level, the LPS-inhibited protein expression of ENaC could be reversed by KGF in MSC-CM. In addition, bioinformatics analysis and our experimental data provided the evidence that the NF-κB signaling pathway may be involved in the regulation of ENaC. Our research confirmed that the therapeutic effect of MSC-CM on edematous ALI was closely related to KGF, which may be involved in the proliferation and differentiation of ATII cells, as well as the upregulation of ENaC expression by the inhibition of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shuning Xin
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
5
|
Zhang C, Xiao J, Fa L, Jiang F, Jiang H, Zhou L, Xu Z. Advances in the applications of mesenchymal stem cell-conditioned medium in ocular diseases. Exp Eye Res 2023:109560. [PMID: 37385531 DOI: 10.1016/j.exer.2023.109560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Mesenchymal stem cell-conditioned medium (MSC-CM), also known as secretome, is secreted by MSC and contains a variety of bioactive factors with anti-inflammatory, anti-apoptotic, neuroprotection, and proliferation effects. Increasing evidence proved that MSC-CM plays an important role in various diseases, including skin, bone, muscle, and dental diseases. However, the role of MSC-CM in ocular diseases is not quite clear, Therefore, this article reviewed the composition, biological functions, preparation, and characterization of MSC-CM and summarized current research advances in different sources of MSC-CM in corneal and retinal diseases, including dry eye, corneal epithelial damage, chemical corneal injury, retinitis pigmentosa (RP), anterior ischemic optic neuropathy (AION), diabetic retinopathy (DR), and other retinal degenerative changes. For these diseases, MSC-CM can promote cell proliferation, reduce inflammation and vascular leakage, inhibit retinal cell degeneration and apoptosis, protect corneal and retinal structures, and further improves visual function. Hence, we summarize the production, composition and biological functions of MSC-CM and focus on describing its mechanisms in the treatment of ocular diseases. Furthermore, we look at the unexplored mechanisms and further research directions for MSC-CM based therapy in ocular diseases.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Luzhong Fa
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fanwen Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Zhou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|