1
|
Tamer SA, Köse F, Yanar S, Budak Ö, Bağcı C. Anti-Inflammatory Effects of Spexin on Acetic Acid‑Induced Colitis in Rats via Modulating the NF-κB/NLRP3 Inflammasome Pathway. J Biochem Mol Toxicol 2025; 39:e70285. [PMID: 40320895 PMCID: PMC12050913 DOI: 10.1002/jbt.70285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Ulcerative colitis is a chronic inflammatory bowel disease characterized by inflammation and ulcers in the lining of the colon and rectum. Spexin is a novel peptide with antioxidant and anti-inflammatory properties. This study aims to elucidate the therapeutic effects and underlying mechanisms of spexin in mitigating acetic acid-induced colitis in rats. Male Sprague Dawley rats were assigned to control (n = 14) and colitis (n = 21) groups. Colitis was induced via 5% acetic acid (AA) administration (1 mL, intrarect). Post-induction, rats received subcutaneous saline (1 mL/kg), spexin (50 µg/kg/day), or oral sulfasalazine (500 mg/kg) for 5 days. Control groups received saline or spexin. After 24 h of the final treatment, colons were evaluated macroscopically, and levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-18 were determined by ELISA, oxidative stress markers myeloperoxidase (MPO), malondialdehyde (MDA) and glutathione (GSH) levels were measured spectrophotometrically and NOD-like receptor pyrin domain-containing 3 (NLRP3), nuclear factor-κB (NF-κB), caspase-1 proteins were analyzed with Western Blot alongside histopathological assessments. Colitis induction significantly elevated macroscopic damage scores, stool consistency, inflammatory cytokines, MDA, MPO, and NLRP3, NF-κB, caspase-1, while reducing GSH levels (p < 0.001-0.01). Microscopic evaluations confirmed increased necrosis, submucosal edema, and inflammatory cell infiltration (p < 0.001). Spexin reversed these effects by enhancing GSH levels (p < 0.01), reducing macroscopic/microscopic scores, cytokines, MDA, and MPO levels (p < 0.05-0.001), and suppressing NLRP3, NF-κB, and caspase-1 activation (p < 0.01-0.001). For the first time that spexin ameluates acetic acid-induced colitis in rats by modulating the NF-κB/NLRP3 signaling pathway, reducing oxidative damage, enhancing antioxidant capacity, and suppressing inflammation.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of PhysiologySchool of Medicine, Sakarya UniversitySakaryaTürkiye
| | - Fadime Köse
- Department of PhysiologySchool of Medicine, Sakarya UniversitySakaryaTürkiye
| | - Sevinç Yanar
- Department of Histology and EmbryologySchool of Medicine, Sakarya UniversitySakaryaTürkiye
| | - Özcan Budak
- Department of Histology and EmbryologySchool of Medicine, Sakarya UniversitySakaryaTürkiye
| | - Cahit Bağcı
- Department of PhysiologySchool of Medicine, Sakarya UniversitySakaryaTürkiye
| |
Collapse
|
2
|
Canová N, Šípková J, Arora M, Pavlíková Z, Kučera T, Šeda O, Šopin T, Vacík T, Slanař O. Effects of celastrol on the heart and liver galaninergic system expression in a mouse model of Western-type diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Front Pharmacol 2025; 16:1476994. [PMID: 39968178 PMCID: PMC11832397 DOI: 10.3389/fphar.2025.1476994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Background The complexity of the galaninergic system is still not fully understood, especially under specific pre-existing comorbidities related to metabolic dysfunction. A plant-derived triterpenoid celastrol was demonstrated to exert a complex effect on the galaninergic system and to have hepatoprotective and anti-obesity properties. However, the exact molecular mechanisms responsible for these effects remain unclear. Specifically, there are no data on the impact of celastrol on the heart and liver galaninergic system. Therefore, this study aimed to investigate the effects of celastrol on the galaninergic system expression in the heart and liver of mice suffering from diet-induced obesity and metabolic dysfunction-associated steatotic liver disease and steatohepatitis (MASLD/MASH). Methods The male mice C57BL/6J were fed a Western-type high-fat diet for 16 and 20 weeks to induce obesity and MASLD/MASH. Celastrol was administered along with a specific diet for the last 4 weeks to evaluate its impact on the progression of these conditions. Moreover, the inhibitor of sterol regulatory element-binding protein 1/2 (SREBP1/2), fatostatin, was also tested to compare its influence on the galaninergic system with celastrol. Results The study demonstrates that celastrol treatment was safe and led to a reduction in food and energy intake, body fat and liver weights, and MASLD-to-MASH progression and improved glucose tolerance, serum biochemistry markers, and hepatic lipid peroxidation in mice. Quantitative gene expression originally showed significant regulation of galanin and all three of its receptors (GalR1/2/3) in the heart ventricles and only GalR2 in the liver of obese mice. Celastrol influenced the gene expression of galanin receptors: it downregulated Galr1 in the heart and upregulated Galr2 in the liver and Galr3 in the heart ventricles, potentially affecting energy metabolism, oxidative stress, and inflammation. Fatostatin suppressed gene expression of all the detected members of the galaninergic system in the heart ventricles, depicting the role of SREBP in this process. Conclusion These findings suggest that celastrol may beneficially modulate the galaninergic system under obesity and MASLD-to-MASH progression, indicating its potential as a therapeutic agent for disorders associated with metabolic dysfunction.
Collapse
Affiliation(s)
- Nikolina Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Jana Šípková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Mahak Arora
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Zuzana Pavlíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czechia
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tijana Šopin
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
3
|
Turkel I, Ozerklig B, Yazgan B, Ozenc AE, Kubat GB, Simsek G, Atakan MM, Kosar SN. Systemic and tissue-specific spexin response to acute treadmill exercise in rats. Peptides 2024; 180:171281. [PMID: 39111593 DOI: 10.1016/j.peptides.2024.171281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Spexin (SPX) is a 14-amino-acid peptide that plays an important role in the regulation of metabolism and energy homeostasis. It is well known that a variety of bioactive molecules released into the circulation by organs and tissues in response to acute and chronic exercise, known as exerkines, mediate the benefits of exercise by improving metabolic health. However, it is unclear whether acute exercise affects SPX levels in the circulation and peripheral tissues. This study aimed to determine whether acute treadmill exercise induces plasma SPX levels, as well as mRNA expression and immunostaining of SPX in skeletal muscle, adipose tissue, and liver. Male Sprague Dawley rats were divided into sedentary and acute exercise groups. Plasma, soleus (SOL), extensor digitorum longus (EDL), adipose tissue, and liver samples were collected at six time points (0, 1, 3, 6, 12, and 24 h) following 60 min of acute treadmill exercise at a speed of 25 m/min and 0 % grade. Acute exercise increased plasma SPX levels and induced mRNA expression of Spx in the SOL, EDL, and liver. Immunohistochemical analysis demonstrated that acute exercise led to a decrease in SPX immunostaining in the liver. Taken together, these findings suggest that SPX increases in response to acute exercise as a potential exerkine candidate, and the liver may be one of the sources of acute exercise-induced plasma SPX levels in rats. However, a comprehensive analysis is needed to fully elucidate the systemic response of SPX to acute exercise, as well as the tissue from which SPX is secreted.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Ahmet Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Fang P, She Y, Yu M, Yan J, Yu X, Zhao J, Jin Y, Min W, Shang W, Zhang Z. Novel hypothalamic pathways for metabolic effects of spexin. Pharmacol Res 2024; 208:107399. [PMID: 39245191 DOI: 10.1016/j.phrs.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Nanjing Pukou People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
5
|
Zhang Y, Wang J, Yang L, Yan X, Qin C, Nie G. Spexin acts as a novel glucose-lowering factor in grass carp (Ctenopharyngodon idella). Biochem Biophys Res Commun 2024; 708:149810. [PMID: 38531222 DOI: 10.1016/j.bbrc.2024.149810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
At present, the physiological roles of various hormones in fish glucose metabolism have been elucidated. Spexin, a 14-amino acids polypeptide, is highly conserved in many species and has functions such as reducing body weight and improving insulin resistance. In this paper, the open reading frame (ORF) of spx21 in grass carp (Ctenopharyngodon idella) was cloned, and the tissue distribution of spx1 and spx2, their direct and indirect regulatory effects on glucose metabolism of grass carp were investigated. The ORF of spx2 gene in grass carp was 279 bp in length. Moreover, spx1 was highly expressed in the adipose tissue, while spx2 was highly expressed in the brain. In vitro, SPX1 and SPX2 showed opposite effects on the glycolytic pathway in the primary hepatocytes. In vivo, intraperitoneal injection of SPX1 and SPX2 significantly reduced serum glucose levels and increased hepatopancreas glycogen contents. Meanwhile, SPX1 and SPX2 promoted the expression of key genes of glycolysis (pk) and glycogen synthesis (gys) in the hepatopancreas at 3 h post injection. As for indirect effects, 1000 nM SPX1 and SPX2 significantly increased insulin-mediated liver type phosphofructokinase (pfkla) mRNA expression and enhanced the inhibitory effects of insulin on glucose-6-phosphatase (g6pase), phosphoenolpyruvate carboxykinase (pepck), glycogen phosphorylase L (pygl) mRNA expression. Our results show that SPX1 and SPX2 have similar indirect effects on the regulation of glucose metabolism that enhance insulin activity, but they exhibit opposite roles in terms of direct effects.
Collapse
Affiliation(s)
- Yingxin Zhang
- College of Life Science, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Junli Wang
- College of Life Science, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Liping Yang
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Xiao Yan
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang, 453007, PR China.
| |
Collapse
|
6
|
Gambaro SE, Zubiría MG, Giordano AP, Castro PF, Garraza C, Harnichar AE, Alzamendi A, Spinedi E, Giovambattista A. Role of Spexin in White Adipose Tissue Thermogenesis under Basal and Cold-Stimulated Conditions. Int J Mol Sci 2024; 25:1767. [PMID: 38339044 PMCID: PMC10855774 DOI: 10.3390/ijms25031767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.
Collapse
Affiliation(s)
- Sabrina E. Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - María G. Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Alejandra P. Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Patricia F. Castro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Carolina Garraza
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Alejandro E. Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina;
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| |
Collapse
|
7
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
8
|
Kurowska P, Dawid M, Oprocha J, Respekta N, Serra L, Estienne A, Pawlicki P, Kotula-Balak M, Guérif F, Dupont J, Rak A. Spexin role in human granulosa cells physiology and PCOS: expression and negative impact on steroidogenesis and proliferation†. Biol Reprod 2023; 109:705-719. [PMID: 37658762 PMCID: PMC10651070 DOI: 10.1093/biolre/ioad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Spexin (SPX) is a novel neuropeptide and adipokine negatively correlated with obesity and insulin resistance. A recent study investigated expression and regulatory function of SPX in the hypothalamus and pituitary; however, the effect on ovarian function is still unknown. The aim of this study was to characterize the expression of SPX and its receptors, galanin receptors 2 and 3 (GALR2/3), in the human ovary and to study its in vitro effect on granulosa cells (GC) function. Follicular fluid (FF) and GC were obtained from normal weight and obese healthy and diagnosed with polycystic ovarian syndrome (PCOS) women. Expression of SPX and GALR2/3 in the ovary was studied by qPCR, western blot, and immunohistochemistry. The level of SPX in FF was assessed by enzyme-linked immunosorbent assay. The in vitro effect of recombinant human SPX on GC proliferation, steroidogenesis, and signaling pathways (MAP3/1, STAT3, AKT, PKA) was analyzed. Moreover, GC proliferation and estradiol (E2) secretion were measured with and without an siRNA against GALR2/3 and pharmacological inhibition of the above kinases. The results showed that both the SPX concentration in FF and its gene expression were decreased in GC of obese and PCOS women, while the protein expression of GALR2/3 was increased. We noted that SPX reduced GC proliferation and steroidogenesis; these effects were mediated by GALR2/3 and kinases MAP3/1, AKT, and STAT3 for proliferation or kinases MAP3/1 and PKA for E2 secretion. The obtained data clearly documented that SPX is a novel regulator of human ovarian physiology and possibly plays a role in PCOS pathogenesis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Julia Oprocha
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Anthony Estienne
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Krakow, Poland
| | - Fabrice Guérif
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Reproductive Medicine and Biology Department, University Hospital of Tours, Tours, France
| | - Joelle Dupont
- National Research Institute for Agriculture, Food and the Environment, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
9
|
Sun X, Yu Z, Xu Y, Pu S, Gao X. The role of spexin in energy metabolism. Peptides 2023; 164:170991. [PMID: 36914115 DOI: 10.1016/j.peptides.2023.170991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
Spexin, also identified as neuropeptide Q (NPQ), is a 14 amino acid peptide discovered by bioinformatic methods. It has a conserved structure in many species and is widely expressed in the central nervous system and peripheral tissues. It has an associated receptor, galanin receptor 2/3 (GALR2/3). Mature spexin peptides can exert various functions by activating GALR2/3, such as inhibiting food intake, inhibiting lipid absorption, reducing body weight, and improving insulin resistance. Spexin is expressed in the adrenal gland, pancreas, visceral fat, and thyroid, with the highest expression in the adrenal gland, followed by the pancreas. Physiologically, spexin and insulin interact in pancreatic islets. Spexin may be one of the regulators of endocrine function in the pancreas. Spexin is a possible indicator of insulin resistance and it has a variety of functional properties, here we review its role in energy metabolism.
Collapse
Affiliation(s)
- Xiaotong Sun
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China.
| | - Ziwei Yu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Yuxin Xu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Shengdan Pu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Xinyuan Gao
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| |
Collapse
|
10
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
11
|
She Y, Ge R, Gu X, Fang P, Zhang Z. Cardioprotective effects of neuropeptide galanin: Focusing on its roles against diabetic heart. Peptides 2023; 159:170918. [PMID: 36435275 DOI: 10.1016/j.peptides.2022.170918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Following an unprecedented rise in the number of the aged, the incidence of age-related diseases, such as diabetes and cardiovascular disease, is consequently increasing in the world. Type 2 diabetes mellitus (T2DM) is associated with excess cardiovascular morbidity and mortality. The diabetic heart is characterized by increased cardiomyocyte stiffness and fibrotic changes. Despite many factors resulting in cardiomyocyte injury and dysfunction in diabetes, insulin resistance is still a critical etiology of diabetic cardiomyopathy. Preclinical and clinical studies have revealed an intriguing role for galanin in the pathogenesis of insulin resistance and diabetic heart disease. A significant change in plasma galanin levels occurred in patients suffering from type 2 diabetes or cardiomyocyte injury. In turn, galanin may also distinctly mitigate hyperglycemia and insulin resistance in diabetes as well as increase glucose metabolism and mitochondrial biogenesis in cardiac muscle. Here, we critically review current data about the multivariate relationship among galanin, insulin resistance, and cardiac muscle to comprehensively evaluate the protective role of galanin and its receptors for the diabetic heart and to determine whether galanin receptor 2 agonists potentially represent a feasible way to treat diabetic cardiomyopathy in the future.
Collapse
Affiliation(s)
- Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Ran Ge
- Key Laboratory for Metabolic Diseases in Chinese Medicine & Hanlin College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuewen Gu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine & Hanlin College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|