1
|
Fu SJ, Cheng KM, Hsiao CT, Fang YC, Jeng CJ, Tang CY. Pin1 promotes human Ca V2.1 channel polyubiquitination by RNF138: pathophysiological implication for episodic ataxia type 2. Cell Commun Signal 2024; 22:571. [PMID: 39609819 PMCID: PMC11603662 DOI: 10.1186/s12964-024-01960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Loss-of-function mutations in the human gene encoding the neuron-specific Ca2+ channel CaV2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated CaV2.1 mutants may exhibit defective proteostasis and promote endoplasmic reticulum (ER)-associated degradation of their wild-type (WT) counterpart in a dominant-negative manner. The E3 ubiquitin ligase RNF138 was previously shown to mediate EA2-related aberrant degradation of CaV2.1 at the ER. Herein we aimed to elucidate the ER proteostasis mechanism of CaV2.1. The peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) was identified as a novel neuronal CaV2.1 binding partner that promoted polyubiquitination and proteasomal degradation of CaV2.1. Suppression of endogenous Pin1 level with either shRNA knockdown or the Pin1 inhibitor all-trans retinoic acid (ATRA) enhanced endogenous CaV2.1 protein level in neurons, and attenuated ER-associated degradation of CaV2.1 WT and EA2-causing mutants. Detailed mutation analyses suggested that Pin1 interacted with specific phosphorylated serine/threonine-proline motifs in the intracellular II-III loop and the distal carboxy-terminal region of human CaV2.1. We further generated Pin1-insensitive CaV2.1 constructs and demonstrated that, during ER quality control, Pin1 served as an upstream regulator of CaV2.1 polyubiquitination and degradation by RNF138. Pin1 regulation was required for the dominant-negative effect of EA2 missense mutants, but not nonsense mutants, on CaV2.1 WT protein expression. Our data are consistent with the idea that CaV2.1 proteostasis at the ER, as well as dominant-negative suppression of disease-causing loss-of-function mutants on CaV2.1 WT, entail both Pin1/RNF138-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Cheng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Neurology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ya-Ching Fang
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
2
|
Du X, Gomez CM. Spinocerebellar [corrected] Ataxia Type 6: Molecular Mechanisms and Calcium Channel Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:147-173. [PMID: 29427102 DOI: 10.1007/978-3-319-71779-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia (SCA) type 6 is an autosomal dominant disease affecting cerebellar degeneration. Clinically, it is characterized by pure cerebellar dysfunction, slowly progressive unsteadiness of gait and stance, slurred speech, and abnormal eye movements with late onset. Pathological findings of SCA6 include a diffuse loss of Purkinje cells, predominantly in the cerebellar vermis. Genetically, SCA6 is caused by expansion of a trinucleotide CAG repeat in the last exon of longest isoform CACNA1A gene on chromosome 19p13.1-p13.2. Normal alleles have 4-18 repeats, while alleles causing disease contain 19-33 repeats. Due to presence of a novel internal ribosomal entry site (IRES) with the mRNA, CACNA1A encodes two structurally unrelated proteins with distinct functions within an overlapping open reading frame (ORF) of the same mRNA: (1) α1A subunit of P/Q-type voltage gated calcium channel; (2) α1ACT, a newly recognized transcription factor, with polyglutamine repeat at C-terminal end. Understanding the function of α1ACT in physiological and pathological conditions may elucidate the pathogenesis of SCA6. More importantly, the IRES, as the translational control element of α1ACT, provides a potential therapeutic target for the treatment of SCA6.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, The University of Chicago, Chicago, 60637, IL, USA
| | | |
Collapse
|
3
|
Dorgans K, Salvi J, Bertaso F, Bernard L, Lory P, Doussau F, Mezghrani A. Characterization of the dominant inheritance mechanism of Episodic Ataxia type 2. Neurobiol Dis 2017; 106:110-123. [PMID: 28688851 DOI: 10.1016/j.nbd.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/01/2022] Open
Abstract
Episodic Ataxia type 2 (EA2) is an autosomal dominant neuronal disorder linked to mutations in the Cav2.1 subunit of P/Q-type calcium channels. In vitro studies have established that EA2 mutations induce loss of channel activity and that EA2 mutants can exert a dominant negative effect, suppressing normal Cav2.1 activity through protein misfolding and trafficking defects. To date, the role of this mechanism in the disease pathogenesis is unknown because no animal model exists. To address this issue, we have generated a mouse bearing the R1497X nonsense mutation in Cav2.1 (Cav2.1R1497X). Phenotypic analysis of heterozygous Cav2.1R1497X mice revealed ataxia associated with muscle weakness and generalized absence epilepsy. Electrophysiological studies of the cerebellar circuits in heterozygous Cav2.1R1497X mice highlighted severe dysregulations in synaptic transmission of the two major excitatory inputs as well as alteration of the spontaneous activity of Purkinje cells. Moreover, these neuronal dysfunctions were associated with a strong suppression of Cav2.1 channel expression in the cerebellum of heterozygous Cav2.1R1497X mice. Finally, the presence of Cav2.1 in cerebellar lipid raft microdomains was strongly impaired in heterozygous Cav2.1R1497X mice. Altogether, these results reveal a pathogenic mechanism for EA2 based on a dominant negative activity of mutant channels.
Collapse
Affiliation(s)
- Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives-INCI CNRS-UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Julie Salvi
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, Université de Montpellier, LabEx 'Ion Channel Science and Therapeutics', 141 rue de la Cardonille, 34094 Montpellier, France
| | - Federica Bertaso
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, Université de Montpellier, LabEx 'Ion Channel Science and Therapeutics', 141 rue de la Cardonille, 34094 Montpellier, France
| | - Ludivine Bernard
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, Université de Montpellier, LabEx 'Ion Channel Science and Therapeutics', 141 rue de la Cardonille, 34094 Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U1191, Université de Montpellier, LabEx 'Ion Channel Science and Therapeutics', 141 rue de la Cardonille, 34094 Montpellier, France.
| | - Frederic Doussau
- Institut des Neurosciences Cellulaires et Intégratives-INCI CNRS-UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Alexandre Mezghrani
- Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint Eloi - Bâtiment INM, 80 rue Augustin Fliche, 34091 Montpellier, France.
| |
Collapse
|
4
|
Terragni B, Scalmani P, Franceschetti S, Cestèle S, Mantegazza M. Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology 2017; 132:31-42. [PMID: 28571716 DOI: 10.1016/j.neuropharm.2017.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Channelopathies comprise various diseases caused by defects of ion channels. Modifications of their biophysical properties are common and have been widely studied. However, ion channels are heterogeneous multi-molecular complexes that are extensively modulated and undergo a maturation process comprising numerous steps of structural modifications and intracellular trafficking. Perturbations of these processes can give rise to aberrant channels that cause pathologies. Here we review channelopathies of the nervous system associated with dysfunctions at the post-translational level (folding, trafficking, degradation, subcellular localization, interactions with associated proteins and structural post-translational modifications). We briefly outline the physiology of ion channels' maturation and discuss examples of defective mechanisms, focusing in particular on voltage-gated sodium channels, which are implicated in numerous neurological disorders. We also shortly introduce possible strategies to develop therapeutic approaches that target these processes. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Benedetta Terragni
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Paolo Scalmani
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Silvana Franceschetti
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Sandrine Cestèle
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
5
|
Ubiquitin Ligase RNF138 Promotes Episodic Ataxia Type 2-Associated Aberrant Degradation of Human Ca v2.1 (P/Q-Type) Calcium Channels. J Neurosci 2017; 37:2485-2503. [PMID: 28167673 DOI: 10.1523/jneurosci.3070-16.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated CaV2.1 channels comprise a pore-forming α1A subunit with auxiliary α2δ and β subunits. CaV2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the CaV2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of CaV2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human CaV2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel CaV2.1-binding partner. In neurons, RNF138 and CaV2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of CaV2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the CaV2.1 protein level and enhances CaV2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of CaV2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on CaV2.1 WT functional expression, which can be attributed to defective membrane trafficking of CaV2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of CaV2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human CaV2.1 subunits.SIGNIFICANCE STATEMENT Loss-of-function mutations in the human CaV2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and nystagmus. EA2-causing mutants may exert dominant-negative effects on the CaV2.1 wild-type subunit via aberrant proteasomal degradation. The molecular nature of the CaV2.1 ubiquitin-proteasome degradation pathway is currently unknown. The present study reports the first identification of an E3 ubiquitin ligase for CaV2.1, RNF138. CaV2.1 protein stability is dynamically regulated by RNF138 and auxiliary α2δ and β subunits. We provide a proof of concept that protecting the human CaV2.1 subunit from excessive proteasomal degradation with specific interruption of endogenous RNF138 function may partially contribute to the future development of a novel therapeutic strategy for EA2 patients.
Collapse
|
6
|
Mark MD, Schwitalla JC, Groemmke M, Herlitze S. Keeping Our Calcium in Balance to Maintain Our Balance. Biochem Biophys Res Commun 2016; 483:1040-1050. [PMID: 27392710 DOI: 10.1016/j.bbrc.2016.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023]
Abstract
Calcium is a key signaling molecule and ion involved in a variety of diverse processes in our central nervous system (CNS) which include gene expression, synaptic transmission and plasticity, neuronal excitability and cell maintenance. Proper control of calcium signaling is not only vital for neuronal physiology but also cell survival. Mutations in fundamental channels, transporters and second messenger proteins involved in orchestrating the balance of our calcium homeostasis can lead to severe neurodegenerative disorders, such as Spinocerebellar (SCA) and Episodic (EA) ataxias. Hereditary ataxias make up a remarkably diverse group of neurological disorders clinically characterized by gait ataxia, nystagmus, dysarthria, trunk and limb ataxia and often atrophy of the cerebellum. The largest family of hereditary ataxias is SCAs which consists of a growing family of 42 members. A relatively smaller family of 8 members compose the EAs. The gene mutations responsible for half of the EA members and over 35 of the SCA subtypes have been identified, and several have been found to be responsible for cerebellar atrophy, abnormal intracellular calcium levels, dysregulation of Purkinje cell pacemaking, altered cerebellar synaptic transmission and/or ataxia in mouse models. Although the genetic diversity and affected cellular pathways of hereditary ataxias are broad, one common theme amongst these genes is their effects on maintaining calcium balance in primarily the cerebellum. There is emerging evidence that the pathogenesis of hereditary ataxias may be caused by imbalances in intracellular calcium due to genetic mutations in calcium-mediating proteins. In this review we will discuss the current evidence supporting the role of deranged calcium as the culprit to neurodegenerative diseases with a primary focus on SCAs and EAs.
Collapse
Affiliation(s)
- Melanie D Mark
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Jan Claudius Schwitalla
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Michelle Groemmke
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
7
|
Weyhrauch DL, Ye D, Boczek NJ, Tester DJ, Gavrilova RH, Patterson MC, Wieben ED, Ackerman MJ. Whole Exome Sequencing and Heterologous Cellular Electrophysiology Studies Elucidate a Novel Loss-of-Function Mutation in the CACNA1A-Encoded Neuronal P/Q-Type Calcium Channel in a Child With Congenital Hypotonia and Developmental Delay. Pediatr Neurol 2016; 55:46-51. [PMID: 26739101 DOI: 10.1016/j.pediatrneurol.2015.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND A 4-year-old boy born at 37 weeks' gestation with intrauterine growth retardation presented with developmental delay with pronounced language and gross motor delay, axial hypotonia, and dynamic hypertonia of the extremities. Investigations including the Minnesota Newborn Screen, thyroid stimulating hormone/thyroxin, and inborn errors of metabolism screening were negative. Cerebral magnetic resonance imaging and spectroscopy were normal. Genetic testing was negative for coagulopathy, Smith-Lemli-Opitz, fragile X, and Prader-Willi/Angelman syndromes. Whole genome array analysis was unremarkable. METHODS Whole exome sequencing was performed through a commercial testing laboratory to elucidate the underlying etiology for the child's presentation. A de novo mutation was hypothesized. In attempt to establish pathogenicity of our candidate variant, cellular electrophysiologic functional analysis of the putative de novo mutation was performed using patch-clamp technology. RESULTS Whole exome sequencing revealed a p.P1353L variant in the CACNA1A gene, which encodes for the α1-subunit of the brain-specific P/Q-type calcium channel (CaV2.1). This presynaptic high-voltage-gated channel couples neuronal excitation to the vesicular release of neurotransmitter and is implicated in several neurologic disorders. DNA Sanger sequencing confirmed that the de novo mutation was absent in both parents and present in the child only. Electrophysiologic analysis of P1353L-CACNA1A demonstrated near complete loss of function, with a 95% reduction in peak current density. CONCLUSIONS Whole exome sequencing coupled with cellular electrophysiologic functional analysis of a de novoCACNA1A missense mutation has elucidated the probable underlying pathophysiologic mechanism responsible for the child's phenotype. Genetic testing of CACNA1A in patients with congenital hypotonia and developmental delay may be warranted.
Collapse
Affiliation(s)
- Derek L Weyhrauch
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nicole J Boczek
- Department of Health Science Research, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ralitza H Gavrilova
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota; Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Marc C Patterson
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota; Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Eric D Wieben
- Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota; Departments of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
8
|
|
9
|
Rose SJ, Kriener LH, Heinzer AK, Fan X, Raike RS, van den Maagdenberg AMJM, Hess EJ. The first knockin mouse model of episodic ataxia type 2. Exp Neurol 2014; 261:553-62. [PMID: 25109669 DOI: 10.1016/j.expneurol.2014.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022]
Abstract
Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes.
Collapse
Affiliation(s)
- Samuel J Rose
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lisa H Kriener
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ann K Heinzer
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xueliang Fan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert S Raike
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands; Department of Neurology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ellen J Hess
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
10
|
Age-related homeostatic midchannel proteolysis of neuronal L-type voltage-gated Ca²⁺ channels. Neuron 2014; 82:1045-57. [PMID: 24908485 DOI: 10.1016/j.neuron.2014.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
Neural circuitry and brain activity depend critically on proper function of voltage-gated calcium channels (VGCCs), whose activity must be tightly controlled. We show that the main body of the pore-forming α1 subunit of neuronal L-type VGCCs, Cav1.2, is proteolytically cleaved, resulting in Cav1.2 fragment channels that separate but remain on the plasma membrane. This "midchannel" proteolysis is regulated by channel activity, involves the Ca(2+)-dependent protease calpain and the ubiquitin-proteasome system, and causes attenuation and biophysical alterations of VGCC currents. Recombinant Cav1.2 fragment channels mimicking the products of midchannel proteolysis do not form active channels on their own but, when properly paired, produce currents with distinct biophysical properties. Midchannel proteolysis increases dramatically with age and can be attenuated with an L-type VGCC blocker in vivo. Midchannel proteolysis represents a novel form of homeostatic negative-feedback processing of VGCCs that could profoundly affect neuronal excitability, neurotransmission, neuroprotection, and calcium signaling in physiological and disease states.
Collapse
|
11
|
Kathryn ABELE, Jian YANG. Regulation of voltage-gated calcium channels by proteolysis. SHENG LI XUE BAO : [ACTA PHYSIOLOGICA SINICA] 2012; 64:504-514. [PMID: 23090491 PMCID: PMC4355999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Voltage gated calcium channels (VGCCs) are multi-subunit membrane proteins present in a variety of tissues and control many essential physiological processes. Due to their vital importance, VGCCs are regulated by a myriad of proteins and signaling pathways. Here we review the literature on the regulation of VGCCs by proteolysis of the pore-forming α1 subunit, Ca(v)α(1). This form of regulation modulates channel function and degradation and affects cellular gene expression and excitability. L-type Ca(2+) channels are proteolyzed in two ways, depending on tissue localization. In the heart and skeletal muscle, the distal C-terminus of Ca(v)α(1) is cleaved and acts as an autoinhibitor when it reassociates with the proximal C-terminus. Relief of this autoinhibition underlies the β-adrenergic stimulation-induced enhancement of cardiac and skeletal muscle calcium currents, part of the "fight or flight" response. Proteolysis of the distal C-terminus of L-type channels also occurs in the brain and is probably catalyzed by a calpain-like protease. In some brain regions, the entire C-terminus of L-type Ca(2+) channels can be cleaved by an unknown protease and translocates to the nucleus acting as a transcription factor. The distal C-terminus of P/Q-channel Ca(v)α(1) is also proteolyzed and translocates to the nucleus. Truncated forms of the PQ-channel Ca(v)α(1) are produced by many disease-causing mutations and interfere with the function of full-length channels. Truncated forms of N-type channel Ca(v)α(1), generated by mutagenesis, affect the expression of full-length channels. New forms of proteolysis of VGCC subunits remain to be discovered and may represent a fruitful area of VGCC research.
Collapse
Affiliation(s)
| | - YANG Jian
- Corresponding author: Tel: +1-212-854-6161; Fax: +1-212-531-0425;
| |
Collapse
|
12
|
Rajakulendran S, Kaski D, Hanna MG. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 2012; 8:86-96. [PMID: 22249839 DOI: 10.1038/nrneurol.2011.228] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past two decades have witnessed the emergence of a new and expanding field of neurological diseases--the genetic ion channelopathies. These disorders arise from mutations in genes that encode ion channel subunits, and manifest as paroxysmal attacks involving the brain or spinal cord, and/or muscle. The voltage-gated P/Q-type calcium channel (P/Q channel) is highly expressed in the cerebellum, hippocampus and cortex of the mammalian brain. The P/Q channel has a fundamental role in mediating fast synaptic transmission at central and peripheral nerve terminals. Autosomal dominant mutations in the CACNA1A gene, which encodes voltage-gated P/Q-type calcium channel subunit α(1) (the principal pore-forming subunit of the P/Q channel) are associated with episodic and progressive forms of cerebellar ataxia, familial hemiplegic migraine, vertigo and epilepsy. This Review considers, from both a clinical and genetic perspective, the various neurological phenotypes arising from inherited P/Q channel dysfunction, with a focus on recent advances in the understanding of the pathogenetic mechanisms underlying these disorders.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- Medical Research Council Center for Neuromuscular Diseases, Box 102, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|
13
|
Veneziano L, Albertosi S, Pesci D, Mantuano E, Frontali M, Jodice C. Dramatically different levels of Cacna1a gene expression between pre-weaning wild type and leaner mice. J Neurol Sci 2011; 305:71-4. [PMID: 21440913 DOI: 10.1016/j.jns.2011.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Loss of function mutations of the CACNA1A gene, coding for the α1A subunit of P/Q type voltage-gated calcium channel (Ca(V)2.1), are responsible for Episodic Ataxia type 2 (EA2), an autosomal dominant disorder. A dominant negative effect of the EA2 mutated protein, rather than a haploinsufficiency mechanism, has been hypothesised both for protein-truncating and missense mutations. We analysed the cacna1a mRNA expression in leaner mice carrying a cacna1a mutation leading to a premature stop codon. The results showed a very low mutant mRNA expression compared to the wild type allele. Although the mutant mRNA slightly increases with age, its low level is likely due to degradation by nonsense mediated decay, a quality control mechanism that selectively degrades mRNA harbouring premature stop codons. These data have implications for EA2 in humans, suggesting a haploinsufficiency mechanism at least for some of the CACNA1A mutations leading to a premature stop codon.
Collapse
Affiliation(s)
- Liana Veneziano
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere, 00133 Roma, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Voltage-gated calcium channels are a family of integral membrane calcium-selective proteins found in all excitable and many nonexcitable cells. Calcium influx affects membrane electrical properties by depolarizing cells and generally increasing excitability. Calcium entry further regulates multiple intracellular signaling pathways as well as the biochemical factors that mediate physiological functions such as neurotransmitter release and muscle contraction. Small changes in the biophysical properties or expression of calcium channels can result in pathophysiological changes leading to serious chronic disorders. In humans, mutations in calcium channel genes have been linked to a number of serious neurological, retinal, cardiac, and muscular disorders.
Collapse
Affiliation(s)
- Stuart M Cain
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
15
|
Abstract
Mutations in the CACNA1A gene that encodes the pore-forming alpha1 subunit of human voltage-gated CaV2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2, and spinocerebellar ataxia type 6 (SCA6). For each channelopathy, the review describes the disease phenotype as well as the functional consequences of the disease-causing mutations on recombinant human CaV2.1 channels and, in the case of FHM1 and SCA6, on neuronal CaV2.1 channels expressed at the endogenous physiological level in knockin mouse models. The effects of FHM1 mutations on cortical spreading depression, the phenomenon underlying migraine aura, and on cortical excitatory and inhibitory synaptic transmission in FHM1 knockin mice are also described, and their implications for the disease mechanism discussed. Moreover, the review describes different ataxic spontaneous cacna1a mouse mutants and the important insights into the cerebellar mechanisms underlying motor dysfunction caused by mutant CaV2.1 channels that were obtained from their functional characterization.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35121, Padua, Italy.
| |
Collapse
|
16
|
Mantuano E, Romano S, Veneziano L, Gellera C, Castellotti B, Caimi S, Testa D, Estienne M, Zorzi G, Bugiani M, Rajabally YA, Barcina MJG, Servidei S, Panico A, Frontali M, Mariotti C. Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J Neurol Sci 2010; 291:30-6. [PMID: 20129625 DOI: 10.1016/j.jns.2010.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/02/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Episodic ataxia type 2 is a rare autosomal dominant disease characterized by recurrent attacks of vertigo and cerebellar ataxia. The disease was caused by mutations in the CACNA1A gene, on chromosome 19p. We perform a mutational screening in a group of 43 unrelated patients. Forty-two patients presented episodes of disequilibrium and ataxia, and one child was studied because of the occurrence of episodic torticollis. The genetic analysis showed 15 mutated patients (35%). In 13 cases we found novel CACNA1A gene mutations, including missense, protein truncating, and aberrant splicing mutations. Two truncating mutations lead to the uppermost premature stop so far reported, challenging recent hypotheses on dominant negative effect. In patients without CACNA1A mutations, molecular testing for CACNB4 gene mutations excluded this genetic subtype. Clinical features of mutated subjects mostly confirmed previous sign and symptoms associated with EA2, including paroxysmal torticollis and mental retardation. CACNA1A mutated patients have an earlier age at onset, interictal nystagmus, and abnormalities of ocular movements. A review of all CACNA1A mutations so far reported showed that they are mainly located downstream exon 18. Our data substantially increase the number of the described CACNA1A mutations, and propose clinical and molecular criteria for a more focused genetic screening.
Collapse
Affiliation(s)
- Elide Mantuano
- Institute of Neurobiology and Molecular Medicine, CNR, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asadi S, Javan M, Ahmadiani A, Sanati MH. Alternative Splicing in the Synaptic Protein Interaction Site of Rat Cav2.2 (α1B) Calcium Channels: Changes Induced by Chronic Inflammatory Pain. J Mol Neurosci 2009; 39:40-8. [DOI: 10.1007/s12031-008-9159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
18
|
Graves TD, Imbrici P, Kors EE, Terwindt GM, Eunson LH, Frants RR, Haan J, Ferrari MD, Goadsby PJ, Hanna MG, van den Maagdenberg AMJM, Kullmann DM. Premature stop codons in a facilitating EF-hand splice variant of CaV2.1 cause episodic ataxia type 2. Neurobiol Dis 2008; 32:10-5. [PMID: 18606230 DOI: 10.1016/j.nbd.2008.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/05/2008] [Indexed: 10/22/2022] Open
Abstract
Premature stop codons in CACNA1A, which encodes the alpha(1A) subunit of neuronal P/Q-type (Ca(V)2.1) Ca(2+) channels, cause episodic ataxia type 2 (EA2). CACNA1A undergoes extensive alternative splicing, which contributes to the pharmacological and kinetic heterogeneity of Ca(V)2.1-mediated Ca(2+) currents. We identified three novel heterozygous stop codon mutations associated with EA2 in an alternately spliced exon (37A), which encodes part of an EF-hand motif required for Ca(2+)-dependent facilitation. One family had a C to G transversion (Y1854X). A dinucleotide deletion results in the same premature stop codon in a second family, and a further single nucleotide change leads to a different truncation (R1858X) in a de novo case of EA2. Expression studies of the Y1854X mutation revealed loss of Ca(V)2.1-mediated current. Because these mutations do not affect the alternate exon 37B, these findings reveal unexpected dependence of cerebellar function on intact exon 37A-containing Ca(V)2.1 channels.
Collapse
Affiliation(s)
- Tracey D Graves
- Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nieves-Cintrón M, Caballero-Rivera D, Silva WI, Navedo MF, Lasalde-Dominicci JA. Functional contribution of alpha3L8' to the neuronal nicotinic alpha3 receptor. J Neurosci Res 2008; 86:2884-94. [PMID: 18615639 PMCID: PMC4586081 DOI: 10.1002/jnr.21749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of position L8', located in transmembrane domain 1 of the neuronal nicotinic alpha3 subunit, was characterized by using two-electrode voltage clamp in Xenopus oocytes. Four amino acids (Ala, Ser, Phe, and Tyr) were inserted at this conserved position, and the mutant subunit was coexpressed with either wild-type beta2 or beta4 subunits. These substitutions led to significant alterations in the pharmacodynamic parameters of cholinergic agents, resulting in loss of function. Ala and Ser substitutions resulted in losses in agonist (ACh, nicotine, and DMPP) potency and intrinsic activity at both alpha3beta2 and alpha3beta4 receptors. Similarly, significant changes in antagonist potency were produced by the Ala and Ser substitutions. Phe and Tyr mutations did not alter the receptor's EC(50) for ACh or nicotine but reduced the EC(50) for DMPP at both receptors. The Phe mutation also reduced the intrinsic activity of all agonists tested at both receptors. The Tyr mutation, though, led to a decrease in intrinsic activity for all agonists at the alpha3beta2 receptor, yet resulted in no changes for DMPP, a decrease for nicotine, and an increase for ACh at the alpha3beta4 receptor. The most dramatic changes in the receptor's functional properties were produced by substitutions that introduced the largest changes in amino acid volume. Additional replacements (Gly, Thr, and Val) suggested an inverse correlation between amino acid volume at position alpha3L8' and EC(50) for alpha3beta4 nAChRs; however, alpha3beta2 nAChRs displayed a nonlinear correlation. These data demonstrate that structural alterations at position alpha3L8' could propagate to the agonist-binding site.
Collapse
Affiliation(s)
| | - Daniel Caballero-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Walter I. Silva
- Department of Physiology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Manuel F. Navedo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - José A. Lasalde-Dominicci
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
20
|
Calcium Channel Regulation and Presynaptic Plasticity. Neuron 2008; 59:882-901. [PMID: 18817729 DOI: 10.1016/j.neuron.2008.09.005] [Citation(s) in RCA: 472] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
|
21
|
KERR NCH, HOLMES FE, WYNICK D. Novel mRNA isoforms of the sodium channels Na(v)1.2, Na(v)1.3 and Na(v)1.7 encode predicted two-domain, truncated proteins. Neuroscience 2008; 155:797-808. [PMID: 18675520 PMCID: PMC2726981 DOI: 10.1016/j.neuroscience.2008.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022]
Abstract
The expression of voltage-gated sodium channels is regulated at multiple levels, and in this study we addressed the potential for alternative splicing of the Na(v)1.2, Na(v)1.3, Na(v)1.6 and Na(v)1.7 mRNAs. We isolated novel mRNA isoforms of Na(v)1.2 and Na(v)1.3 from adult mouse and rat dorsal root ganglia (DRG), Na(v)1.3 and Na(v)1.7 from adult mouse brain, and Na(v)1.7 from neonatal rat brain. These alternatively spliced isoforms introduce an additional exon (Na(v)1.2 exon 17A and topologically equivalent Na(v)1.7 exon 16A) or exon pair (Na(v)1.3 exons 17A and 17B) that contain an in-frame stop codon and result in predicted two-domain, truncated proteins. The mouse and rat orthologous exon sequences are highly conserved (94-100% identities), as are the paralogous Na(v)1.2 and Na(v)1.3 exons (93% identity in mouse) to which the Na(v)1.7 exon has only 60% identity. Previously, Na(v)1.3 mRNA has been shown to be upregulated in rat DRG following peripheral nerve injury, unlike the downregulation of all other sodium channel transcripts. Here we show that the expression of Na(v)1.3 mRNA containing exons 17A and 17B is unchanged in mouse following peripheral nerve injury (axotomy), whereas total Na(v)1.3 mRNA expression is upregulated by 33% (P=0.003), suggesting differential regulation of the alternatively spliced transcripts. The alternatively spliced rodent exon sequences are highly conserved in both the human and chicken genomes, with 77-89% and 72-76% identities to mouse, respectively. The widespread conservation of these sequences strongly suggests an additional level of regulation in the expression of these channels, that is also tissue-specific.
Collapse
Affiliation(s)
- N. C. H. KERR
- Departments of Physiology and Pharmacology, and Clinical Sciences South Bristol, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - F. E. HOLMES
- Departments of Physiology and Pharmacology, and Clinical Sciences South Bristol, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - D. WYNICK
- Departments of Physiology and Pharmacology, and Clinical Sciences South Bristol, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
22
|
Mezghrani A, Monteil A, Watschinger K, Sinnegger-Brauns MJ, Barrère C, Bourinet E, Nargeot J, Striessnig J, Lory P. A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J Neurosci 2008; 28:4501-11. [PMID: 18434528 PMCID: PMC6670939 DOI: 10.1523/jneurosci.2844-07.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/06/2008] [Accepted: 02/29/2008] [Indexed: 11/21/2022] Open
Abstract
Channelopathies are often linked to defective protein folding and trafficking. Among them, the calcium channelopathy episodic ataxia type-2 (EA2) is an autosomal dominant disorder related to mutations in the pore-forming Ca(v)2.1 subunit of P/Q-type calcium channels. Although EA2 is linked to loss of Ca(v)2.1 channel activity, the molecular mechanism underlying dominant inheritance remains unclear. Here, we show that EA2 mutants as well as a truncated form (D(I-II)) of the Ca(v)3.2 subunit of T-type calcium channel are misfolded, retained in the endoplasmic reticulum, and subject to proteasomal degradation. Pulse-chase experiments revealed that misfolded mutants bind to nascent wild-type Ca(v) subunits and induce their subsequent degradation, thereby abolishing channel activity. We conclude that this destructive interaction mechanism promoted by Ca(v) mutants is likely to occur in EA2 and in other inherited dominant channelopathies.
Collapse
Affiliation(s)
- Alexandre Mezghrani
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Institut National de la Santé et de la Recherche Médicale, Unité 661, and Université Montpellier, 34094 Montpellier, France, and
| | - Arnaud Monteil
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Institut National de la Santé et de la Recherche Médicale, Unité 661, and Université Montpellier, 34094 Montpellier, France, and
| | - Katrin Watschinger
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie und Centrum für Molekulare Biowissenschaften Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Martina J. Sinnegger-Brauns
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie und Centrum für Molekulare Biowissenschaften Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Christian Barrère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Institut National de la Santé et de la Recherche Médicale, Unité 661, and Université Montpellier, 34094 Montpellier, France, and
| | - Emmanuel Bourinet
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Institut National de la Santé et de la Recherche Médicale, Unité 661, and Université Montpellier, 34094 Montpellier, France, and
| | - Joël Nargeot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Institut National de la Santé et de la Recherche Médicale, Unité 661, and Université Montpellier, 34094 Montpellier, France, and
| | - Jörg Striessnig
- Abteilung Pharmakologie und Toxikologie, Institut für Pharmazie und Centrum für Molekulare Biowissenschaften Innsbruck, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Philippe Lory
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle, Institut National de la Santé et de la Recherche Médicale, Unité 661, and Université Montpellier, 34094 Montpellier, France, and
| |
Collapse
|
23
|
Kaja S, Van De Ven RCG, Frants RR, Ferrari MD, Van Den Maagdenberg AMJM, Plomp JJ. Reduced ACh release at neuromuscular synapses of heterozygousleaner Cav2.1-mutant mice. Synapse 2008; 62:337-44. [DOI: 10.1002/syn.20490] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|