1
|
Yu W, Zhang R, Zhang A, Mei Y. Deciphering the Functions of Raphe-Hippocampal Serotonergic and Glutamatergic Circuits and Their Deficits in Alzheimer's Disease. Int J Mol Sci 2025; 26:1234. [PMID: 39941002 PMCID: PMC11818420 DOI: 10.3390/ijms26031234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Subcortical innervation of the hippocampus by the raphe nucleus is essential for emotional and cognitive control. The two major afferents from raphe to hippocampus originate from serotonergic and glutamatergic neurons, of which the serotonergic control of hippocampal inhibitory network, theta activity, and synaptic plasticity have been extensively explored in the growing body of literature, whereas those of glutamatergic circuits have received little attention. Notably, both serotonergic and glutamatergic circuits between raphe and hippocampus are disrupted in Alzheimer's disease (AD), which may contribute to initiation and progression of behavioral and psychological symptoms of dementia. Thus, deciphering the mechanism underlying abnormal raphe-hippocampal circuits in AD is crucial to prevent dementia-associated emotional and cognitive symptoms. In this review, we summarize the anatomical, neurochemical, and electrophysiological diversity of raphe nuclei as well as the architecture of raphe-hippocampal circuitry. We then elucidate subcortical control of hippocampal activity by raphe nuclei and their role in regulation of emotion and cognition. Additionally, we present an overview of disrupted raphe-hippocampal circuits in AD pathogenesis and analyze the available therapies that can potentially be used clinically to alleviate the neuropsychiatric symptoms and cognitive decline in AD course.
Collapse
Affiliation(s)
| | | | | | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer’s Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
2
|
Chazalon M, Dumas S, Bernard JF, Sahly I, Tronche F, de Kerchove d'Exaerde A, Hamon M, Adrien J, Fabre V, Bonnavion P. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse. Neuropharmacology 2018; 138:315-330. [PMID: 29908240 DOI: 10.1016/j.neuropharm.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) neurons are involved in wake promotion and exert a strong inhibitory influence on rapid eye movement (REM) sleep. Such effects have been ascribed, at least in part to the action of 5-HT at post-synaptic 5-HT1A receptors (5-HT1AR) in the brainstem, a major wake/REM sleep regulatory center. However, the neuroanatomical substrate through which 5-HT1AR influence sleep remains elusive. We therefore investigated whether a brainstem structure containing a high density of 5-HT1AR mRNA, the GABAergic Gudden's dorsal tegmental nucleus (DTg), may contribute to 5-HT-mediated regulatory mechanisms of sleep-wake stages. We first found that bilateral lesions of the DTg promote wake at the expense of sleep. In addition, using local microinjections into the DTg in freely moving mice, we showed that local activation of 5-HT1AR by the prototypical agonist 8-OH-DPAT enhances wake and reduces deeply REM sleep duration. The specific involvement of 5-HT1AR in the latter effects was further demonstrated by ex vivo extracellular recordings showing that the selective 5-HT1AR antagonist WAY 100635 prevented DTg neuron inhibition by 8-OH-DPAT. We next found that GABAergic neurons of the ventral DTg exclusively targets glutamatergic neurons of the lateral mammillary nucleus (LM) in the posterior hypothalamus by means of anterograde and retrograde tracing techniques using cre driver mouse lines and a modified rabies virus. Altogether, our findings strongly support the idea that 5-HT-driven enhancement of wake results from 5-HT1AR-mediated inhibition of DTg GABAergic neurons that would in turn disinhibit glutamatergic neurons in the mammillary bodies. We therefore propose a Raphe→DTg→LM pathway as a novel regulatory circuit underlying 5-HT modulation of arousal.
Collapse
Affiliation(s)
- Marine Chazalon
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium
| | | | - Jean-François Bernard
- Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Iman Sahly
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - François Tronche
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium
| | - Michel Hamon
- Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Joëlle Adrien
- Université Paris Descartes, VIFASOM, Hôtel-Dieu de Paris, 75004, Paris, France
| | - Véronique Fabre
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France.
| | - Patricia Bonnavion
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium; Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France.
| |
Collapse
|
3
|
5-Hydroxytryptamine 1A receptors inhibit glutamate release in rat medullary dorsal horn neurons. Neuroreport 2013; 24:399-403. [PMID: 23629688 DOI: 10.1097/wnr.0b013e3283614cbf] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined 5-hydroxytryptamine 1A (5-HT1A) receptor-mediated modulation of glutamatergic transmission in rat medullary dorsal horn neurons using a conventional whole-cell patch clamp technique. 5-HT reversibly and concentration dependently decreased the amplitude of glutamatergic excitatory postsynaptic currents and increased the paired-pulse ratio, indicating that 5-HT acts presynaptically to reduce glutamate release from primary afferents. The 5-HT-induced inhibition of excitatory postsynaptic currents was partially occluded by NAN-190, a 5-HT1A receptor antagonist, and mimicked by 8-OH-DPAT, a 5-HT1A receptor agonist. Our results suggest that presynaptic 5-HT1A receptors inhibit glutamate release from trigeminal primary afferents onto medullary dorsal horn neurons, and thus in addition to other 5-HT1 receptor subtypes, 5-HT1A receptors could be a potential target for treatment of pain from orofacial tissues.
Collapse
|
4
|
Kiyasova V, Bonnavion P, Scotto-Lomassese S, Fabre V, Sahly I, Tronche F, Deneris E, Gaspar P, Fernandez SP. A subpopulation of serotonergic neurons that do not express the 5-HT1A autoreceptor. ACS Chem Neurosci 2013; 4:89-95. [PMID: 23336048 DOI: 10.1021/cn300157s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
Abstract
5-HT neurons are topographically organized in the hindbrain, and have been implicated in the etiology and treatment of psychiatric diseases such as depression and anxiety. Early studies suggested that the raphe 5-HT neurons were a homogeneous population showing similar electrical properties, and feedback inhibition mediated by 5-HT1A autoreceptors. We utilized histochemistry techniques in ePet1-eGFP and 5-HT1A-iCre/R26R mice to show that a subpopulation of 5-HT neurons do not express the somatodendritic 5-HT1A autoreceptor mRNA. In addition, we performed patch-clamp recordings followed by single-cell PCR in ePet1-eGFP mice. From 134 recorded 5-HT neurons located in the dorsal, lateral, and median raphe, we found lack of 5-HT1A mRNA expression in 22 cells, evenly distributed across raphe subfields. We compared the cellular characteristics of these neuronal types and found no difference in passive membrane properties and general excitability. However, when injected with large depolarizing current, 5-HT1A-negative neurons fired more action potentials, suggesting a lack of autoinhibitory action of local 5-HT release. Our results support the hypothesis that the 5-HT system is composed of subpopulations of serotonergic neurons with different capacity for adaptation.
Collapse
Affiliation(s)
- Vera Kiyasova
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
| | - Patricia Bonnavion
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - Sophie Scotto-Lomassese
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
| | - Véronique Fabre
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - Iman Sahly
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - François Tronche
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - Evan Deneris
- School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106,
United States
| | - Patricia Gaspar
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
| | - Sebastian P. Fernandez
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
| |
Collapse
|
5
|
Shyam K Sharan KB, Sharan SK. Manipulating the Mouse Genome Using Recombineering. ADVANCES IN GENETICS 2013; 2. [PMID: 31404315 DOI: 10.4172/2169-0111.1000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically engineered mouse models are indispensable for understanding the biological function of genes, understanding the genetic basis of human diseases and for preclinical testing of novel therapies. Generation of such mouse models has been possible because of our ability to manipulate the mouse genome. Recombineering is a highly efficient recombination-based method of genetic engineering that has revolutionized our ability to generate mouse models. Since recombineering technology is not dependent on the availability of restriction enzyme recognition sites, it allows us to modify the genome with great precision. It requires homology arms as short as 40 bases for recombination, which makes it relatively easy to generate targeting constructs to insert, change or delete either a single nucleotide or a DNA fragment several kb in size; insert selectable markers, reporter genes or add epitope tags to any gene of interest. In this review, we focus on the development of recombineering technology and its application in the generation of transgenic and knockout or knock-in mouse models. High throughput generation of gene targeting vectors, used to construct knockout alleles in mouse embryonic stem cells, is now feasible because of this technology. The challenge now is to use the "designer" mice to develop novel therapies to prevent, cure or effectively manage some the most debilitating human diseases.
Collapse
Affiliation(s)
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702
| |
Collapse
|
6
|
Blondeau B, Sahly I, Massouridès E, Singh-Estivalet A, Valtat B, Dorchene D, Jaisser F, Bréant B, Tronche F. Novel transgenic mice for inducible gene overexpression in pancreatic cells define glucocorticoid receptor-mediated regulations of beta cells. PLoS One 2012; 7:e30210. [PMID: 22363422 PMCID: PMC3281827 DOI: 10.1371/journal.pone.0030210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/12/2011] [Indexed: 12/27/2022] Open
Abstract
Conditional gene deletion in specific cell populations has helped the understanding of pancreas development. Using this approach, we have shown that deleting the glucocorticoid receptor (GR) gene in pancreatic precursor cells leads to a doubled beta-cell mass. Here, we provide genetic tools that permit a temporally and spatially controlled expression of target genes in pancreatic cells using the Tetracycline inducible system. To efficiently target the Tetracycline transactivator (tTA) in specific cell populations, we generated Bacterial Artificial Chromosomes (BAC) transgenic mice expressing the improved Tetracycline transactivator (itTA) either in pancreatic progenitor cells expressing the transcription factor Pdx1 (BAC-Pdx1-itTA), or in beta cells expressing the insulin1 gene (BAC-Ins1-itTA). In the two transgenic models, itTA-mediated activation of reporter genes was efficient and subject to regulation by Doxycycline (Dox). The analysis of a tetracycline-regulated LacZ reporter gene shows that in BAC-Pdx1-itTA mice, itTA is expressed from embryonic (E) day 11.5 in all pancreatic precursor cells. In the adult pancreas, itTA is active in mature beta, delta cells and in few acinar cells. In BAC-Ins1-itTA mice tTA is active from E13.5 and is restricted to beta cells in fetal and adult pancreas. In both lines, tTA activity was suppressed by Dox treatment and re-induced after Dox removal. Using these transgenic lines, we overexpressed the GR in selective pancreatic cell populations and found that overexpression in precursor cells altered adult beta-cell fraction but not glucose tolerance. In contrast, GR overexpression in mature beta cells did not alter beta-cell fraction but impaired glucose tolerance with insufficient insulin secretion. In conclusion, these new itTA mouse models will allow fine-tuning of gene expression to investigate gene function in pancreatic biology and help us understand how glucocorticoid signaling affects on the long-term distinct aspects of beta-cell biology.
Collapse
Affiliation(s)
- Bertrand Blondeau
- INSERM UMR-S 872, Centre de Recherches des Cordeliers, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Mol Cell Neurosci 2010; 45:245-57. [PMID: 20600924 DOI: 10.1016/j.mcn.2010.06.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022] Open
Abstract
Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC-Vglut2::Cre transgenic mice. Altogether, this BAC-Vglut2::Cre mouse line provides a valuable tool for molecular genetic analysis of excitatory neuronal populations throughout the mouse nervous system.
Collapse
|
8
|
Norton WHJ, Folchert A, Bally-Cuif L. Comparative analysis of serotonin receptor (HTR1A/HTR1B families) and transporter (slc6a4a/b) gene expression in the zebrafish brain. J Comp Neurol 2008; 511:521-42. [PMID: 18839395 DOI: 10.1002/cne.21831] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we analyze 5-hydroxytryptamine [5-HT]; serotonin) signaling in zebrafish, an increasingly popular vertebrate disease model. We compare and contrast expression of the 5-HT transporter genes slc6a4a and slc6a4b, which identify 5-HT-producing neurons and three novel 5-HT receptors, htr1aa, htr1ab, and htr1bd. slc6a4a and slc6a4b are expressed in the raphe nuclei, retina, medulla oblongata, paraventricular organ, pretectal diencephalic complex, and caudal zone of the periventricular hypothalamus, in line with the expression profiles of homologues from other vertebrates. Our analysis of serotonin transporter (SERT)-encoding genes also identifies parallel genetic pathways used to build the 5-HT system in zebrafish. In cells in which 5-HT is synthesized by tph1, slc6a4b is used for re-uptake, whereas tph2-positive cells utilize slc6a4a. The receptors htr1aa, htr1ab, and htr1bd also show widespread expression in both the larval and adult brain. Receptor expression is seen in the superior raphe nucleus, retina, ventral telencephalon, optic tectum, thalamus, posterior tuberculum, cerebellum, hypothalamus, and reticular formation, thus implicating 5-HT signaling in several neural circuits. We also examine larval brains double-labeled with 5-HTergic and dopaminergic pathway-specific antibodies, to uncover the identity of some 5-HTergic target neurons. Furthermore, comparison of the expression of transporter and receptor genes also allows us to map sites of autoreceptor activity within the brain. We detect autoreceptor activity in the pretectal diencephalic cluster (htr1aa-, htr1ab-, htr1bd-, and slc6a4a-positive), superior raphe nucleus (htr1aa-, htr1ab-, and slc6a4a-positive), paraventricular organ (htr1aa-, htr1ab-, htr1bd-, and slc6a4b-positive), and the caudal zone of the periventricular hypothalamus (htr1ab- and slc6a4b-positive).
Collapse
Affiliation(s)
- William H J Norton
- Zebrafish Neurogenetics, Institute of Developmental Genetics, HelmholtzZentrum muenchen, 85764, Neuherberg, Germany
| | | | | |
Collapse
|
9
|
Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 2008; 32:1174-84. [PMID: 18534678 DOI: 10.1016/j.neubiorev.2008.04.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Among psychiatric disorders, depression and generalized anxiety are probably the most common stress-related illnesses. These diseases are underlain, at least partly, by dysfunctions of neurotransmitters and neurohormones, especially within the serotoninergic (5-HT) system and the hypothalamo-pituitary-adrenal (HPA) axis, which are also the targets of drugs used for their treatment. This review focuses on the nature of the interactions between central 5-HT and corticotrope systems in animal models, in particular those allowing the assessment of serotoninergic function following experimental manipulation of the HPA axis. The review provides an overview of the HPA axis and the 5-HT system organization, focusing on the 5-HT(1A) receptors, which play a pivotal role in the 5-HT system regulation and its response to stress. Both molecular and functional aspects of 5-HT/HPA interactions are then analyzed in the frame of psychoaffective disorders. The review finally examines the hippocampal neurogenesis response to experimental paradigms of stress and antidepressant treatment, in which neurotrophic factors are considered to play key roles according to the current views on the pathophysiology of depressive disorders.
Collapse
|