1
|
Chen L, Luo T, Cui W, Zhu M, Xu Z, Huang H. Kalirin is involved in epileptogenesis by modulating the activity of the Rac1 signaling pathway. J Chem Neuroanat 2023; 131:102289. [PMID: 37196826 DOI: 10.1016/j.jchemneu.2023.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is a common chronic brain disease. Despite the availability of various anti-seizure drugs, approximately 30 % of patients do not respond to treatment. Recent research suggests that Kalirin plays a role in regulating neurological function. However, the pathogenesis of Kalirin in epileptic seizures remains unclear. This study aims to investigate the role and mechanism of Kalirin in epileptogenesis. MATERIALS AND METHODS An epileptic model was induced by intraperitoneal injection of pentylenetetrazole (PTZ). Endogenous Kalirin was inhibited using shRNA. The expression of Kalirin, Rac1, and Cdc42 in the hippocampal CA1 region was measured using Western blotting. Spine and synaptic structures were examined using Golgi staining and electron microscopy. Moreover, the necrotic neurons in CA1 were examined using HE staining. RESULTS The results indicated that the epileptic score increased in epileptic animals, while inhibition of Kalirin decreased the epileptic scores and increased the latent period of the first seizure attack. Inhibition of Kalirin attenuated the increases in Rac1 expression, dendritic spine density, and synaptic vesicle number in the CA1 region induced by PTZ. However, the increase in Cdc42 expression was not affected by the inhibition of Kalirin. CONCLUSION This study suggests that Kalirin is involved in the development of seizures by modulating the activity of Rac1, providing a novel anti-epileptic target.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Ting Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Wenxiu Cui
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - ManMing Zhu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Hao Huang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China.
| |
Collapse
|
2
|
A Novel Cis-Regulatory lncRNA, Kalnc2, Downregulates Kalrn Protein-Coding Transcripts in Mouse Neuronal Cells. Noncoding RNA 2023; 9:ncrna9010007. [PMID: 36649036 PMCID: PMC9844340 DOI: 10.3390/ncrna9010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The KALRN gene encodes several multi-domain protein isoforms that localize to neuronal synapses, conferring the ability to grow and retract dendritic spines and shaping axonal outgrowth, dendrite morphology, and dendritic spine re-modeling. The KALRN genomic locus is implicated in several neurodevelopmental and neuropsychiatric diseases, including autism, schizophrenia, bipolar disease, and intellectual disability. We have previously shown that a novel brain-specific long non-coding RNA (lncRNA) arising from the 5' end of the kalrna gene, called durga, regulates neuronal morphology in zebrafish. Here, we characterized mammalian Kalrn loci, annotating and experimentally validating multiple novel non-coding RNAs, including linear and circular variants. Comparing the mouse and human loci, we show that certain non-coding RNAs and Kalrn protein-coding isoforms arising from the locus show similar expression dynamics during development. In humans, mice, and zebrafish, the 5' end of the Kalrn locus gives rise to a chromatin-associated lncRNA that is present in adult ovaries, besides being expressed during brain development and enriched in certain regions of the adult brain. Ectopic expression of this lncRNA led to the downregulation of all the major Kalrn mRNA isoforms. We propose that this lncRNA arising from the 5' end of the Kalrn locus is functionally the mammalian ortholog of zebrafish lncRNA durga.
Collapse
|
3
|
Parnell E, Voorn RA, Martin-de-Saavedra MD, Loizzo DD, Dos Santos M, Penzes P. A developmental delay linked missense mutation in Kalirin-7 disrupts protein function and neuronal morphology. Front Mol Neurosci 2022; 15:994513. [PMID: 36533124 PMCID: PMC9751355 DOI: 10.3389/fnmol.2022.994513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/28/2022] [Indexed: 07/30/2023] Open
Abstract
The Rac1 guanine exchange factor Kalirin-7 is a key regulator of dendritic spine morphology, LTP and dendritic arborization. Kalirin-7 dysfunction and genetic variation has been extensively linked to various neurodevelopmental and neurodegenerative disorders. Here we characterize a Kalirin-7 missense mutation, glu1577lys (E1577K), identified in a patient with severe developmental delay. The E1577K point mutation is located within the catalytic domain of Kalirin-7, and results in a robust reduction in Kalirin-7 Rac1 Guanosine exchange factor activity. In contrast to wild type Kalirin-7, the E1577K mutant failed to drive dendritic arborization, spine density, NMDAr targeting to, and activity within, spines. Together these results indicate that reduced Rac1-GEF activity as result of E1577K mutation impairs neuroarchitecture, connectivity and NMDAr activity, and is a likely contributor to impaired neurodevelopment in a patient with developmental delay.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roos A. Voorn
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M. Dolores Martin-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Madrid, Spain
| | - Daniel D. Loizzo
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Marc Dos Santos
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Niu F, Han P, Zhang J, She Y, Yang L, Yu J, Zhuang M, Tang K, Shi Y, Yang B, Liu C, Peng B, Ji SJ. The m 6A reader YTHDF2 is a negative regulator for dendrite development and maintenance of retinal ganglion cells. eLife 2022; 11:75827. [PMID: 35179492 PMCID: PMC8906807 DOI: 10.7554/elife.75827] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
The precise control of growth and maintenance of the retinal ganglion cell (RGC) dendrite arborization is critical for normal visual functions in mammals. However, the underlying mechanisms remain elusive. Here, we find that the N6-methyladenosine (m6A) reader YTHDF2 is highly expressed in the mouse RGCs. Conditional knockout (cKO) of Ythdf2 in the retina leads to increased RGC dendrite branching, resulting in more synapses in the inner plexiform layer. Interestingly, the Ythdf2 cKO mice show improved visual acuity compared with control mice. We further demonstrate that Ythdf2 cKO in the retina protects RGCs from dendrite degeneration caused by the experimental acute glaucoma model. We identify the m6A-modified YTHDF2 target transcripts which mediate these effects. This study reveals mechanisms by which YTHDF2 restricts RGC dendrite development and maintenance. YTHDF2 and its target mRNAs might be valuable in developing new treatment approaches for glaucomatous eyes.
Collapse
Affiliation(s)
- Fugui Niu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peng Han
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jian Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuanchu She
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lixin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jun Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Mengru Zhuang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kezhen Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuwei Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Baisheng Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunqiao Liu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- Department of Neurosurgery, Fudan University, Shanghai, China
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Abstract
The cognitive dysfunction experienced by patients with schizophrenia represents a major unmet clinical need. We believe that enhancing synaptic function and plasticity by targeting kalirin may provide a novel means to remediate these symptoms. Karilin (a protein encoded by the KALRN gene) has multiple functional domains, including two Dbl homology (DH) guanine exchange factor (GEF) domains, which act to enhance the activity of the Rho family guanosine triphosphate (GTP)-ases. Here, we provide an overview of kalirin's roles in brain function and its therapeutic potential in schizophrenia. We outline how it mediates diverse effects via a suite of distinct isoforms that couple to members of the Rho GTPase family to regulate synapse formation and stabilisation, and how genomic and post-mortem data implicate it in schizophrenia. We then review the current state of knowledge about the influence of kalirin on brain function at a systems level, based largely on evidence from transgenic mouse models, which support its proposed role in regulating dendritic spine function and plasticity. We demonstrate that, whilst the GTPases are classically considered to be 'undruggable', targeting kalirin and other Rho GEFs provides a means to indirectly modulate their activity. Finally, we integrate across the information presented to assess the therapeutic potential of kalirin for schizophrenia and highlight the key outstanding questions required to advance it in this capacity; namely, the need for more information about the diversity and function of its isoforms, how these change across neurodevelopment, and how they affect brain function in vivo.
Collapse
|
6
|
Mould AW, Hall NA, Milosevic I, Tunbridge EM. Targeting synaptic plasticity in schizophrenia: insights from genomic studies. Trends Mol Med 2021; 27:1022-1032. [PMID: 34419330 DOI: 10.1016/j.molmed.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Patients with schizophrenia experience cognitive dysfunction and negative symptoms that do not respond to current drug treatments. Historical evidence is consistent with the hypothesis that these deficits are due, at least in part, to altered cortical synaptic plasticity (the ability of synapses to strengthen or weaken their activity), making this an attractive pathway for therapeutic intervention. However, while synaptic transmission and plasticity is well understood in model systems, it has been challenging to identify specific therapeutic targets for schizophrenia. New information is emerging from genomic findings, which converge on synaptic plasticity and provide a new window on the neurobiology of schizophrenia. Translating this information into therapeutic advances will require a multidisciplinary and collaborative approach.
Collapse
Affiliation(s)
- Arne W Mould
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Nicola A Hall
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
7
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
8
|
Cheng J, Scala F, Blanco FA, Niu S, Firozi K, Keehan L, Mulherkar S, Froudarakis E, Li L, Duman JG, Jiang X, Tolias KF. The Rac-GEF Tiam1 Promotes Dendrite and Synapse Stabilization of Dentate Granule Cells and Restricts Hippocampal-Dependent Memory Functions. J Neurosci 2021; 41:1191-1206. [PMID: 33328293 PMCID: PMC7888217 DOI: 10.1523/jneurosci.3271-17.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The dentate gyrus (DG) controls information flow into the hippocampus and is critical for learning, memory, pattern separation, and spatial coding, while DG dysfunction is associated with neuropsychiatric disorders. Despite its importance, the molecular mechanisms regulating DG neural circuit assembly and function remain unclear. Here, we identify the Rac-GEF Tiam1 as an important regulator of DG development and associated memory processes. In the hippocampus, Tiam1 is predominantly expressed in the DG throughout life. Global deletion of Tiam1 in male mice results in DG granule cells with simplified dendritic arbors, reduced dendritic spine density, and diminished excitatory synaptic transmission. Notably, DG granule cell dendrites and synapses develop normally in Tiam1 KO mice, resembling WT mice at postnatal day 21 (P21), but fail to stabilize, leading to dendrite and synapse loss by P42. These results indicate that Tiam1 promotes DG granule cell dendrite and synapse stabilization late in development. Tiam1 loss also increases the survival, but not the production, of adult-born DG granule cells, possibly because of greater circuit integration as a result of decreased competition with mature granule cells for synaptic inputs. Strikingly, both male and female mice lacking Tiam1 exhibit enhanced contextual fear memory and context discrimination. Together, these results suggest that Tiam1 is a key regulator of DG granule cell stabilization and function within hippocampal circuits. Moreover, based on the enhanced memory phenotype of Tiam1 KO mice, Tiam1 may be a potential target for the treatment of disorders involving memory impairments.SIGNIFICANCE STATEMENT The dentate gyrus (DG) is important for learning, memory, pattern separation, and spatial navigation, and its dysfunction is associated with neuropsychiatric disorders. However, the molecular mechanisms controlling DG formation and function remain elusive. By characterizing mice lacking the Rac-GEF Tiam1, we demonstrate that Tiam1 promotes the stabilization of DG granule cell dendritic arbors, spines, and synapses, whereas it restricts the survival of adult-born DG granule cells, which compete with mature granule cells for synaptic integration. Notably, mice lacking Tiam1 also exhibit enhanced contextual fear memory and context discrimination. These findings establish Tiam1 as an essential regulator of DG granule cell development, and identify it as a possible therapeutic target for memory enhancement.
Collapse
Affiliation(s)
- Jinxuan Cheng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Francisco A Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, Texas 77030
| | - Sanyong Niu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Laura Keehan
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Lingyong Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kimberley F Tolias
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
9
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Zaccard CR, Shapiro L, Martin-de-Saavedra MD, Pratt C, Myczek K, Song A, Forrest MP, Penzes P. Rapid 3D Enhanced Resolution Microscopy Reveals Diversity in Dendritic Spinule Dynamics, Regulation, and Function. Neuron 2020; 107:522-537.e6. [PMID: 32464088 DOI: 10.1016/j.neuron.2020.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.
Collapse
Affiliation(s)
- Colleen R Zaccard
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Shapiro
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | | | - Christopher Pratt
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Amy Song
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Paskus JD, Herring BE, Roche KW. Kalirin and Trio: RhoGEFs in Synaptic Transmission, Plasticity, and Complex Brain Disorders. Trends Neurosci 2020; 43:505-518. [PMID: 32513570 DOI: 10.1016/j.tins.2020.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Changes in the actin cytoskeleton are a primary mechanism mediating the morphological and functional plasticity that underlies learning and memory. The synaptic Ras homologous (Rho) guanine nucleotide exchange factors (GEFs) Kalirin and Trio have emerged as central regulators of actin dynamics at the synapse. The increased attention surrounding Kalirin and Trio stems from the growing evidence for their roles in the etiology of a wide range of neurodevelopmental and neurodegenerative disorders. In this Review, we discuss recent findings revealing the unique and diverse functions of these paralog proteins in neurodevelopment, excitatory synaptic transmission, and plasticity. We additionally survey the growing literature implicating these proteins in various neurological disorders.
Collapse
Affiliation(s)
- Jeremiah D Paskus
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Bruce E Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
12
|
Xie Z, Shapiro LP, Cahill ME, Russell TA, Lacor PN, Klein WL, Penzes P. Kalirin-7 prevents dendritic spine dysgenesis induced by amyloid beta-derived oligomers. Eur J Neurosci 2019; 49:1091-1101. [PMID: 30565792 DOI: 10.1111/ejn.14311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
Synapse degeneration and dendritic spine dysgenesis are believed to be crucial early steps in Alzheimer's disease (AD), and correlate with cognitive deficits in AD patients. Soluble amyloid beta (Aβ)-derived oligomers, also termed Aβ-derived diffusible ligands (ADDLs), accumulate in the brain of AD patients and play a crucial role in AD pathogenesis. ADDLs bind to mature hippocampal neurons, induce structural changes in dendritic spines and contribute to neuronal death. However, mechanisms underlying structural and toxic effects are not fully understood. Here, we report that ADDLs bind to cultured mature cortical pyramidal neurons and induce spine dysgenesis. ADDL treatment induced the rapid depletion of kalirin-7, a brain-specific guanine-nucleotide exchange factor for the small GTPase Rac1, from spines. Kalirin-7 is a key regulator of dendritic spine morphogenesis and maintenance in forebrain pyramidal neurons and here we show that overexpression of kalirin-7 prevents ADDL-induced spine degeneration. Taken together, our results suggest that kalirin-7 may play a role in the early events leading to synapse degeneration, and its pharmacological activation may prevent or delay synapse pathology in AD.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael E Cahill
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Theron A Russell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pascale N Lacor
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
13
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|
14
|
Association between Serum Kalirin Levels and the KALRN gene rs9289231 Polymorphism in Early-Onset Coronary Artery Disease. J Tehran Heart Cent 2018; 13:58-64. [PMID: 30483314 PMCID: PMC6246431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Recently, rs9289231 genetic variations of kalirin (KALRN) have been introduced as potential genetic markers for coronary artery disease (CAD). However, the influence of KALRN single-nucleotide polymorphisms (SNPs) on serum kalirin levels has not been investigated in CAD patients so far. Thus, the present study aimed to survey whether SNP T>G (rs9289231) was associated with the risk of early-onset CAD and serum kalirin levels among the study subjects. Methods: The rs9289231 polymorphism of the KALRN was genotyped in 512 subjects (61.5% male, mean age=46.3±7.1 y), comprising 268 subjects with angiographically diagnosed CAD and 244 controls using an HRM assay. Also, the levels of serum kalirin were compared between 133 CAD subjects and 123 controls using a sandwich ELISA assay. Results: The CAD subjects had more frequently GG genotypes than the controls. The odds ratio (OR) remained significant after adjustment for known CAD risk factors (OR=4.13, 95% CI: 2.48-9.10; P<0.001). A significant difference was also observed in that the G allele was more frequent among the CAD subjects. The G allele at the rs9289231 polymorphism was associated with a higher risk of CAD (OR=2.11, 95% CI: 1.27-2.59; P=0.001). The mean kalirin level of the CAD patients was higher than that of the controls (P=0.041). No significant correlation was seen in the different genotypes with serum kalirin levels. Conclusion: The KALRN rs9289231 T>G variant was considerably related with an increased risk of early-onset CAD. High kalirin levels were found in young CAD patients compared to the control subjects, with the levels not affected by the different genotypes of rs9289231.
Collapse
|
15
|
Russell TA, Grubisha MJ, Remmers CL, Kang SK, Forrest MP, Smith KR, Kopeikina KJ, Gao R, Sweet RA, Penzes P. A Schizophrenia-Linked KALRN Coding Variant Alters Neuron Morphology, Protein Function, and Transcript Stability. Biol Psychiatry 2018; 83:499-508. [PMID: 29241584 PMCID: PMC5809265 DOI: 10.1016/j.biopsych.2017.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/12/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Large-scale genetic studies have revealed that rare sequence variants, including single nucleotide variants (SNVs), in glutamatergic synaptic genes are enriched in schizophrenia patients. However, the majority are too rare to show any association with disease and have not been examined functionally. One such SNV, KALRN-P2255T, displays a penetrance that greatly exceeds that of previously identified schizophrenia-associated SNVs. Therefore, we sought to characterize its effects on the function of kalirin (Kal)-9, a dual Ras-related C3 botulinum toxin substrate 1 and Ras homologue gene family, member A (RhoA) guanine nucleotide exchange factor, upregulated in human schizophrenia brain tissue. METHODS Kal9 was overexpressed in primary rat cortical neurons or human embryonic kidney 293 (HEK293) cells. The effects of the P2255T variant on dendritic branching, dendritic spine morphology, protein and messenger RNA stability, and catalytic activity were examined. RESULTS Kal9-P2255T leads to diminished basal dendritic branching and dendritic spine size, compared with wild-type Kal9. The P2255T SNV directly affected Kal9 protein function, causing increased RhoA activation in HEK293 cells, but had no effect on Ras-related C3 botulinum toxin substrate 1 activation. Consistent with human postmortem findings, we found that Kal9-P2255T protein levels were higher than those of wild-type Kal9 in neurons. Increased messenger RNA stability was detected in HEK293 cells, indicating that this was the cause of the higher protein levels. When analyzed together, increased intrinsic RhoA guanine nucleotide exchange factor catalytic activity combined with increased messenger RNA expression led to net enhancement of RhoA activation, known to negatively impact neuronal morphology. CONCLUSIONS Taken together, our data reveal a novel mechanism for disease-associated SNVs and provide a platform for modeling morphological changes in mental disorders.
Collapse
Affiliation(s)
- Theron A. Russell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christine L. Remmers
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seok Kyu Kang
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marc P. Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katharine R. Smith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Katherine J. Kopeikina
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,VISN 4 Mental Illness Research, Education and Clinical Center (MIRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
16
|
Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet 2017; 26:4728-4740. [PMID: 28973398 PMCID: PMC5886096 DOI: 10.1093/hmg/ddx355] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara M Katrancha
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
| | - Minsheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Betty A Eipper
- Department of Neuroscience
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
17
|
Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies. Neural Plast 2016; 2016:8051861. [PMID: 27795858 PMCID: PMC5067329 DOI: 10.1155/2016/8051861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains-the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.
Collapse
|
18
|
Grubisha MJ, Lin CW, Tseng GC, Penzes P, Sibille E, Sweet RA. Age-dependent increase in Kalirin-9 and Kalirin-12 transcripts in human orbitofrontal cortex. Eur J Neurosci 2016; 44:2483-2492. [PMID: 27471199 PMCID: PMC5048532 DOI: 10.1111/ejn.13351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
Abstract
KALRN (KAL) is a Rho GEF that is highly involved in regulation of the actin cytoskeleton within dendrites. There are several isoforms of the protein that arise from differential splicing of KALRN's 66 exons. KAL isoforms have different functions in development. For example, overexpression of the KAL9 and KAL12 isoforms induce dendritic elongation in early development. However, in mature neurons KAL9 overexpression reduces dendritic length, a phenotype also observed in normal human ageing. We therefore hypothesized that KAL9 would have increased expression with age, and undertook to evaluate the expression of individual KALRN exons throughout the adult lifespan. Postmortem human brain grey matter from Brodmann's area (BA) 11 and BA47 derived from a cohort of 209 individuals without psychiatric or neurodegenerative disease, ranging in age from 16 to 91 years, were analysed for KALRN expression by Affymetrix exon array. Analysis of the exon array data in an isoform-specific manner, as well as confirmatory isoform-specific qPCR studies, indicated that the longer KAL9 and KAL12 isoforms demonstrated a statistically significant, but modest, increase with age. The small magnitude of the age effect suggests that inter-individual factors other than age likely contribute to a higher degree to KAL9 and KAL12 expression. In contrast to KAL9 and KAL12, global KALRN expression did not increase with age. Our work suggests that global measures of KALRN gene expression may be misleading and future studies should focus on isoform-specific quantification.
Collapse
Affiliation(s)
- Melanie J Grubisha
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Chien-Wei Lin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Penzes
- Departments of Physiology and Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Psychiatry, Pharmacology and Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, ON, Canada
| | - Robert A Sweet
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Biomedical Science Tower, Rm W-1645, 3811 O'Hara Street, Pittsburgh, PA, 15213-2593, USA.
- Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Makrythanasis P, Guipponi M, Santoni FA, Zaki M, Issa MY, Ansar M, Hamamy H, Antonarakis SE. Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Hum Genomics 2016; 10:26. [PMID: 27421267 PMCID: PMC4947303 DOI: 10.1186/s40246-016-0082-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recent availability of whole-exome sequencing has opened new possibilities for the evaluation of individuals with genetically undiagnosed intellectual disability. RESULTS We report two affected siblings, offspring of first-cousin parents, with intellectual disability, hypotonia, short stature, growth hormone deficiency, and delayed bone age. All members of the nuclear family were genotyped, and exome sequencing was performed in one of the affected individuals. We used an in-house algorithm (CATCH v1.1) that combines homozygosity mapping with exome sequencing results and provides a list of candidate variants. One identified novel homozygous missense variant in KALRN (NM_003947.4:c.3644C>A: p.(Thr1215Lys)) was predicted to be pathogenic by all pathogenicity prediction software used (SIFT, PolyPhen, Mutation Taster). KALRN encodes the protein kalirin, which is a GTP-exchange factor protein with a reported role in cytoskeletal remodeling and dendritic spine formation in neurons. It is known that mice with ablation of Kalrn exhibit age-dependent functional deficits and behavioral phenotypes. CONCLUSION Exome sequencing provided initial evidence linking KALRN to monogenic intellectual disability in man, and we propose that KALRN is the causative gene for the autosomal recessive phenotype in this family.
Collapse
Affiliation(s)
- Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Maha Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva, Switzerland. .,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland. .,iGE3, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
20
|
Puigdellívol M, Cherubini M, Brito V, Giralt A, Suelves N, Ballesteros J, Zamora-Moratalla A, Martín ED, Eipper BA, Alberch J, Ginés S. A role for Kalirin-7 in corticostriatal synaptic dysfunction in Huntington's disease. Hum Mol Genet 2015; 24:7265-85. [PMID: 26464483 DOI: 10.1093/hmg/ddv426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Marta Cherubini
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Verónica Brito
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Albert Giralt
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Núria Suelves
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Jesús Ballesteros
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Alfonsa Zamora-Moratalla
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Eduardo D Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Albacete Science and Technology Park (PCYTA), Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain and
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jordi Alberch
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain
| | - Silvia Ginés
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, CIBERNED, Madrid, Spain,
| |
Collapse
|
21
|
Azzarelli R, Kerloch T, Pacary E. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies. Front Cell Neurosci 2015; 8:445. [PMID: 25610373 PMCID: PMC4285737 DOI: 10.3389/fncel.2014.00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022] Open
Abstract
The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, University of Cambridge Cambridge, UK
| | - Thomas Kerloch
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| | - Emilie Pacary
- Institut National de la Santé et de la Recherche Médicale U862, Neurocentre Magendie Bordeaux, France ; Institut National de la Santé et de la Recherche Médicale, Physiopathologie de la Plasticité Neuronale, Université de Bordeaux Bordeaux, France
| |
Collapse
|
22
|
Russell TA, Blizinsky KD, Cobia DJ, Cahill ME, Xie Z, Sweet RA, Duan J, Gejman PV, Wang L, Csernansky JG, Penzes P. A sequence variant in human KALRN impairs protein function and coincides with reduced cortical thickness. Nat Commun 2014; 5:4858. [PMID: 25224588 PMCID: PMC4166532 DOI: 10.1038/ncomms5858] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/31/2014] [Indexed: 12/16/2022] Open
Abstract
Dendritic spine pathology is a key feature of several neuropsychiatric disorders. The Rac1 guanine nucleotide exchange factor kalirin-7 is critical for spine morphogenesis on cortical pyramidal neurons. Here we identify a rare coding variant in the KALRN gene region that encodes the catalytic domain, in a schizophrenia patient and his sibling with major depressive disorder. The D1338N substitution significantly diminished the protein's ability to catalyse the activation of Rac1. Contrary to wild-type kalirin-7, kalirin-7-D1338N failed to increase spine size and density. Both subjects carrying the polymorphism displayed reduced cortical volume in the superior temporal sulcus (STS), a region implicated in schizophrenia. Consistent with this, mice with reduced kalirin expression showed reduced neuropil volume in the rodent homologue of the STS. These data suggest that single amino acid changes in proteins involved in dendritic spine function can have significant effects on the structure and function of the cerebral cortex.
Collapse
Affiliation(s)
- Theron A Russell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Katherine D Blizinsky
- 1] Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Derin J Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Michael E Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Robert A Sweet
- 1] Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA [2] Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Jubao Duan
- 1] Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, Illinois 60637, USA [2] Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois 60208, USA
| | - Pablo V Gejman
- 1] Department of Psychiatry and Behavioral Sciences, University of Chicago, Chicago, Illinois 60637, USA [2] Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, Illinois 60208, USA
| | - Lei Wang
- 1] Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Peter Penzes
- 1] Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
23
|
Cai DC, Fonteijn H, Guadalupe T, Zwiers M, Wittfeld K, Teumer A, Hoogman M, Arias-Vásquez A, Yang Y, Buitelaar J, Fernández G, Brunner HG, van Bokhoven H, Franke B, Hegenscheid K, Homuth G, Fisher SE, Grabe HJ, Francks C, Hagoort P. A genome-wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. GENES BRAIN AND BEHAVIOR 2014; 13:675-85. [DOI: 10.1111/gbb.12157] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
Affiliation(s)
- D.-C. Cai
- Institute of Psychology; Chinese Academy of Sciences; Beijing China
- Max Planck Institute for Psycholinguistics
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Graduate University of Chinese Academy of Sciences; Beijing China
| | - H. Fonteijn
- Max Planck Institute for Psycholinguistics
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
| | | | - M. Zwiers
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - K. Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald; Greifswald Germany
| | | | - M. Hoogman
- Max Planck Institute for Psycholinguistics
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - A. Arias-Vásquez
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - Y. Yang
- Institute of Psychology; Chinese Academy of Sciences; Beijing China
| | - J. Buitelaar
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - G. Fernández
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - H. G. Brunner
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - H. van Bokhoven
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - B. Franke
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
- Departments of Human Genetics, Psychiatry and Cognitive Neuroscience; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | | | - G. Homuth
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine Greifswald; Greifswald
| | - S. E. Fisher
- Max Planck Institute for Psycholinguistics
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
| | - H. J. Grabe
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald; Greifswald Germany
- Department of Psychiatry and Psychotherapy; University Medicine Greifswald, HELIOS Hospital Stralsund; Stralsund Germany
| | - C. Francks
- Max Planck Institute for Psycholinguistics
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
| | - P. Hagoort
- Max Planck Institute for Psycholinguistics
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; Nijmegen The Netherlands
| |
Collapse
|
24
|
Yan Y, Eipper BA, Mains RE. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching. Cereb Cortex 2014; 25:3487-501. [PMID: 25146373 DOI: 10.1093/cercor/bhu182] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Proteins derived from the Kalrn gene, encoding 2 Rho guanine nucleotide exchange factor (GEF) domains, affect dendritic and axonal morphogenesis. The roles of endogenous Kalirin-9 (Kal9) and Kalirin-12 (Kal12), the Kalrn isoforms expressed before synaptogenesis, have not been studied in neurite growth and maturation during early development. The Caenorhabditis elegans and Drosophila melanogaster orthologues of Kalrn encode proteins equivalent to Kal9 but, lacking a kinase domain, neither organism expresses a protein equivalent to Kal12. Both in vivo and in vitro analyses of cortical neurons from total Kalrn knockout mice, lacking all major Kalirin isoforms, revealed a simplified dendritic arbor and reduced neurite length. Using isoform-specific shRNAs to reduce Kal9 or Kal12 expression in hippocampal cultures resulted in stunted dendritic outgrowth and branching in vitro, without affecting axonal polarity. Exposing hippocampal cultures to inhibitors of the first GEF domain of Kalirin (ITX3, Z62954982) blunted neurite outgrowth and branching, confirming its essential role, without altering the morphology of neurons not expressing Kalrn. In addition, exogenous expression of the active kinase domain unique to Kal12 increased neurite number and length, whereas that of the inactive kinase domain decreased neurite growth. Our results demonstrate that both endogenous Kal9 and endogenous Kal12 contribute to dendritic maturation in early development.
Collapse
Affiliation(s)
- Yan Yan
- Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Betty A Eipper
- Department of Neuroscience, UConn Health, Farmington, CT 06030, USA Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Richard E Mains
- Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
25
|
Murray PS, Kumar S, Demichele-Sweet MAA, Sweet RA. Psychosis in Alzheimer's disease. Biol Psychiatry 2014; 75:542-52. [PMID: 24103379 PMCID: PMC4036443 DOI: 10.1016/j.biopsych.2013.08.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/22/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
Psychotic symptoms, delusions and hallucinations, occur in approximately 50% of individuals with Alzheimer's disease (AD) (AD with psychosis [AD + P]). Pharmacotherapies for AD + P have limited efficacy and can increase short-term mortality. These observations have motivated efforts to identify the underlying biology of AD + P. Psychosis in AD indicates a more severe phenotype, with more rapid cognitive decline beginning even before psychosis onset. Neuroimaging studies suggest that AD + P subjects demonstrate greater cortical synaptic impairments than AD subjects without psychosis, reflected in reduced gray matter volume, reduced regional blood flow, and reduced regional glucose metabolism. Neuroimaging and available postmortem evidence further indicate that the impairments in AD + P, relative to AD subjects without psychosis, are localized to neocortex rather than medial temporal lobe. Neuropathologic studies provide consistent evidence of accelerated accumulation of hyperphosphorylated microtubule associated protein tau in AD + P. Finally, studies of familial aggregation of AD + P have established that the risk for psychosis in AD is, in part, genetically mediated. Although no genes are established as associated with AD + P, the first genome-wide association study of AD + P has generated some promising leads. The study of the neurobiology of AD + P is rapidly accelerating and may be poised for translational discovery. This process can be enhanced by identifying points of convergence and divergence with the neurobiology of AD proper and of schizophrenia, by innovative extension of current approaches, and by development of relevant animal models.
Collapse
Affiliation(s)
- Patrick S Murray
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Sanjeev Kumar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Robert A Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Integrated Service Network 4 Mental Illness Research, Education and Clinical Center, US Department of Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
26
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
27
|
Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 2013; 112:80-99. [PMID: 24211850 DOI: 10.1016/j.pneurobio.2013.10.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/21/2022]
Abstract
Chronic restraint stress leads to increases in brain derived neurotrophic factor (BDNF) mRNA and protein in some regions of the brain, e.g. the basal lateral amygdala (BLA) but decreases in other regions such as the CA3 region of the hippocampus and dendritic spine density increases or decreases in line with these changes in BDNF. Given the powerful influence that BDNF has on dendritic spine growth, these observations suggest that the fundamental reason for the direction and extent of changes in dendritic spine density in a particular region of the brain under stress is due to the changes in BDNF there. The most likely cause of these changes is provided by the stress initiated release of steroids, which readily enter neurons and alter gene expression, for example that of BDNF. Of particular interest is how glucocorticoids and mineralocorticoids tend to have opposite effects on BDNF gene expression offering the possibility that differences in the distribution of their receptors and of their downstream effects might provide a basis for the differential transcription of the BDNF genes. Alternatively, differences in the extent of methylation and acetylation in the epigenetic control of BDNF transcription are possible in different parts of the brain following stress. Although present evidence points to changes in BDNF transcription being the major causal agent for the changes in spine density in different parts of the brain following stress, steroids have significant effects on downstream pathways from the TrkB receptor once it is acted upon by BDNF, including those that modulate the density of dendritic spines. Finally, although glucocorticoids play a canonical role in determining BDNF modulation of dendritic spines, recent studies have shown a role for corticotrophin releasing factor (CRF) in this regard. There is considerable improvement in the extent of changes in spine size and density in rodents with forebrain specific knockout of CRF receptor 1 (CRFR1) even when the glucocorticoid pathways are left intact. It seems then that CRF does have a role to play in determining BDNF control of dendritic spines.
Collapse
|
28
|
de Bartolomeis A, Latte G, Tomasetti C, Iasevoli F. Glutamatergic postsynaptic density protein dysfunctions in synaptic plasticity and dendritic spines morphology: relevance to schizophrenia and other behavioral disorders pathophysiology, and implications for novel therapeutic approaches. Mol Neurobiol 2013; 49:484-511. [PMID: 23999870 DOI: 10.1007/s12035-013-8534-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/13/2013] [Indexed: 02/06/2023]
Abstract
Emerging researches point to a relevant role of postsynaptic density (PSD) proteins, such as PSD-95, Homer, Shank, and DISC-1, in the pathophysiology of schizophrenia and autism spectrum disorders. The PSD is a thickness, detectable at electronic microscopy, localized at the postsynaptic membrane of glutamatergic synapses, and made by scaffolding proteins, receptors, and effector proteins; it is considered a structural and functional crossroad where multiple neurotransmitter systems converge, including the dopaminergic, serotonergic, and glutamatergic ones, which are all implicated in the pathophysiology of psychosis. Decreased PSD-95 protein levels have been reported in postmortem brains of schizophrenia patients. Variants of Homer1, a key PSD protein for glutamate signaling, have been associated with schizophrenia symptoms severity and therapeutic response. Mutations in Shank gene have been recognized in autism spectrum disorder patients, as well as reported to be associated to behaviors reminiscent of schizophrenia symptoms when expressed in genetically engineered mice. Here, we provide a critical appraisal of PSD proteins role in the pathophysiology of schizophrenia and autism spectrum disorders. Then, we discuss how antipsychotics may affect PSD proteins in brain regions relevant to psychosis pathophysiology, possibly by controlling synaptic plasticity and dendritic spine rearrangements through the modulation of glutamate-related targets. We finally provide a framework that may explain how PSD proteins might be useful candidates to develop new therapeutic approaches for schizophrenia and related disorders in which there is a need for new biological treatments, especially against some symptom domains, such as negative symptoms, that are poorly affected by current antipsychotics.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, Section of Psychiatry, University School of Medicine "Federico II", Via Pansini 5, 80131, Naples, Italy,
| | | | | | | |
Collapse
|
29
|
Penzes P, Buonanno A, Passafaro M, Sala C, Sweet RA. Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. J Neurochem 2013; 126:165-82. [PMID: 23574039 PMCID: PMC3700683 DOI: 10.1111/jnc.12261] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Psychiatric and neurodegenerative disorders, including intellectual disability, autism spectrum disorders (ASD), schizophrenia (SZ), and Alzheimer's disease, pose an immense burden to society. Symptoms of these disorders become manifest at different stages of life: early childhood, adolescence, and late adulthood, respectively. Progress has been made in recent years toward understanding the genetic substrates, cellular mechanisms, brain circuits, and endophenotypes of these disorders. Multiple lines of evidence implicate excitatory and inhibitory synaptic circuits in the cortex and hippocampus as key cellular substrates of pathogenesis in these disorders. Excitatory/inhibitory balance--modulated largely by dopamine--critically regulates cortical network function, neural network activity (i.e. gamma oscillations) and behaviors associated with psychiatric disorders. Understanding the molecular underpinnings of synaptic pathology and neuronal network activity may thus provide essential insight into the pathogenesis of these disorders and can reveal novel drug targets to treat them. Here, we discuss recent genetic, neuropathological, and molecular studies that implicate alterations in excitatory and inhibitory synaptic circuits in the pathogenesis of psychiatric disorders across the lifespan.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
30
|
Cahill ME, Remmers C, Jones KA, Xie Z, Sweet RA, Penzes P. Neuregulin1 signaling promotes dendritic spine growth through kalirin. J Neurochem 2013; 126:625-35. [PMID: 23742124 DOI: 10.1111/jnc.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/22/2013] [Accepted: 06/03/2013] [Indexed: 02/01/2023]
Abstract
The biological functions of the neuregulin 1 (NRG1) and ERBB4 genes have received much recent attention due to several studies showing associations between these genes and schizophrenia. Moreover, reduced forebrain dendritic spine density is a consistent feature of schizophrenia. It is thus important to understand the mechanisms whereby NRG1 and erbB4 modulate spine morphogenesis. Here, we show that long-term incubation with NRG1 increases both spine size and density in cortical pyramidal neurons. NRG1 also enhances the content of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in spines. Knockdown of ERBB4 expression prevented the effects of NRG1 on spine size, but not on spine density. The effects of NRG1 and erbB4 on spines were mediated by the RacGEF kalirin, a well-characterized regulator of dendritic spines. Finally, we show that environmental enrichment, known to promote spine growth, robustly enhances the levels of erbB4 protein in the forebrain. These findings provide a mechanistic link between NRG1 signaling and spine morphogenesis
Collapse
Affiliation(s)
- Michael E Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
31
|
Vanleeuwen JE, Penzes P. Long-term perturbation of spine plasticity results in distinct impairments of cognitive function. J Neurochem 2012; 123:781-9. [PMID: 22862288 DOI: 10.1111/j.1471-4159.2012.07899.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/29/2022]
Abstract
Dendritic spines serve as the post-synaptic structural component of synapses. The structure and function of dendritic spines are dynamically regulated by a number of signaling pathways and allow for normal neural processing, whereas aberrant spine changes are thought to contribute to cognitive impairment in neuropsychiatric and neurodegenerative disorders. However, spine changes within different brain regions and their contribution to specific cognitive functions, especially later in adulthood, is not well understood. In this study, we used late-adult KALRN-deficient mice as a tool to investigate the vulnerability of different cognitive functions to long-term perturbations in spine plasticity in different forebrain regions. We found that in these mice, loss of one or both copies of KALRN lead to genotype and brain region-dependent reductions in spine density. Surprisingly, heterozygote and knockout mice showed differential impairments in cognitive phenotypes, including working memory, social recognition, and social approach. Correlation analysis between the site and magnitude of spine loss and behavioral alterations suggests that the interplay between brain regions is critical for complex cognitive processing and underscores the importance of spine plasticity in normal cognitive function. Long-term perturbation of spine plasticity results in distinct impairments of cognitive function. Using genetically modified mice deficient in a central regulator of spine plasticity, we investigated the brain region-specific contribution of spine numbers to various cognitive functions. We found distinct cognitive functions display differential sensitivity to spine loss in the cortex and hippocampus. Our data support spines as neuronal structures important for cognition and suggest interplay between brain regions is critical for complex cognitive processing.
Collapse
Affiliation(s)
- Jon-Eric Vanleeuwen
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
32
|
Gonzalez-Billault C, Muñoz-Llancao P, Henriquez DR, Wojnacki J, Conde C, Caceres A. The role of small GTPases in neuronal morphogenesis and polarity. Cytoskeleton (Hoboken) 2012; 69:464-85. [PMID: 22605667 DOI: 10.1002/cm.21034] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
The highly dynamic remodeling and cross talk of the microtubule and actin cytoskeleton support neuronal morphogenesis. Small RhoGTPases family members have emerged as crucial regulators of cytoskeletal dynamics. In this review we will comprehensively analyze findings that support the participation of RhoA, Rac, Cdc42, and TC10 in different neuronal morphogenetic events ranging from migration to synaptic plasticity. We will specifically address the contribution of these GTPases to support neuronal polarity and axonal elongation.
Collapse
Affiliation(s)
- Christian Gonzalez-Billault
- Faculty of Sciences, Laboratory of Cell and Neuronal Dynamics, Department of Biology and Institute for Cell Dynamics and Biotechnology, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
33
|
Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience 2012; 251:90-107. [PMID: 22546337 DOI: 10.1016/j.neuroscience.2012.04.044] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia.
Collapse
Affiliation(s)
- J R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
34
|
Cahill ME, Jones KA, Rafalovich I, Xie Z, Barros CS, Müller U, Penzes P. Control of interneuron dendritic growth through NRG1/erbB4-mediated kalirin-7 disinhibition. Mol Psychiatry 2012; 17:1, 99-107. [PMID: 21483438 PMCID: PMC3135693 DOI: 10.1038/mp.2011.35] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/07/2011] [Indexed: 01/29/2023]
Abstract
Neuregulin 1 (NRG1) is a secreted trophic factor that activates the postsynaptic erbB4 receptor tyrosine kinase. Both NRG1 and erbB4 have been repeatedly associated with schizophrenia, but their downstream targets are not well characterized. ErbB4 is highly abundant in interneurons, and NRG1-mediated erbB4 activation has been shown to modulate interneuron function, but the role for NRG1-erbB4 signaling in regulating interneuron dendritic growth is not well understood. Here we show that NRG1/erbB4 promote the growth of dendrites in mature interneurons through kalirin, a major dendritic Rac1-GEF. Recent studies have shown associations of the KALRN gene with schizophrenia. Our data point to an essential role of phosphorylation in kalirin-7's C terminus as the critical site for these effects. As reduced interneuron dendrite length occurs in schizophrenia, understanding how NRG1-erbB4 signaling modulates interneuron dendritic morphogenesis might shed light on disease-related alterations in cortical circuits.
Collapse
Affiliation(s)
- Michael E. Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kelly A. Jones
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Igor Rafalovich
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Claudia S. Barros
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- School of Biological Science, Bangor University, Bangor LL57 2UW, U.K
| | - Ulrich Müller
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
36
|
Kelly MP, Brandon NJ. Taking a bird’s eye view on a mouse model review: a comparison of findings from mouse models targeting DISC1 or DISC1-interacting proteins. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DISC1 has garnered much interest from researchers trying to understand the neurobiology of psychiatric disease. DISC1 appears to function as a structural protein hub for a number of molecules, many of which are considered disease-relevant targets in their own right. Thus, in this article, we compare behavioral, anatomical and biochemical findings in genetic mouse models of DISC1 and DISC1-interacting proteins to better understand how dysfunction of DISC1 and/or its interactors could contribute to psychiatric pathophysiology through convergent effects on distinct cells, circuits and behaviors. Consistencies in phenotypes across mouse models suggest that DISC1 and its binding partners are particularly critical for working memory performance, proper neuronal migration and cortical volume, normal spine density, an intact monoaminergic system, proper levels of parvalbumin and normal cytokine/stress signaling in the rodent. If these DISC1 functions translate to humans, it would explain how alterations in DISC1 or DISC1 interactors could contribute to psychiatric pathophysiology. Identification of such a biological convergence will hopefully improve the development of novel therapeutics for patients by focusing efforts on specific domains that are affected by DISC1-related genetic risk architecture.
Collapse
Affiliation(s)
- Michy P Kelly
- Pfizer Neuroscience Research Unit, Eastern Point Road, Groton, CT 06340, USA
| | - Nicholas J Brandon
- Pfizer Neuroscience Research Unit, Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
37
|
Xu Y, Li S, Vernon MM, Pan J, Chen L, Barish PA, Zhang Y, Acharya AP, Yu J, Govindarajan SS, Boykin E, Pan X, O'Donnell JM, Ogle WO. Curcumin prevents corticosterone-induced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway. J Neurochem 2011; 118:784-95. [PMID: 21689105 DOI: 10.1111/j.1471-4159.2011.07356.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Curcumin, a major active component of Curcuma longa, possesses antioxidant and neuroprotective activities. The present study explores the mechanisms underlying the neuroprotective effect of curcumin against corticosterone and its relation to 5-hydroxy tryptamine (5-HT) receptors. Exposure of cortical neurons to corticosterone results in decreased mRNA levels for three 5-HT receptor subtypes, 5-HT(1A), 5-HT(2A) and 5-HT(4), but 5-HT(1B,) 5-HT(2B), 5-HT(2C), 5-HT(6) and 5-HT(7) receptors remain unchanged. Pre-treatment with curcumin reversed this effect on mRNA for the 5-HT(1A) and 5-HT(4) receptors, but not for the 5-HT(2A) receptor. Moreover, curcumin exerted a neuroprotective effect against corticosterone-induced neuronal death. This observed effect of curcumin was partially blocked by either 5-HT(1A) receptor antagonist p-MPPI or 5-HT(4) receptor antagonist RS 39604 alone; whereas, the simultaneous application of both antagonists completely reversed the effect. Curcumin was also found to regulate corticosterone-induced morphological changes such as increases in soma size, dendritic branching and dendritic spine density, as well as elevate synaptophysin expression in cortical neurons. p-MPPI and RS 39604 reversed the effect of curcumin-induced change in neuronal morphology and synaptophysin expression of corticosterone-treated neurons. In addition, an increase in cyclic adenosine monophosphate (cAMP) level was observed after curcumin treatment, which was further prevented by RS 39604, but not by p-MPPI. However, curcumin-induced elevation in protein kinase A activity and phosphorylation of cAMP response element-binding protein levels were inhibited by both p-MPPI and RS 39604. These findings suggest that the neuroprotection and modulation of neuroplasticity exhibited by curcumin might be mediated, at least in part, via the 5-HT receptor-cAMP-PKA-CREB signal pathway.
Collapse
Affiliation(s)
- Ying Xu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133-48. [PMID: 21530608 PMCID: PMC3129138 DOI: 10.1016/j.pneurobio.2011.04.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
Collapse
Affiliation(s)
- Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
39
|
Xu Y, Zhang C, Wang R, Govindarajan S, Barish P, Vernon M, Fu C, Acharya A, Chen L, Boykin E, Yu J, Pan J, O'Donnell J, Ogle W. Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway. Neuroscience 2011; 182:71-81. [DOI: 10.1016/j.neuroscience.2011.02.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/16/2022]
|
40
|
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14:285-93. [PMID: 21346746 PMCID: PMC3530413 DOI: 10.1038/nn.2741] [Citation(s) in RCA: 1168] [Impact Index Per Article: 83.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Substantial progress has been made toward understanding the genetic architecture, cellular substrates, brain circuits and endophenotypic profiles of neuropsychiatric disorders, including autism spectrum disorders (ASD), schizophrenia and Alzheimer's disease. Recent evidence implicates spiny synapses as important substrates of pathogenesis in these disorders. Although synaptic perturbations are not the only alterations relevant for these diseases, understanding the molecular underpinnings of spine pathology may provide insight into their etiologies and may reveal new drug targets. Here we discuss recent neuropathological, genetic, molecular and animal model studies that implicate structural alterations at spiny synapses in the pathogenesis of major neurological disorders, focusing on ASD, schizophrenia and Alzheimer's disease as representatives of these categories across different ages of onset. We stress the importance of reverse translation, collaborative and multidisciplinary approaches, and the study of the spatio-temporal roles of disease molecules in the context of synaptic regulatory pathways and neuronal circuits that underlie disease endophenotypes.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
41
|
Mains RE, Kiraly DD, Eipper-Mains JE, Ma XM, Eipper BA. Kalrn promoter usage and isoform expression respond to chronic cocaine exposure. BMC Neurosci 2011; 12:20. [PMID: 21329509 PMCID: PMC3048553 DOI: 10.1186/1471-2202-12-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/17/2011] [Indexed: 12/31/2022] Open
Abstract
Background The long-term effects of cocaine on behavior are accompanied by structural changes in excitatory glutamatergic synapses onto the medium spiny neurons of the striatum. The Kalrn gene encodes several functionally distinct isoforms; these multidomain guanine nucleotide exchange factors (GEFs) contain additional domains known to interact with phosphatidylinositides as well as with a number of different proteins. Through their activation of Rho proteins and their interactions with other proteins, the different Kalirin isoforms affect cytoskeletal organization. Chronic exposure of adult male rodents to cocaine increases levels of Kalirin 7 in the striatum. When exposed chronically to cocaine, mice lacking Kalirin 7, the major adult isoform, fail to show an increase in dendritic spine density in the nucleus accumbens, show diminished place preference for cocaine, and exhibit increased locomotor activity in response to cocaine. Results The use of alternate promoters and 3'-terminal exons of the mouse Kalrn gene were investigated using real-time quantitative polymerase chain reaction. While the two most distal full-length Kalrn promoters are used equally in the prefrontal cortex, the more proximal of these promoters accounts for most of the transcripts expressed in the nucleus accumbens. The 3'-terminal exon unique to the Kalirin 7 isoform accounts for a greater percentage of the Kalrn transcripts in prefrontal cortex than in nucleus accumbens. Western blot analyses confirmed these differences. Chronic cocaine treatment increases usage of the promoter encoding the Δ-Kalirin isoforms but does not alter full-length Kalirin promoter usage. Usage of the 3'-terminal exon unique to Kalirin 7 increases following chronic cocaine exposure. Conclusions Kalrn promoter and 3'-terminal exon utilization are region-specific. In the nucleus accumbens, cocaine-mediated alterations in promoter usage and 3'-terminal exon usage favor expression of Kalirin 7 and Δ-Kalirin 7. The Δ-isoform, which lacks a Sec14p domain and four of the nine spectrin-like repeats found in full-length Kalirin isoforms, increases spine headsize without increasing dendritic spine numbers. Thus cocaine-mediated changes in alternative splicing of the Kalrn gene may contribute importantly to the behavioral, morphological and biochemical responses observed.
Collapse
Affiliation(s)
- Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-3401, USA.
| | | | | | | | | |
Collapse
|
42
|
Hussman JP, Chung RH, Griswold AJ, Jaworski JM, Salyakina D, Ma D, Konidari I, Whitehead PL, Vance JM, Martin ER, Cuccaro ML, Gilbert JR, Haines JL, Pericak-Vance MA. A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism. Mol Autism 2011; 2:1. [PMID: 21247446 PMCID: PMC3035032 DOI: 10.1186/2040-2392-2-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/19/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism. METHODS GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology. RESULTS Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets. CONCLUSIONS As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.
Collapse
Affiliation(s)
| | - Ren-Hua Chung
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - James M Jaworski
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Daria Salyakina
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Deqiong Ma
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ioanna Konidari
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jonathan L Haines
- Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
43
|
Xie Z, Cahill ME, Radulovic J, Wang J, Campbell SL, Miller CA, Sweatt JD, Penzes P. Hippocampal phenotypes in kalirin-deficient mice. Mol Cell Neurosci 2011; 46:45-54. [PMID: 20708080 PMCID: PMC3576140 DOI: 10.1016/j.mcn.2010.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/31/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022] Open
Abstract
Regulation of forebrain cellular structure and function by small GTPase pathways is crucial for normal and pathological brain development and function. Kalirin is a brain-specific activator of Rho-like small GTPases implicated in neuropsychiatric disorders. We have recently demonstrated key roles for kalirin in cortical synaptic transmission, dendrite branching, spine density, and working memory. However, little is known about the impact of the complete absence of kalirin on the hippocampus in mice. We thus investigated hippocampal function, structure, and associated behavioral phenotypes in KALRN knockout (KO) mice we have recently generated. Here we show that KALRN KO mice had modest impairments in hippocampal LTP, but normal hippocampal synaptic transmission. In these mice, both context and cue-dependent fear conditioning were impaired. Spine density and dendrite morphology in hippocampal pyramidal neurons were not significantly affected in the KALRN KO mice, but small alterations in the gross morphology of the hippocampus were detected. These data suggest that hippocampal structure and function are more resilient to the complete loss of kalirin, and reveal impairments in fear learning. These studies allow the comparison of the phenotypes of different kalirin mutant mice and shed light on the brain region-specific functions of small GTPase signaling.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Michael E. Cahill
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- The Asher Center for Depressive Disorders, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Susan L. Campbell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Courtney A. Miller
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - J. David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
44
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|