1
|
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int J Mol Sci 2024; 25:2226. [PMID: 38396913 PMCID: PMC10889697 DOI: 10.3390/ijms25042226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The intricate functionality of the vertebrate retina relies on the interplay between neurotransmitter activity and calcium (Ca2+) dynamics, offering important insights into developmental processes, physiological functioning, and disease progression. Neurotransmitters orchestrate cellular processes to shape the behavior of the retina under diverse circumstances. Despite research to elucidate the roles of individual neurotransmitters in the visual system, there remains a gap in our understanding of the holistic integration of their interplay with Ca2+ dynamics in the broader context of neuronal development, health, and disease. To address this gap, the present review explores the mechanisms used by the neurotransmitters glutamate, gamma-aminobutyric acid (GABA), glycine, dopamine, and acetylcholine (ACh) and their interplay with Ca2+ dynamics. This conceptual outline is intended to inform and guide future research, underpinning novel therapeutic avenues for retinal-associated disorders.
Collapse
Affiliation(s)
- Johane M. Boff
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
| | - Saivikram Madireddy
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Nilmini Viswaprakash
- Department of Medical Education, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | | | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (J.M.B.); (A.P.S.)
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Peiser-Oliver JM, Evans S, Adams DJ, Christie MJ, Vandenberg RJ, Mohammadi SA. Glycinergic Modulation of Pain in Behavioral Animal Models. Front Pharmacol 2022; 13:860903. [PMID: 35694265 PMCID: PMC9174897 DOI: 10.3389/fphar.2022.860903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Animal models of human pain conditions allow for detailed interrogation of known and hypothesized mechanisms of pain physiology in awake, behaving organisms. The importance of the glycinergic system for pain modulation is well known; however, manipulation of this system to treat and alleviate pain has not yet reached the sophistication required for the clinic. Here, we review the current literature on what animal behavioral studies have allowed us to elucidate about glycinergic pain modulation, and the progress toward clinical treatments so far. First, we outline the animal pain models that have been used, such as nerve injury models for neuropathic pain, chemogenic pain models for acute and inflammatory pain, and other models that mimic painful human pathologies such as diabetic neuropathy. We then discuss the genetic approaches to animal models that have identified the crucial glycinergic machinery involved in neuropathic and inflammatory pain. Specifically, two glycine receptor (GlyR) subtypes, GlyRα1(β) and GlyRα3(β), and the two glycine transporters (GlyT), GlyT1 and GlyT2. Finally, we review the different pharmacological approaches to manipulating the glycinergic system for pain management in animal models, such as partial vs. full agonism, reversibility, and multi-target approaches. We discuss the benefits and pitfalls of using animal models in drug development broadly, as well as the progress of glycinergic treatments from preclinical to clinical trials.
Collapse
Affiliation(s)
| | - Sally Evans
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | | | | | - Sarasa A. Mohammadi
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Sarasa A. Mohammadi,
| |
Collapse
|
3
|
Eulenburg V, Hülsmann S. Synergistic Control of Transmitter Turnover at Glycinergic Synapses by GlyT1, GlyT2, and ASC-1. Int J Mol Sci 2022; 23:ijms23052561. [PMID: 35269698 PMCID: PMC8909939 DOI: 10.3390/ijms23052561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
In addition to being involved in protein biosynthesis and metabolism, the amino acid glycine is the most important inhibitory neurotransmitter in caudal regions of the brain. These functions require a tight regulation of glycine concentration not only in the synaptic cleft, but also in various intracellular and extracellular compartments. This is achieved not only by confining the synthesis and degradation of glycine predominantly to the mitochondria, but also by the action of high-affinity large-capacity glycine transporters that mediate the transport of glycine across the membranes of presynaptic terminals or glial cells surrounding the synapses. Although most cells at glycine-dependent synapses express more than one transporter with high affinity for glycine, their synergistic functional interaction is only poorly understood. In this review, we summarize our current knowledge of the two high-affinity transporters for glycine, the sodium-dependent glycine transporters 1 (GlyT1; SLC6A9) and 2 (GlyT2; SLC6A5) and the alanine–serine–cysteine-1 transporter (Asc-1; SLC7A10).
Collapse
Affiliation(s)
- Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany
- Correspondence: (V.E.); (S.H.)
| | - Swen Hülsmann
- Department for Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
- Correspondence: (V.E.); (S.H.)
| |
Collapse
|
4
|
Shimizu-Okabe C, Kobayashi S, Kim J, Kosaka Y, Sunagawa M, Okabe A, Takayama C. Developmental Formation of the GABAergic and Glycinergic Networks in the Mouse Spinal Cord. Int J Mol Sci 2022; 23:ijms23020834. [PMID: 35055019 PMCID: PMC8776010 DOI: 10.3390/ijms23020834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine coreleasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play critical roles in regulating pain, locomotive movement, and respiratory rhythms. In this study, we first describe GABAergic and glycinergic transmission and inhibitory networks, consisting of three types of terminals in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with a specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated, and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many GABAergic neurons convert to a coreleasing state. The coreleasing neurons and terminals remain in the dorsal horn, whereas many ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.
Collapse
Affiliation(s)
- Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea;
| | - Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Masanobu Sunagawa
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
| | - Akihito Okabe
- Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan;
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara 903-0215, Japan; (C.S.-O.); (S.K.); (Y.K.); (M.S.)
- Correspondence: ; Tel.: +81-98-895-1103 or +81-895-1405
| |
Collapse
|
5
|
Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021; 11:biom11060864. [PMID: 34200954 PMCID: PMC8230656 DOI: 10.3390/biom11060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.
Collapse
|
6
|
Brill SE, Maraslioglu A, Kurz C, Kramer F, Fuhr MF, Singh A, Friauf E. Glycinergic Transmission in the Presence and Absence of Functional GlyT2: Lessons From the Auditory Brainstem. Front Synaptic Neurosci 2021; 12:560008. [PMID: 33633558 PMCID: PMC7900164 DOI: 10.3389/fnsyn.2020.560008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Synaptic transmission is controlled by re-uptake systems that reduce transmitter concentrations in the synaptic cleft and recycle the transmitter into presynaptic terminals. The re-uptake systems are thought to ensure cytosolic concentrations in the terminals that are sufficient for reloading empty synaptic vesicles (SVs). Genetic deletion of glycine transporter 2 (GlyT2) results in severely disrupted inhibitory neurotransmission and ultimately to death. Here we investigated the role of GlyT2 at inhibitory glycinergic synapses in the mammalian auditory brainstem. These synapses are tuned for resilience, reliability, and precision, even during sustained high-frequency stimulation when endocytosis and refilling of SVs probably contribute substantially to efficient replenishment of the readily releasable pool (RRP). Such robust synapses are formed between MNTB and LSO neurons (medial nucleus of the trapezoid body, lateral superior olive). By means of patch-clamp recordings, we assessed the synaptic performance in controls, in GlyT2 knockout mice (KOs), and upon acute pharmacological GlyT2 blockade. Via computational modeling, we calculated the reoccupation rate of empty release sites and RRP replenishment kinetics during 60-s challenge and 60-s recovery periods. Control MNTB-LSO inputs maintained high fidelity neurotransmission at 50 Hz for 60 s and recovered very efficiently from synaptic depression. During 'marathon-experiments' (30,600 stimuli in 20 min), RRP replenishment accumulated to 1,260-fold. In contrast, KO inputs featured severe impairments. For example, the input number was reduced to ~1 (vs. ~4 in controls), implying massive functional degeneration of the MNTB-LSO microcircuit and a role of GlyT2 during synapse maturation. Surprisingly, neurotransmission did not collapse completely in KOs as inputs still replenished their small RRP 80-fold upon 50 Hz | 60 s challenge. However, they totally failed to do so for extended periods. Upon acute pharmacological GlyT2 inactivation, synaptic performance remained robust, in stark contrast to KOs. RRP replenishment was 865-fold in marathon-experiments, only ~1/3 lower than in controls. Collectively, our empirical and modeling results demonstrate that GlyT2 re-uptake activity is not the dominant factor in the SV recycling pathway that imparts indefatigability to MNTB-LSO synapses. We postulate that additional glycine sources, possibly the antiporter Asc-1, contribute to RRP replenishment at these high-fidelity brainstem synapses.
Collapse
Affiliation(s)
- Sina E Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Catharina Kurz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Florian Kramer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin F Fuhr
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE, United States
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
7
|
Hirrlinger J, Marx G, Besser S, Sicker M, Köhler S, Hirrlinger PG, Wojcik SM, Eulenburg V, Winkler U, Hülsmann S. GABA-Glycine Cotransmitting Neurons in the Ventrolateral Medulla: Development and Functional Relevance for Breathing. Front Cell Neurosci 2019; 13:517. [PMID: 31803026 PMCID: PMC6877658 DOI: 10.3389/fncel.2019.00517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurons crucially contribute to shaping the breathing rhythm in the brain stem. These neurons use GABA or glycine as neurotransmitter; or co-release GABA and glycine. However, the developmental relationship between GABAergic, glycinergic and cotransmitting neurons, and the functional relevance of cotransmitting neurons has remained enigmatic. Transgenic mice expressing fluorescent markers or the split-Cre system in inhibitory neurons were developed to track the three different interneuron phenotypes. During late embryonic development, the majority of inhibitory neurons in the ventrolateral medulla are cotransmitting cells, most of which differentiate into GABAergic and glycinergic neurons around birth and around postnatal day 4, respectively. Functional inactivation of cotransmitting neurons revealed an increase of the number of respiratory pauses, the cycle-by-cycle variability, and the overall variability of breathing. In summary, the majority of cotransmitting neurons differentiate into GABAergic or glycinergic neurons within the first 2 weeks after birth and these neurons contribute to fine-tuning of the breathing pattern.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Grit Marx
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Stefanie Besser
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Petra G Hirrlinger
- Medizinisch-Experimentelles Zentrum, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Volker Eulenburg
- Department for Anesthesiology and Intensive Care Therapy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Swen Hülsmann
- Department of Anaesthesiology, University Medical Center, Georg-August University, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
8
|
Hülsmann S, Oke Y, Mesuret G, Latal AT, Fortuna MG, Niebert M, Hirrlinger J, Fischer J, Hammerschmidt K. The postnatal development of ultrasonic vocalization-associated breathing is altered in glycine transporter 2-deficient mice. J Physiol 2018; 597:173-191. [PMID: 30296333 DOI: 10.1113/jp276976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS Newborn mice produce ultrasonic vocalization to communicate with their mother. The neuronal glycine transporter (GlyT2) is required for efficient loading of synaptic vesicles in glycinergic neurons. Mice lacking GlyT2 develop a phenotype that resembles human hyperekplexia and the mice die in the second postnatal week. In the present study, we show that GlyT2-knockout mice do not acquire adult ultrasonic vocalization-associated breathing patterns. Despite the strong impairment of glycinergic inhibition, they can produce sufficient expiratory airflow to produce ultrasonic vocalization. Because mouse ultrasonic vocalization is a valuable read-out in translational research, these data are highly relevant for a broad range of research fields. ABSTRACT Mouse models are instrumental with respect to determining the genetic basis and neural foundations of breathing regulation. To test the hypothesis that glycinergic synaptic inhibition is required for normal breathing and proper post-inspiratory activity, we analysed breathing and ultrasonic vocalization (USV) patterns in neonatal mice lacking the neuronal glycine transporter (GlyT2). GlyT2-knockout (KO) mice have a profound reduction of glycinergic synaptic currents already at birth, develop a severe motor phenotype and survive only until the second postnatal week. At this stage, GlyT2-KO mice are smaller, have a reduced respiratory rate and still display a neonatal breathing pattern with active expiration for the production of USV. By contrast, wild-type mice acquire different USV-associated breathing patterns that depend on post-inspiratory control of air flow. Nonetheless, USVs per se remain largely indistinguishable between both genotypes. We conclude that GlyT2-KO mice, despite the strong impairment of glycinergic inhibition, can produce sufficient expiratory airflow to produce ultrasonic vocalization.
Collapse
Affiliation(s)
- Swen Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Yoshihiko Oke
- Division of Physiome, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Guillaume Mesuret
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - A Tobias Latal
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Michal G Fortuna
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Marcus Niebert
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany.,Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | - Julia Fischer
- German Primate Center - Leibniz Institute for Primate Research, Cognitive Ethology Laboratory, Göttingen, Germany
| | - Kurt Hammerschmidt
- German Primate Center - Leibniz Institute for Primate Research, Cognitive Ethology Laboratory, Göttingen, Germany
| |
Collapse
|
9
|
Mesuret G, Khabbazzadeh S, Bischoff AM, Safory H, Wolosker H, Hülsmann S. A neuronal role of the Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) for glycine inhibitory transmission and respiratory pattern. Sci Rep 2018; 8:8536. [PMID: 29867218 PMCID: PMC5986860 DOI: 10.1038/s41598-018-26868-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
The Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) has been shown to play a role in synaptic availability of glycine although the exact mechanism remains unclear. We used electrophysiological recordings and biochemical experiments to investigate the role of Asc-1 transporter in glycinergic transmission in the brainstem respiratory network. Using both the Asc-1 substrate and transportable inhibitor D-isoleucine (D-Ile), and the non-transportable Asc-1 blocker Lu AE00527 (Lu), we found that D-Ile reduces glycinergic transmission and increases glycine release via hetero-exchange, whereas Lu has no acute effect on glycinergic synaptic transmission. Furthermore, D-Ile increases the frequency and reduces amplitude of the phrenic nerve activity in the arterially-perfused working heart brainstem preparation. These results suggest a role of Asc-1 in modulating presynaptic glycine levels that can impact on the respiratory network.
Collapse
Affiliation(s)
- Guillaume Mesuret
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | | | - Anne M Bischoff
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany
| | - Hazem Safory
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Swen Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
10
|
Eulenburg V, Knop G, Sedmak T, Schuster S, Hauf K, Schneider J, Feigenspan A, Joachimsthaler A, Brandstätter JH. GlyT1 determines the glycinergic phenotype of amacrine cells in the mouse retina. Brain Struct Funct 2018; 223:3251-3266. [PMID: 29808289 DOI: 10.1007/s00429-018-1684-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2018] [Indexed: 11/26/2022]
Abstract
The amino acid glycine acts as a neurotransmitter at both inhibitory glycinergic and excitatory glutamatergic synapses predominantly in caudal regions of the central nervous system but also in frontal brain regions and the retina. After its presynaptic release and binding to postsynaptic receptors at caudal glycinergic synapses, two high-affinity glycine transporters GlyT1 and GlyT2 remove glycine from the extracellular space. Glycinergic neurons express GlyT2, which is essential for the presynaptic replenishment of the transmitter, while glial-expressed GlyT1 was shown to control the extracellular glycine concentration. Here we show that GlyT1 expressed by glycinergic amacrine cells of the retina does not only contribute to the control of the extracellular glycine concentration in the retina but is also essential for the maintenance of the glycinergic transmitter phenotype of this cell population. Specifically, loss of GlyT1 from the glycinergic AII amacrine cells impairs AII-mediated glycinergic neurotransmission and alters regulation of the extracellular glycine concentration, without changes in the overall distribution and/or size of glycinergic synapses. Taken together, our results suggest that GlyT1 expressed by amacrine cells in the retina combines functions covered by neuronal GlyT2 and glial GlyT1 at caudal glycinergic synapses.
Collapse
Affiliation(s)
- Volker Eulenburg
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| | - Gabriel Knop
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Sedmak
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Schuster
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Hauf
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Julia Schneider
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Feigenspan
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anneka Joachimsthaler
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Ophthalmology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Johann Helmut Brandstätter
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Kamizato K, Marsala S, Navarro M, Kakinohana M, Platoshyn O, Yoshizumi T, Lukacova N, Wancewicz E, Powers B, Mazur C, Marsala M. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation. Exp Neurol 2018; 305:66-75. [PMID: 29608917 DOI: 10.1016/j.expneurol.2018.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/11/2018] [Accepted: 03/22/2018] [Indexed: 01/14/2023]
Abstract
The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity.
Collapse
Affiliation(s)
- Kota Kamizato
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Department of Anesthesiology, University of the Ryukyus, 207 Uehara Nishihara-cho, Okinawa, Japan
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Manabu Kakinohana
- Department of Anesthesiology, University of the Ryukyus, 207 Uehara Nishihara-cho, Okinawa, Japan
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Tetsuya Yoshizumi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Nadezda Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 6, Kosice -04001, Slovak Republic
| | | | | | - Curt Mazur
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 6, Kosice -04001, Slovak Republic.
| |
Collapse
|
12
|
Cioffi CL. Modulation of Glycine-Mediated Spinal Neurotransmission for the Treatment of Chronic Pain. J Med Chem 2017; 61:2652-2679. [PMID: 28876062 DOI: 10.1021/acs.jmedchem.7b00956] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic pain constitutes a significant and expanding worldwide health crisis. Currently available analgesics poorly serve individuals suffering from chronic pain, and new therapeutic agents that are more effective, safer, and devoid of abuse liabilities are desperately needed. Among the myriad of cellular and molecular processes contributing to chronic pain, spinal disinhibition of pain signaling to higher cortical centers plays a critical role. Accumulating evidence shows that glycinergic inhibitory neurotransmission in the spinal cord dorsal horn gates nociceptive signaling, is essential in maintaining physiological pain sensitivity, and is diminished in pathological pain states. Thus, it is hypothesized that agents capable of enhancing glycinergic tone within the dorsal horn could obtund nociceptor signaling to the brain and serve as analgesics for persistent pain. This Perspective highlights the potential that pharmacotherapies capable of increasing inhibitory spinal glycinergic neurotransmission hold in providing new and transformative analgesic therapies for the treatment of chronic pain.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences , Albany College of Pharmacy and Health Sciences , 106 New Scotland Avenue , Albany , New York 12208 United States
| |
Collapse
|
13
|
Kakizaki T, Sakagami H, Sakimura K, Yanagawa Y. A glycine transporter 2-Cre knock-in mouse line for glycinergic neuron-specific gene manipulation. IBRO Rep 2017; 3:9-16. [PMID: 30135938 PMCID: PMC6084908 DOI: 10.1016/j.ibror.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023] Open
Abstract
Glycine is an inhibitory neurotransmitter in the brainstem and spinal cord. Glycine transporter 2 (GLYT2) is responsible for the uptake of extracellular glycine. GLYT2 is specifically expressed in glycinergic neurons and thus has been used as a marker of glycinergic neurons. Here, we generated GLYT2 promotor-driven Cre recombinase (Cre)-expressing mice (GLYT2-Cre knock-in mice) to develop a tool for manipulating gene expression in glycinergic neurons. Cre activity was examined by crossing the GLYT2-Cre knock-in mice with a Cre reporter mouse line, R26R, which express β-galactosidase (β-gal) in a Cre-dependent manner. X-gal staining of GLYT2-Cre/R26R double transgenic mouse brains and spinal cords revealed that the Cre activity was primarily distributed in the brainstem, cerebellum, and spinal cord. These areas are rich in glycinergic neurons. Furthermore, we performed immunohistochemistry for β-gal combined with in situ hybridization for GLYT2 in the GLYT2-Cre/R26R double transgenic mouse brains to determine whether Cre activity is specifically localized to glycinergic neurons. The β-gal protein and GLYT2 mRNAs were colocalized in the cerebellar Golgi cells, dorsal cochlear nucleus, gigantocellular reticular nucleus, spinal trigeminal nucleus, nucleus of the trapezoid body, and lateral lemniscus. More than 98% of the GLYT2 mRNA-expressing cells in these brain regions also expressed β-gal, whereas 90–98% of the β-gal-positive cells expressed the GLYT2 mRNAs. Thus, Cre activity is specifically localized to glycinergic neurons with high fidelity in the GLYT2-Cre knock-in mice. The GLYT2-Cre knock-in mouse line will be a useful tool for studying glycinergic neurons and neurotransmission.
Collapse
Affiliation(s)
- Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara 228-8555, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
14
|
Distinct development of the glycinergic terminals in the ventral and dorsal horns of the mouse cervical spinal cord. Neuroscience 2016; 343:459-471. [PMID: 28039040 DOI: 10.1016/j.neuroscience.2016.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 02/01/2023]
Abstract
In the spinal cord, glycine and γ-amino butyric acid (GABA) are inhibitory neurotransmitters. However, the ontogeny of the glycinergic network remains unclear. To address this point, we examined the developmental formation of glycinergic terminals by immunohistochemistry for glycine transporter 2 (GlyT2), a marker of glycinergic terminals, in developing mouse cervical spinal cord. Furthermore, the developmental localization of GlyT2 was compared with that of glutamic acid decarboxylase (GAD), a marker of GABAergic terminals, and vesicular GABA transporter (VGAT), a marker of inhibitory terminals, by single and double immunolabeling. GlyT2-positive dots (glycinergic terminals) were first detected in the marginal zone on embryonic day 14 (E14). In the ventral horn, they were detected at E16 and increased in observed density during postnatal development. Until postnatal day 7 (P7), GAD-positive dots (GABAergic terminals) were dominant and GlyT2 immunolabeling was localized at GAD-positive dots. During the second postnatal week, GABAergic terminals markedly decreased and glycinergic terminals became dominant. In the dorsal horn, glycinergic terminals were detected at P0 in lamina IV and P7 in lamina III and developmentally increased. GlyT2 was also localized at GAD-positive dots, and colocalizing dots were dominant at P21. VGAT-positive dots (inhibitory terminals) continued to increase until P21. These results suggest that GABAergic terminals first appear during embryonic development and may often change to colocalizing terminals throughout the gray matter during development. The colocalizing terminals may remain in the dorsal horn, whereas in the ventral horn, colocalizing terminals may give rise to glycinergic terminals.
Collapse
|
15
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
16
|
Aubrey KR. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles. Neurochem Int 2016; 98:94-102. [PMID: 27296116 DOI: 10.1016/j.neuint.2016.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/21/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
In mammals, fast inhibitory neurotransmission is carried out by two amino acid transmitters, γ-aminobutyric acid (GABA) and glycine. The higher brain uses only GABA, but in the spinal cord and brain stem both GABA and glycine act as inhibitory signals. In some cases GABA and glycine are co-released from the same neuron where they are co-packaged into synaptic vesicles by a shared vesicular inhibitory amino acid transporter, VIAAT (also called vGAT). The vesicular content of all other classical neurotransmitters (eg. glutamate, monoamines, acetylcholine) is determined by the presence of a specialized vesicular transporter. Because VIAAT is non-specific, the phenotype of inhibitory synaptic vesicles is instead predicted to be dependent on the relative concentration of GABA and glycine in the cytosol of the presynaptic terminal. This predicts that changes in GABA or glycine supply should be reflected in vesicle transmitter content but as yet, the mechanisms that control GABA versus glycine uptake into synaptic vesicles and their potential for modulation are not clearly understood. This review summarizes the most relevant experimental data that examines the link between GABA and glycine accumulation in the presynaptic cytosol and the inhibitory vesicle phenotype. The accumulated evidence challenges the hypothesis that vesicular phenotype is determined simply by the competition of inhibitory transmitter for VIAAT and instead suggest that the GABA/glycine balance in vesicles is dynamically regulated.
Collapse
Affiliation(s)
- Karin R Aubrey
- Pain Management Research Institute, Kolling Institute of Medical Research & Northern Clinical School, University of Sydney at Royal North Shore Hospital, Pacific Hwy, St Leonards, NSW, 2065, Australia.
| |
Collapse
|
17
|
Kono Y, Hülsmann S. Presynaptic facilitation of glycinergic mIPSC is reduced in mice lacking α3 glycine receptor subunits. Neuroscience 2016; 320:1-7. [PMID: 26851771 DOI: 10.1016/j.neuroscience.2016.01.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 01/03/2023]
Abstract
Glycinergic neurons provide an important mechanism to control excitation of motoneurons in the brainstem and a reduction or loss of glycinergic inhibition can be deleterious by leading to hyperexcitation such as in hyperekplexia or neurodegeneration and neuronal death as in amyotrophic lateral sclerosis (ALS). Second messenger systems that change cyclic AMP and lead to phosphorylation of the α3 subunit of the glycine receptor (GlyR α3) have been shown to be potent modulators of synaptic inhibition in the spinal cord and brain stem. In this study we analyzed the role of GlyR α3 in synaptic inhibition to the hypoglossal nucleus using Glra3 (the gene encoding the glycine receptor α3 subunit) knockout mice. We observed that baseline glycinergic synaptic transmission to nucleus of hypoglossal motoneurons is rather normal in Glra3 knockout mice. Interestingly, we found that the modulation of synaptic transmission by cAMP-mediated pathways appeared to be reduced in Glra3 knockout mice. In the second postnatal week the forskolin-induced increase of miniature inhibitory postsynaptic potential (mIPSC) frequency was significantly larger in control as compared to Glra3 knockout mice suggesting that presynaptic glycine release in the hypoglossal nucleus is partially depending on GlyR α3.
Collapse
Affiliation(s)
- Y Kono
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - S Hülsmann
- Clinic for Anesthesiology, University Medical Center, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
18
|
Safory H, Neame S, Shulman Y, Zubedat S, Radzishevsky I, Rosenberg D, Sason H, Engelender S, Avital A, Hülsmann S, Schiller J, Wolosker H. The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission. EMBO Rep 2015; 16:590-8. [PMID: 25755256 DOI: 10.15252/embr.201439561] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/13/2015] [Indexed: 11/09/2022] Open
Abstract
Asc-1 (SLC7A10) is an amino acid transporter whose deletion causes neurological abnormalities and early postnatal death in mice. Using metabolomics and behavioral and electrophysiological methods, we demonstrate that Asc-1 knockout mice display a marked decrease in glycine levels in the brain and spinal cord along with impairment of glycinergic inhibitory transmission, and a hyperekplexia-like phenotype that is rescued by replenishing brain glycine. Asc-1 works as a glycine and L-serine transporter, and its transport activity is required for the subsequent conversion of L-serine into glycine in vivo. Asc-1 is a novel regulator of glycine metabolism and a candidate for hyperekplexia disorders.
Collapse
Affiliation(s)
- Hazem Safory
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Samah Neame
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Shulman
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Salman Zubedat
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Radzishevsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dina Rosenberg
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Simone Engelender
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Avital
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel Emek Medical Center, Afula, Israel
| | - Swen Hülsmann
- Department of Anesthesiology, Emergency and Intensive Care Medicine and Center for Nanoscale Microscopy and Molecular Physiology of the Brain Georg-August-University, Göttingen, Germany
| | - Jackie Schiller
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Herman Wolosker
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Genetic ablation of VIAAT in glycinergic neurons causes a severe respiratory phenotype and perinatal death. Brain Struct Funct 2014; 220:2835-49. [PMID: 25027639 DOI: 10.1007/s00429-014-0829-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
Abstract
Both glycinergic and GABAergic neurons require the vesicular inhibitory amino acid transporter (VIAAT) for synaptic vesicle filling. Presynaptic GABA concentrations are determined by the GABA-synthesizing enzymes glutamate decarboxylase (GAD)65 and GAD67, whereas the presynaptic glycine content depends on the plasma membrane glycine transporter 2 (GlyT2). Although severely impaired, glycinergic transmission is not completely absent in GlyT2-knockout mice, suggesting that other routes of glycine uptake or de novo synthesis of glycine exist in presynaptic terminals. To investigate the consequences of a complete loss of glycinergic transmission, we generated a mouse line with a conditional ablation of VIAAT in glycinergic neurons by crossing mice with loxP-flanked VIAAT alleles with a GlyT2-Cre transgenic mouse line. Interestingly, conditional VIAAT knockout (VIAAT cKO) mice were not viable at birth. In addition to the dominant respiratory failure, VIAAT cKO showed an umbilical hernia and a cleft palate. Immunohistochemistry revealed an almost complete depletion of VIAAT in the brainstem. Electrophysiology revealed the absence of both spontaneous glycinergic and GABAergic inhibitory postsynaptic currents from hypoglossal motoneurons. Our results demonstrate that the deletion of VIAAT in GlyT2-Cre expressing neurons also strongly affects GABAergic transmission and suggest a large overlap of the glycinergic and the GABAergic neuron population during early development in the caudal parts of the brain.
Collapse
|
20
|
Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J Neurosci 2013; 33:4768-81. [PMID: 23486948 DOI: 10.1523/jneurosci.5555-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The release of neurotransmitter via the fusion of transmitter-filled, presynaptic vesicles is the primary means by which neurons relay information. However, little is known regarding the molecular mechanisms that supply neurotransmitter destined for vesicle filling, the endogenous transmitter concentrations inside presynaptic nerve terminals, or the dynamics of vesicle refilling after exocytosis. We addressed these issues by recording from synaptically coupled pairs of glycine/GABA coreleasing interneurons (cartwheel cells) of the mouse dorsal cochlear nucleus. We find that the plasma membrane transporter GlyT2 and the intracellular enzyme glutamate decarboxylase supply the majority of glycine and GABA, respectively. Pharmacological block of GlyT2 or glutamate decarboxylase led to rapid and complete rundown of transmission, whereas increasing GABA synthesis via intracellular glutamate uncaging dramatically potentiated GABA release within 1 min. These effects were surprisingly independent of exocytosis, indicating that prefilled vesicles re-equilibrated upon acute changes in cytosolic transmitter. Titration of cytosolic transmitter with postsynaptic responses indicated that endogenous, nonvesicular glycine/GABA levels in nerve terminals are 5-7 mm, and that vesicular transport mechanisms are not saturated under basal conditions. Thus, cytosolic transmitter levels dynamically set the strength of inhibitory synapses in a release-independent manner.
Collapse
|
21
|
Rahman J, Latal AT, Besser S, Hirrlinger J, Hülsmann S. Mixed miniature postsynaptic currents resulting from co-release of glycine and GABA recorded from glycinergic neurons in the neonatal respiratory network. Eur J Neurosci 2013; 37:1229-41. [DOI: 10.1111/ejn.12136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/28/2022]
Affiliation(s)
| | - A. Tobias Latal
- DFG Research Center for Molecular Physiology of the Brain (CMPB); University of Göttingen; Göttingen; Germany
| | | | | | | |
Collapse
|