1
|
Blake MR, Parrish DC, Staffenson MA, Sueda S, Woodward WR, Habecker BA. Chondroitin sulfate proteoglycan 4,6 sulfation regulates sympathetic nerve regeneration after myocardial infarction. eLife 2022; 11:e78387. [PMID: 35604022 PMCID: PMC9197393 DOI: 10.7554/elife.78387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sympathetic denervation of the heart following ischemia/reperfusion induced myocardial infarction (MI) is sustained by chondroitin sulfate proteoglycans (CSPGs) in the cardiac scar. Denervation predicts risk of sudden cardiac death in humans. Blocking CSPG signaling restores sympathetic axon outgrowth into the cardiac scar, decreasing arrhythmia susceptibility. Axon growth inhibition by CSPGs can depend on the sulfation status of the glycosaminoglycan (CS-GAG) side chains. Tandem sulfation of CS-GAGs at the 4th (4S) and 6th (6S) positions of n-acetyl-galactosamine inhibits outgrowth in several types of central neurons, but we don't know if sulfation is similarly critical during peripheral nerve regeneration. We asked if CSPG sulfation prevented sympathetic axon outgrowth after MI. Reducing 4S with the 4-sulfatase enzyme Arylsulfatase-B (ARSB) enhanced outgrowth of dissociated rat sympathetic neurons over CSPGs. Likewise, reducing 4S with ARSB restored axon outgrowth from mouse sympathetic ganglia co-cultured with cardiac scar tissue. We quantified enzymes responsible for adding and removing sulfation, and found that CHST15 (4S dependent 6-sulfotransferase) was upregulated, and ARSB was downregulated after MI. This suggests a mechanism for production and maintenance of sulfated CSPGs in the cardiac scar. We decreased 4S,6S CS-GAGs in vivo by transient siRNA knockdown of Chst15 after MI, and found that reducing 4S,6S restored tyrosine hydroxylase (TH) positive sympathetic nerve fibers in the cardiac scar. Reinnervation reduced isoproterenol induced arrhythmias. Our results suggest that modulating CSPG-sulfation after MI may be a therapeutic target to promote sympathetic nerve regeneration in the cardiac scar and reduce post-MI cardiac arrhythmias.
Collapse
Affiliation(s)
- Matthew R Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Diana C Parrish
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Melanie A Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Shanice Sueda
- Portland State University EXITO Scholars Program, Portland State UniversityPortlandUnited States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
2
|
Blake MR, Gardner RT, Jin H, Staffenson MA, Rueb NJ, Barrios AM, Dudley GB, Cohen MS, Habecker BA. Small Molecules Targeting PTPσ-Trk Interactions Promote Sympathetic Nerve Regeneration. ACS Chem Neurosci 2022; 13:688-699. [PMID: 35156811 PMCID: PMC9112862 DOI: 10.1021/acschemneuro.1c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) prevent sympathetic nerve regeneration in the heart after myocardial infarction and prevent central nerve regrowth after traumatic brain injury and spinal cord injury. Currently, there are no small-molecule therapeutics to promote nerve regeneration through CSPG-containing scars. CSPGs bind to monomers of receptor protein tyrosine phosphatase sigma (PTPσ) on the surface of neurons, enhancing the ability of PTPσ to bind and dephosphorylate tropomyosin receptor kinases (Trks), inhibiting their activity and preventing axon outgrowth. Targeting PTPσ-Trk interactions is thus a potential therapeutic target. Here, we describe the development and synthesis of small molecules (HJ-01 and HJ-02) that disrupt PTPσ interactions with Trks, enhance Trk signaling, and promote sympathetic nerve regeneration over CSPGs.
Collapse
Affiliation(s)
- Matthew R. Blake
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Graduate Program in Biomedical Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan T. Gardner
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Haihong Jin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Melanie A. Staffenson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicole J. Rueb
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112, USA
| | - Gregory B. Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Beth A. Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Cui K, Yang F, Tufan T, Raza MU, Zhan Y, Fan Y, Zeng F, Brown RW, Price JB, Jones TC, Miller GW, Zhu MY. Restoration of Noradrenergic Function in Parkinson's Disease Model Mice. ASN Neuro 2021; 13:17590914211009730. [PMID: 33940943 PMCID: PMC8114769 DOI: 10.1177/17590914211009730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.
Collapse
Affiliation(s)
- Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Fan Yang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Hong Kong Institute, Asia Metropolitan University, Hong Kong, China
| | - Turan Tufan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Yanqiang Zhan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Neurology, Renmin Hospital of the Wuhan University, Wuhan, China
| | - Yan Fan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Fei Zeng
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Neurology, Renmin Hospital of the Wuhan University, Wuhan, China
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Jennifer B Price
- Department of Biological Sciences, College of Arts and Sciences; East Tennessee State University, Johnson City, United States
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences; East Tennessee State University, Johnson City, United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailmen School of Public Health, Columbia University, New York, New York, United States
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| |
Collapse
|
4
|
The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 2021; 67:101305. [PMID: 33610815 DOI: 10.1016/j.arr.2021.101305] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Examining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis. Elucidating the role of central SNs will help to define the coordinated response of the visceral and neuromuscular system to physiological and pathological challenges across ages. This review discusses the following questions: (1) Does the SNS regulate skeletal muscle motor innervation? (2) Does the SNS regulate presynaptic and postsynaptic neuromuscular junction (NMJ) structure and function? (3) Does sympathetic neuron (SN) regulation of NMJ transmission decline with aging? (4) Does maintenance of SNs attenuate aging sarcopenia? and (5) Do central SN group relays influence sympathetic and motor muscle innervation?
Collapse
|
5
|
Rodrigues ACZ, Wang ZM, Messi ML, Bonilla HJ, Liu L, Freeman WM, Delbono O. Heart and neural crest derivative 2-induced preservation of sympathetic neurons attenuates sarcopenia with aging. J Cachexia Sarcopenia Muscle 2021; 12:91-108. [PMID: 33258279 PMCID: PMC7890150 DOI: 10.1002/jcsm.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sarcopenia, or age-dependent decline in muscle force and power, impairs mobility, increasing the risk of falls, institutionalization, co-morbidity, and premature death. The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system (SNS) neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions. Interventions that can adjust neurotransmitter release to changing physiological demands depend on understanding how the SNS affects neuromuscular transmission, muscle motor innervation, and muscle mass. METHODS We examined age-dependent expression of the heart and neural crest derivative 2 (Hand2), a critical transcription factor for SN maintenance, and we tested the possibility that inducing its expression exclusively in sympathetic neurons (SN) will prevent (i) motor denervation, (ii) impaired neuromuscular junction (NMJ) transmission, and (iii) loss of muscle mass and function in old mice. To test this hypothesis, we delivered a viral vector carrying Hand2 expression or an empty vector exclusively in SNs by vein injection in 16-month-old C57BL/6 mice that were sacrificed 6 months later. Techniques include RNA-sequencing, real-time PCR, genomic DNA methylation, viral vector construct, tissue immunohistochemistry, immunoblot, confocal microscopy, electrophysiology, and in vivo mouse physical performance. RESULTS Hand2 expression declines throughout life, but inducing its expression increased (i) the number and size of SNs, (ii) muscle sympathetic innervation, (iii) muscle weight and force and whole-body strength, (iv) myofiber size but not muscle fibre-type composition, (v) NMJ transmission and nerve-evoked muscle force, and (vi) motor innervation in old mice. Additionally, the SN controls a set of genes to reduce inflammation and to promote transcription factor activity, cell signalling, and synapse in the skeletal muscle. Hand2 DNA methylation may contribute, at least partially, to gene silencing. CONCLUSIONS Selective expression of Hand2 in the mouse SNs from middle age through old age increases muscle mass and force by (i) regulating skeletal muscle sympathetic and motor innervation; (ii) improving acetylcholine receptor stability and NMJ transmission; (iii) preventing inflammation and myofibrillar protein degradation; (iv) increasing autophagy; and (v) probably enhancing protein synthesis.
Collapse
Affiliation(s)
- Anna Carolina Zaia Rodrigues
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Henry Jacob Bonilla
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Liang Liu
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Austin PJ, Fiore NT. Supraspinal neuroimmune crosstalk in chronic pain states. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Dronjak S, Stefanovic B, Jovanovic P, Spasojevic N, Jankovic M, Jeremic I, Hoffmann M. Altered cardiac gene expression of noradrenaline enzymes, transporter and β-adrenoceptors in rat model of rheumatoid arthritis. Auton Neurosci 2017; 208:165-169. [DOI: 10.1016/j.autneu.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/01/2022]
|
8
|
Li F, Liu W. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus. Mamm Genome 2017; 28:176-197. [PMID: 28299435 DOI: 10.1007/s00335-017-9683-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.
Collapse
Affiliation(s)
- Fengmei Li
- Faculty of Biological and Food Engineering, Fuyang Normal University, Qing He West Road No. 100, Fuyang, 236037, People's Republic of China
| | - Wuyi Liu
- Faculty of Biological and Food Engineering, Fuyang Normal University, Qing He West Road No. 100, Fuyang, 236037, People's Republic of China. .,Medical Faculty, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
9
|
Mehta R, Singh A, Bókkon I, Nath Mallick B. REM sleep and its Loss-Associated Epigenetic Regulation with Reference to Noradrenaline in Particular. Curr Neuropharmacol 2016; 14:28-40. [PMID: 26813120 PMCID: PMC4787282 DOI: 10.2174/1570159x13666150414185737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 01/12/2023] Open
Abstract
Sleep is an essential physiological process, which has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS) in higher animals. REMS is a unique phenomenon that unlike other sleep-waking states is not under voluntary control. Directly or indirectly it influences or gets influenced by most of the physiological processes controlled by the brain. It has been proposed that REMS serves housekeeping function of the brain. Extensive research has shown that during REMS at least noradrenaline (NA) -ergic neurons must cease activity and upon REMS loss, there are increased levels of NA in the brain, which then induces many of the REMS loss associated acute and chronic effects. The NA level is controlled by many bio-molecules that are regulated at the molecular and transcriptional levels. Similarly, NA can also directly or indirectly modulate the synthesis and levels of many molecules, which in turn may affect physiological processes. The burgeoning field of behavioral neuroepigenetics has gained importance in recent years and explains the regulatory mechanisms underlying several behavioral phenomena. As REMS and its loss associated changes in NA modulate several pathophysiological processes, in this review we have attempted to explain on one hand how the epigenetic mechanisms regulating the gene expression of factors like tyrosine hydroxylase (TH), monoamine oxidase (MAO), noradrenaline transporter (NAT) control NA levels and on the other hand, how NA per se can affect other molecules in neural circuitry at the epigenetic level resulting in behavioral changes in health and diseases. An
understanding of these events will expose the molecular basis of REMS and its loss-associated pathophysiological changes; which are presented as a testable hypothesis for confirmation.
Collapse
|
10
|
Fiore NT, Austin PJ. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 2016; 56:397-411. [PMID: 27118632 DOI: 10.1016/j.bbi.2016.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Neuro-immune interactions contribute to the pathogenesis of neuropathic pain due to peripheral nerve injury. A large body of preclinical evidence supports the idea that the immune system acts to modulate the sensory symptoms of neuropathy at both peripheral and central nervous system sites. The potential involvement of neuro-immune interactions in the highly debilitating affective disturbances of neuropathic pain, such as depression, anhedonia, impaired cognition and reduced motivation has received little attention. This is surprising given the widely accepted view that sickness behaviour, depression, cognitive impairment and other neuropsychiatric conditions can arise from inflammatory mechanisms. Moreover, there is a set of well-described immune-to-brain transmission mechanisms that explain how peripheral inflammation can lead to supraspinal neuroinflammation. In the last 5years increasing evidence has emerged that peripheral nerve injury induces supraspinal changes in cytokine or chemokine expression and alters glial cell activity. In this systematic review, based on strong preclinical evidence, we advance the argument that the emergence of affective disturbances in neuropathic pain states are contingent on pro-inflammatory mediators in the interconnected hippocampal-medial prefrontal circuitry that subserve affective behaviours. We explore how dysregulation of inflammatory mediators in these networks may result in affective disturbances through a wide variety of neuromodulatory mechanisms. There are also promising results from clinical trials showing that anti-inflammatory agents have efficacy in the treatment of a variety of neuropsychiatric conditions including depression and appear suited to sub-groups of patients with elevated pro-inflammatory profiles. Thus, although further research is required, aggressively targeting supraspinal pro-inflammatory mediators at critical time-points in appropriate clinical populations is likely to be a novel avenue to treat debilitating affective disturbances in neuropathic conditions.
Collapse
Affiliation(s)
- Nathan T Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Lorentz CU, Parrish DC, Alston EN, Pellegrino MJ, Woodward WR, Hempstead BL, Habecker BA. Sympathetic denervation of peri-infarct myocardium requires the p75 neurotrophin receptor. Exp Neurol 2013; 249:111-9. [PMID: 24013014 PMCID: PMC3826885 DOI: 10.1016/j.expneurol.2013.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 12/22/2022]
Abstract
Development of cardiac sympathetic heterogeneity after myocardial infarction contributes to ventricular arrhythmias and sudden cardiac death. Regions of sympathetic hyperinnervation and denervation appear in the viable myocardium beyond the infarcted area. While elevated nerve growth factor (NGF) is implicated in sympathetic hyperinnervation, the mechanisms underlying denervation are unknown. Recent studies show that selective activation of the p75 neurotrophin receptor (p75(NTR)) in sympathetic neurons causes axon degeneration. We used mice that lack p75(NTR) to test the hypothesis that activation of p75(NTR) causes peri-infarct sympathetic denervation after cardiac ischemia-reperfusion. Wild type hearts exhibited sympathetic denervation adjacent to the infarct 24h and 3 days after ischemia-reperfusion, but no peri-infarct sympathetic denervation occurred in p75(NTR)-/- mice. Sympathetic hyperinnervation was found in the distal peri-infarct myocardium in both genotypes 3 days after MI, and hyperinnervation was increased in the p75(NTR)-/- mice. By 7 days after ischemia-reperfusion, cardiac sympathetic innervation density returned back to sham-operated levels in both genotypes, indicating that axonal pruning did not require p75(NTR). Prior studies revealed that proNGF is elevated in the damaged left ventricle after ischemia-reperfusion, as is mRNA encoding brain-derived neurotrophic factor (BDNF). ProNGF and BDNF preferentially bind p75(NTR) rather than TrkA on sympathetic neurons. Immunohistochemistry using Bdnf-HA mice confirmed the presence of BDNF or proBDNF in the infarct after ischemia-reperfusion. Thus, at least two p75(NTR) ligands are elevated in the left ventricle after ischemia-reperfusion where they may stimulate p75(NTR)-dependent denervation of peri-infarct myocardium. In contrast, NGF-induced sympathetic hyperinnervation in the distal peri-infarct ventricle is attenuated by p75(NTR).
Collapse
Affiliation(s)
- Christina U. Lorentz
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Diana C. Parrish
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Eric N. Alston
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Michael J. Pellegrino
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - William R. Woodward
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | - Barbara L. Hempstead
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Beth A. Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| |
Collapse
|
12
|
Pellegrino MJ, Habecker BA. STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration. Mol Cell Neurosci 2013; 56:272-82. [PMID: 23831387 DOI: 10.1016/j.mcn.2013.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 12/31/2022] Open
Abstract
The transcription factor STAT3 has been implicated in axon regeneration. Here we investigate a role for STAT3 in sympathetic nerve sprouting after myocardial infarction (MI) - a common injury in humans. We show that NGF stimulates serine phosphorylation (S727) of STAT3 in sympathetic neurons via ERK1/2, in contrast to cytokine phosphorylation of Y705. Maximal sympathetic axon regeneration in vitro requires phosphorylation of both S727 and Y705. Furthermore, cytokine signaling is necessary for NGF-induced sympathetic nerve sprouting in the heart after MI. Transfection studies in neurons lacking STAT3 suggest two independent pools of STAT3, phosphorylated on either S727 or Y705, that regulate sympathetic regeneration via both transcriptional and non-transcriptional means. Additional data identify STAT3-microtubule interactions that may complement the well-characterized role of STAT3 stimulating regeneration associated genes. These data show that STAT3 is critical for sympathetic axon regeneration in vitro and in vivo, and identify a novel non-transcriptional mode of action.
Collapse
Affiliation(s)
- Michael J Pellegrino
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
13
|
Infarct-derived chondroitin sulfate proteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury. J Neurosci 2013; 33:7175-83. [PMID: 23616527 DOI: 10.1523/jneurosci.5866-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathetic nerves can regenerate after injury to reinnervate target tissues. Sympathetic regeneration is well documented after chronic cardiac ischemia, so we were surprised that the cardiac infarct remained denervated following ischemia-reperfusion (I-R). We used mice to ask if the lack of sympathetic regeneration into the scar was due to blockade by inhibitory extracellular matrix within the infarct. We found that chondroitin sulfate proteoglycans (CSPGs) were present in the infarct after I-R, but not after chronic ischemia, and that CSPGs caused inhibition of sympathetic axon outgrowth in vitro. Ventricle explants after I-R and chronic ischemia stimulated sympathetic axon outgrowth that was blocked by nerve growth factor antibodies. However, growth in I-R cocultures was asymmetrical, with axons growing toward the heart tissue consistently shorter than axons growing in other directions. Growth toward I-R explants was rescued by adding chondroitinase ABC to the cocultures, suggesting that I-R infarct-derived CSPGs prevented axon extension. Sympathetic ganglia lacking protein tyrosine phosphatase sigma (PTPRS) were not inhibited by CSPGs or I-R explants in vitro, suggesting PTPRS is the major CSPG receptor in sympathetic neurons. To test directly if infarct-derived CSPGs prevented cardiac reinnervation, we performed I-R in ptprs-/- and ptprs+/- mice. Cardiac infarcts in ptprs-/- mice were hyperinnervated, while infarcts in ptprs+/- littermates were denervated, confirming that CSPGs prevent sympathetic reinnervation of the cardiac scar after I-R. This is the first example of CSPGs preventing sympathetic reinnervation of an autonomic target following injury, and may have important consequences for cardiac function and arrhythmia susceptibility after myocardial infarction.
Collapse
|
14
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
15
|
Bayles R, Harikrishnan KN, Lambert E, Baker EK, Agrotis A, Guo L, Jowett JBM, Esler M, Lambert G, El-Osta A. Epigenetic modification of the norepinephrine transporter gene in postural tachycardia syndrome. Arterioscler Thromb Vasc Biol 2012; 32:1910-6. [PMID: 22723437 DOI: 10.1161/atvbaha.111.244343] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The postural tachycardia syndrome (POTS) has multiple symptoms, chief among which are tachycardia, weakness, and recurrent blackouts while standing. Previous research has implicated dysfunction of the norepinephrine transporter. A coding mutation in the norepinephrine transporter gene (SLC6A2) sequence has been reported in 1 family kindred only. The goal of the present study was to further characterize the role and regulation of the SLC6A2 gene in POTS. METHODS AND RESULTS Sympathetic nervous system responses to head-up tilt were examined by combining norepinephrine plasma kinetics measurements and muscle sympathetic nerve activity recordings in patients with POTS compared with that in controls. The SLC6A2 gene sequence was investigated in leukocytes from POTS patients and healthy controls using single nucleotide polymorphisms genotyping, bisulphite sequencing, and chromatin immunoprecipitation assays for histone modifications and binding of the transcriptional regulatory complex, methyl-CpG binding protein 2. The expression of norepinephrine transporter was lower in POTS patients compared with healthy volunteers. In the absence of altered SLC6A2 gene sequence or promoter methylation, this reduced expression was directly correlated with chromatin modifications. CONCLUSIONS We propose that chromatin-modifying events associated with SLC6A2 gene suppression may constitute a mechanism of POTS.
Collapse
Affiliation(s)
- Richard Bayles
- Baker IDI Heart & Diabetes Institute, The University of Melbourne, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Patodia S, Raivich G. Downstream effector molecules in successful peripheral nerve regeneration. Cell Tissue Res 2012; 349:15-26. [PMID: 22580509 DOI: 10.1007/s00441-012-1416-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/19/2012] [Indexed: 12/16/2022]
Abstract
The robust axon regeneration that occurs following peripheral nerve injury is driven by transcriptional activation of the regeneration program and by the expression of a wide range of downstream effector molecules from neuropeptides and neurotrophic factors to adhesion molecules and cytoskeletal adaptor proteins. These regeneration-associated effector molecules regulate the actin-tubulin machinery of growth-cones, integrate intracellular signalling and stimulatory and inhibitory signals from the local environment and translate them into axon elongation. In addition to the neuronally derived molecules, an important transcriptional component is found in locally activated Schwann cells and macrophages, which release a number of cytokines, growth factors and neurotrophins that support neuronal survival and axonal regeneration and that might provide directional guidance cues towards appropriate peripheral targets. This review aims to provide a comprehensive up-to-date account of the transcriptional regulation and functional role of these effector molecules and of the information that they can give us with regard to the organisation of the regeneration program.
Collapse
Affiliation(s)
- Smriti Patodia
- Centre for Perinatal Brain Protection and Repair, University College London, Chenies Mews 86-96, London, WC1E 6HX, UK
| | | |
Collapse
|
17
|
VanDusen NJ, Firulli AB. Twist factor regulation of non-cardiomyocyte cell lineages in the developing heart. Differentiation 2012; 84:79-88. [PMID: 22516205 DOI: 10.1016/j.diff.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
The heart is a complex organ that is composed of numerous cell types, which must integrate their programs for proper specification, differentiation and cardiac morphogenesis. During cardiogenesis members of the Twist-family of basic helix-loop-helix (bHLH) transcription factors play distinct roles within cardiac lineages such as the endocardium and extra-cardiac lineages such as the cardiac neural crest (cNCC) and epicardium. While the study of these cell populations is often eclipsed by that of cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarizes what is known regarding Twist-family bHLH function in extra-cardiac cell populations and the endocardium, with a focus on regulatory mechanisms, downstream targets, and expression profiles. Improving our understanding of the molecular pathways that Twist-family bHLH factors mediate in these lineages will be necessary to ascertain how their dysfunction leads to congenital disease and adult pathologies such as myocardial infarctions and cardiac fibroblast induced fibrosis. Indeed, this knowledge will prove to be critical to clinicians seeking to improve current treatments.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Medical and Molecular Genetics, Indiana Medical School, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
18
|
Shi X, Woodward WR, Habecker BA. Ciliary neurotrophic factor stimulates tyrosine hydroxylase activity. J Neurochem 2012; 121:700-4. [PMID: 22372951 DOI: 10.1111/j.1471-4159.2012.07712.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in norepinephrine synthesis, and its expression and activity are regulated by many factors in sympathetic neurons. Cytokines that act through gp130, such as ciliary neurotrophic factor (CNTF) decrease norepinephrine production in sympathetic neurons by suppressing TH mRNA and stimulating degradation of TH protein, leading to the loss of enzyme. Their effect on the activity of TH is unclear, but recent in vivo observations suggest that cytokines may stimulate TH activity. We investigated this issue by quantifying TH protein levels and activity in cultured sympathetic neurons. We also examined the state of TH phosphorylation on serine 31 and 40, sites known to affect TH activity and degradation. We found that CNTF, acting through gp130, stimulated the rate of l-3,4-dihydroxyphenylalanine production while at the same time decreasing TH enzyme levels, thereby increasing the specific activity of the enzyme. We also found that phosphorylation of TH on Ser31 was increased, and phosphorylation on Ser40 was decreased, after four days of CNTF exposure. Our data are consistent with previous findings that Ser31 phosphorylation stimulates TH activity, whereas Ser40 phosphorylation can target TH for proteasomal degradation.
Collapse
Affiliation(s)
- Xiao Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | | | | |
Collapse
|
19
|
Abstract
Autonomic neuron development is controlled by a network of transcription factors, which is induced by bone morphogenetic protein signalling in neural crest progenitor cells. This network intersects with a transcriptional program in migratory neural crest cells that pre-specifies autonomic neuron precursor cells. Recent findings demonstrate that the transcription factors acting in the initial specification and differentiation of sympathetic neurons are also important for the proliferation of progenitors and immature neurons during neurogenesis. Elimination of Phox2b, Hand2 and Gata3 in differentiated neurons affects the expression of subtype-specific and/or generic neuronal properties or neuron survival. Taken together, transcription factors previously shown to act in initial neuron specification and differentiation display a much broader spectrum of functions, including control of neurogenesis and the maintenance of subtype characteristics and survival of mature neurons.
Collapse
Affiliation(s)
- Hermann Rohrer
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
20
|
Shi X, Habecker BA. gp130 cytokines stimulate proteasomal degradation of tyrosine hydroxylase via extracellular signal regulated kinases 1 and 2. J Neurochem 2011; 120:239-47. [PMID: 22007720 DOI: 10.1111/j.1471-4159.2011.07539.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Injury-induced cytokines act through gp130 in sympathetic neurons to suppress expression of tyrosine hydroxylase (TH) and other genes associated with noradrenergic transmission. These cytokines also trigger the local loss of TH in peri-infarct sympathetic axons after myocardial infarction, but altered gene expression cannot explain the selective loss of TH enzyme in one region of the heart. We hypothesized that inflammatory cytokines, which are highest near the infarct, stimulated local degradation of TH protein. We used cultured sympathetic neurons and neuroblastoma cells to test this hypothesis. The cytokines ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) suppressed TH content in both neurons and neuroblastoma cells. CNTF suppressed TH in a gp130-dependent manner, and decreased the half-life of TH protein by approximately 50%. CNTF stimulated the ubiquitination of TH in both neurons and neuroblastoma cells, and the proteasome inhibitors MG-132 and lactacystin prevented the CNTF-induced loss of TH protein. Inhibiting activation of extracellular signal regulated kinases 1&2 (ERK1/2) with U0126 prevented the CNTF-induced ubiquitination of TH and the associated decrease in protein half-life. Likewise, inhibiting ERK1/2 activation blunted the cytokine-stimulated loss of TH protein in sympathetic neurons, despite enhancing the loss of TH mRNA. These data suggest that gp130 cytokines stimulate proteasomal degradation of TH through an ERK1/2 dependent pathway, and may have important implications for local regulation of neurotransmission at sites of inflammation.
Collapse
Affiliation(s)
- Xiao Shi
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
21
|
p38α and p38β mitogen-activated protein kinases determine cholinergic transdifferentiation of sympathetic neurons. J Neurosci 2011; 31:12059-67. [PMID: 21865449 DOI: 10.1523/jneurosci.0448-11.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the p38 mitogen-activated protein kinases are active in many neuronal populations in the peripheral and central nervous systems, little is known about the physiological functions of p38 in postmitotic neurons. We report that p38 activity determines in vitro and in vivo the switch from noradrenergic to cholinergic neurotransmission that occurs in sympathetic neurons on exposure to the neuropoietic cytokines CNTF and LIF. This transdifferentiation serves as a model for the plastic mechanisms that enable mature neurons to change some of their central functions without passing through the cell cycle. We demonstrate that in postmitotic neurons, p38 and STAT pathways are concurrently activated by neuropoietic cytokine treatment for at least 12 h overlapping with changes in neurotransmitter marker gene expression. Inhibition of p38 blocks the upregulation of the nuclear matrix protein Satb2 and of cholinergic markers by CNTF without affecting STAT3 phosphorylation. Conversely, overexpression of p38α or β in the absence of cytokines stimulates cholinergic marker expression. The neurotransmitter switch in vitro is impaired in neurons isolated from p38β(-/-) mice. Consistent with these in vitro results, a substantial loss of cells expressing cholinergic properties is observed in vivo in the stellate ganglion of mature mice deficient in the p38β isoform.
Collapse
|