1
|
Fargason T, Powell E, De Silva NIU, Paul T, Zhang Z, Prevelige P, Zhang J. Controlled by disorder: Phosphorylation modulates SRSF1 domain availability for spliceosome assembly. Protein Sci 2025; 34:e70070. [PMID: 39968932 PMCID: PMC11836896 DOI: 10.1002/pro.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Serine/arginine-rich splicing factor 1 (SRSF1) is key in the mRNA lifecycle including transcription, splicing, nonsense-mediated decay, and nuclear export. Consequently, its dysfunction is linked to cancers, viral evasion, and developmental disorders. The functionality of SRSF1 relies on its interactions with other proteins and RNA molecules. These processes are regulated by phosphorylation of its unstructured arginine/serine-rich tail (RS). Here, we characterize how phosphorylation affects SRSF1's protein and RNA interaction and phase separation. Using NMR paramagnetic relaxation enhancement and chemical shift perturbation, we find that when unphosphorylated, SRSF1's RS interacts with its first RNA-recognition motif (RRM1). Phosphorylation of RS decreases its interactions with the protein-binding site of RRM1 and increases its interactions with the RNA-binding site of RRM1. This change in SRSF1's intramolecular interactions increases the availability of protein-interacting sites on RRM1 and weakens RNA binding of SRSF1. Phosphorylation alters the phase separation of SRSF1 by diminishing the role of arginine in intermolecular interactions. These findings provide an unprecedented view of how SRSF1 influences the early-stage spliceosome assembly.
Collapse
Affiliation(s)
- Talia Fargason
- Department of Chemistry, College of Arts and SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Erin Powell
- Department of Chemistry, College of Arts and SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Trenton Paul
- Department of Chemistry, College of Arts and SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Peter Prevelige
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jun Zhang
- Department of Chemistry, College of Arts and SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
2
|
Pickart AM, Martin AS, Gross BN, Dellefave-Castillo LM, McCallen LM, Nagaraj CB, Rippert AL, Schultz CP, Ulm EA, Armstrong N. Genetic counseling for the dystrophinopathies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2025; 34:e1892. [PMID: 38682751 DOI: 10.1002/jgc4.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
The dystrophinopathies encompass the phenotypically variable forms of muscular dystrophy caused by pathogenic variants in the DMD gene. The dystrophinopathies include the most common inherited muscular dystrophy among 46,XY individuals, Duchenne muscular dystrophy, as well as Becker muscular dystrophy and other less common phenotypic variants. With increased access to and utilization of genetic testing in the diagnostic and carrier setting, genetic counselors and clinicians in diverse specialty areas may care for individuals with and carriers of dystrophinopathy. This practice resource was developed as a tool for genetic counselors and other health care professionals to support counseling regarding dystrophinopathies, including diagnosis, health risks and management, psychosocial needs, reproductive options, clinical trials, and treatment. Genetic testing efforts have enabled genotype/phenotype correlation in the dystrophinopathies, but have also revealed unexpected findings, further complicating genetic counseling for this group of conditions. Additionally, the therapeutic landscape for dystrophinopathies has dramatically changed with several FDA-approved therapeutics, an expansive research pathway, and numerous clinical trials. Genotype-phenotype correlations are especially complex and genetic counselors' unique skill sets are useful in exploring and explaining this to families. Given the recent advances in diagnostic testing and therapeutics related to dystrophinopathies, this practice resource is a timely update for genetic counselors and other healthcare professionals involved in the diagnosis and care of individuals with dystrophinopathies.
Collapse
Affiliation(s)
- Angela M Pickart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, District of Columbia, USA
| | - Brianna N Gross
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leslie M McCallen
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Chinmayee B Nagaraj
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Elizabeth A Ulm
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Niki Armstrong
- Parent Project Muscular Dystrophy, Washington, District of Columbia, USA
| |
Collapse
|
3
|
A Nonsense Variant in the DMD Gene Causes X-Linked Muscular Dystrophy in the Maine Coon Cat. Animals (Basel) 2022; 12:ani12212928. [PMID: 36359052 PMCID: PMC9653713 DOI: 10.3390/ani12212928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Feline dystrophin-deficient muscular dystrophy (ddMD) is a fatal disease characterized by progressive weakness and degeneration of skeletal muscles and is caused by variants in the DMD gene. To date, only two feline causal variants have been identified. This study reports two cases of male Maine coon siblings that presented with muscular hypertrophy, growth retardation, weight loss, and vomiting. (2) Both cats were clinically examined and histopathology and immunofluorescent staining of the affected muscle was performed. DMD mRNA was sequenced to identify putative causal variants. (3) Both cats showed a significant increase in serum creatine kinase activity. Electromyography and histopathological examination of the muscle samples revealed abnormalities consistent with a dystrophic phenotype. Immunohistochemical testing revealed the absence of dystrophin, confirming the diagnosis of dystrophin-deficient muscular dystrophy. mRNA sequencing revealed a nonsense variant in exon 11 of the feline DMD gene, NC_058386.1 (XM_045050794.1): c.1180C > T (p.(Arg394*)), which results in the loss of the majority of the dystrophin protein. Perfect X-linked segregation of the variant was established in the pedigree. (4) ddMD was described for the first time in the Maine coon and the c.1180C>T variant was confirmed as the causal variant.
Collapse
|
4
|
Counterman KJ, Fatovic K, Good DC, Martin AS, Dasgupta S, Anziska Y. Associations Between Self-Reported Behavioral and Learning Concerns and DMD Isoforms in Duchenne Muscular Dystrophy. J Neuromuscul Dis 2022; 9:757-764. [DOI: 10.3233/jnd-220821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder resulting from loss of dystrophin. In addition to its role in muscle, isoforms of dystrophin are expressed in different cell types of the brain, and DMD has been linked to language delays, behavioral abnormalities and learning disabilities. Objective: To determine whether disruption of specific DMD isoforms, age, corticosteroid use, ambulation status, or country are associated with behavioral and/or learning concerns in DMD. Methods: De-identified data were collected from the Duchenne Registry from 2007– 2019. Females, patients with BMD, and those without genetic testing reports were excluded from the cohort. For the genetic analysis, patients were divided into four subgroups based on the location of their mutation and the predicted isoforms affected. Bivariate analysis was conducted using chi-square for categorical variables. Two multivariate logistic regressions were used to assess independent associations with behavioral and learning concerns, respectively, and to estimate the effect size of each variable. Results: DMD mutations disrupting expression of Dp140 and Dp71 were associated with a higher likelihood of reported behavioral and learning concerns. Corticosteroid use, categorical age, and country were other factors associated with behavior and learning concerns. Conclusion: This data adds to our current understanding of DMD isoforms, their mutational consequence and impact on behavior and learning.
Collapse
Affiliation(s)
| | - Kathy Fatovic
- University of New England College of Osteopathic Medicine, Biddeford, ME
| | - Daniel C. Good
- University of New England College of Osteopathic Medicine, Biddeford, ME
| | | | | | - Yaacov Anziska
- State University of New York Downstate Medical Center, Brooklyn, New York, NY
| |
Collapse
|
5
|
Antisense Morpholino-Based In Vitro Correction of a Pseudoexon-Generating Variant in the SGCB Gene. Int J Mol Sci 2022; 23:ijms23179817. [PMID: 36077211 PMCID: PMC9456520 DOI: 10.3390/ijms23179817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are clinically and genetically heterogenous presentations displaying predominantly proximal muscle weakness due to the loss of skeletal muscle fibers. Beta-sarcoglycanopathy (LGMDR4) results from biallelic molecular defects in SGCB and features pediatric onset with limb-girdle involvement, often complicated by respiratory and heart dysfunction. Here we describe a patient who presented at the age of 12 years reporting high creatine kinase levels and onset of cramps after strenuous exercise. Instrumental investigations, including a muscle biopsy, pointed towards a diagnosis of beta-sarcoglycanopathy. NGS panel sequencing identified two variants in the SGCB gene, one of which (c.243+1548T>C) was found to promote the inclusion of a pseudoexon between exons 2 and 3 in the SGCB transcript. Interestingly, we detected the same genotype in a previously reported LGMDR4 patient, deceased more than twenty years ago, who had escaped molecular diagnosis so far. After the delivery of morpholino oligomers targeting the pseudoexon in patient-specific induced pluripotent stem cells, we observed the correction of the physiological splicing and partial restoration of protein levels. Our findings prompt the analysis of the c.243+1548T>C variant in suspected LGMDR4 patients, especially those harbouring monoallelic SGCB variants, and provide a further example of the efficacy of antisense technology for the correction of molecular defects resulting in splicing abnormalities.
Collapse
|
6
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
7
|
Lee MJ, Lee I, Wang K. Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines 2022; 10:biomedicines10010158. [PMID: 35052837 PMCID: PMC8773368 DOI: 10.3390/biomedicines10010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The development of new sequencing technologies in the post-genomic era has accelerated the identification of causative mutations of several single gene disorders. Advances in cell and animal models provide insights into the underlining pathogenesis, which facilitates the development and maturation of new treatment strategies. The progress in biochemistry and molecular biology has established a new class of therapeutics—the short RNAs and expressible long RNAs. The sequences of therapeutic RNAs can be optimized to enhance their stability and translatability with reduced immunogenicity. The chemically-modified RNAs can also increase their stability during intracellular trafficking. In addition, the development of safe and high efficiency carriers that preserves the integrity of therapeutic RNA molecules also accelerates the transition of RNA therapeutics into the clinic. For example, for diseases that are caused by genetic defects in a specific protein, an effective approach termed “protein replacement therapy” can provide treatment through the delivery of modified translatable mRNAs. Short interference RNAs can also be used to treat diseases caused by gain of function mutations or restore the splicing aberration defects. Here we review the applications of newly developed RNA-based therapeutics and its delivery and discuss the clinical evidence supporting the potential of RNA-based therapy in single-gene neurological disorders.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10012, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA;
- Correspondence: ; Tel.: +1-206-732-1336
| |
Collapse
|
8
|
Abstract
Antisense oligonucleotides (AONs) are small synthetic molecules of therapeutic interest for a variety of human disease. Their ability to bind mRNA and affect its splicing gives AONs potential use for exon skipping therapies aimed at restoring the dystrophin transcript reading frame for Duchenne muscular dystrophy (DMD) patients. The neutrally charged phosphorodiamidate morpholino oligomers (PMOs) are a stable and relatively nontoxic AON modification. To assess exon skipping efficiency in vitro, it is important to deliver them to target cells. Here, we describe a method for the delivery of PMOs to myoblasts by electroporation. The described protocol for the Amaxa 4D X unit nucleofector system allows efficient processing of 16 samples in one nucleocuvette strip, aiding in high-throughput PMO efficacy screens.
Collapse
Affiliation(s)
- Remko Goossens
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Abstract
Extracellular vesicles are lipid-bilayer-enclosed nanoparticles present in the majority of biological fluids that mediate intercellular communication. EVs are able to transfer their contents (including nucleic acids, proteins, lipids, and small molecules) to recipient cells, and thus hold great promise as drug delivery vehicles. However, their therapeutic application is limited by lack of efficient cargo loading strategies, a need to improve EV tissue-targeting capabilities and a requirement to improve escape from the endolysosomal system. These challenges can be effectively addressed by modifying EVs with peptides which confer specific advantageous properties, thus enhancing their therapeutic potential. Here we provide an overview of the applications of peptide technology with respect to EV therapeutics. We focus on the utility of EV-modifying peptides for the purposes of promoting cargo loading, tissue-targeting and endosomal escape, leading to enhanced delivery of the EV cargo to desired cells/tissues and subcellular target locations. Both endogenous and exogenous methods for modifying EVs with peptides are considered.
Collapse
|
10
|
Chilcott EM, Muiruri EW, Hirst TC, Yáñez-Muñoz RJ. Systematic review and meta-analysis determining the benefits of in vivo genetic therapy in spinal muscular atrophy rodent models. Gene Ther 2022; 29:498-512. [PMID: 34611322 PMCID: PMC9482879 DOI: 10.1038/s41434-021-00292-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/31/2023]
Abstract
Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.
Collapse
Affiliation(s)
- Ellie M. Chilcott
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK ,Present Address: Institute for Women’s Health, UCL, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Evalyne W. Muiruri
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| | - Theodore C. Hirst
- grid.416232.00000 0004 0399 1866Department of Neurosurgery, Royal Victoria Hospital, Belfast, BT12 6BA UK
| | - Rafael J. Yáñez-Muñoz
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| |
Collapse
|
11
|
Louadi Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases. Genome Biol 2021; 22:327. [PMID: 34857024 PMCID: PMC8638120 DOI: 10.1186/s13059-021-02538-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in molecular processes and pathobiology is far from understood. A roadblock is that tools for the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE, a tool integrating pathways with structural annotations of protein-protein interactions to functionally characterize AS events. We show in four application cases how NEASE can identify pathways contributing to tissue identity and cell type development, and how it highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique and meaningful biological insights complementary to classical pathways analysis.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Melissa Klug
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Chit Tong Lio
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Amit Fenn
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dario Bongiovanni
- Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, 5000, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany.
| |
Collapse
|
12
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
13
|
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked, muscle wasting disease that affects 1 in 5000 males. Affected individuals become wheelchair bound by the age of twelve and eventually die in their third decade due to respiratory and cardiac complications. The disease is caused by mutations in the DMD gene that codes for dystrophin. Dystrophin is a structural protein that maintains the integrity of muscle fibres and protects them from contraction-induced damage. The absence of dystrophin compromises the stability and function of the muscle fibres, eventually leading to muscle degeneration. So far, there is no effective treatment for deteriorating muscle function in DMD patients. A promising approach for treating this life-threatening disease is gene transfer to restore dystrophin expression using a safe, non-pathogenic viral vector called adeno-associated viral (AAV) vector. Whilst microdystrophin gene transfer using AAV vectors shows extremely impressive therapeutic success so far in large animal models of DMD, translating this advanced therapy medicinal product from bench to bedside still offers scope for many optimization steps. In this paper, the authors review the current progress of AAV-microdystrophin gene therapy for DMD and other treatment strategies that may apply to a subset of DMD patients depending on the mutations they carry.
Collapse
Affiliation(s)
- Nertiyan Elangkovan
- Centres for Gene & Cell Therapy and Biomedical Sciences, Department of Biological Sciences, School of Life & Environmental Sciences, Royal Holloway - University of London, Surrey, TW20 0EX, UK
| | - George Dickson
- Centres for Gene & Cell Therapy and Biomedical Sciences, Department of Biological Sciences, School of Life & Environmental Sciences, Royal Holloway - University of London, Surrey, TW20 0EX, UK
| |
Collapse
|
14
|
Noé V, Ciudad CJ. Polypurine Reverse-Hoogsteen Hairpins as a Tool for Exon Skipping at the Genomic Level in Mammalian Cells. Int J Mol Sci 2021; 22:3784. [PMID: 33917446 PMCID: PMC8038689 DOI: 10.3390/ijms22073784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
Therapeutic strategies for rare diseases based on exon skipping are aimed at mediating the elimination of mutated exons and restoring the reading frame of the affected protein. We explored the capability of polypurine reverse-Hoogsteen hairpins (PPRHs) to cause exon skipping in NB6 cells carrying a duplication of exon 2 of the DHFR gene that causes a frameshift abolishing DHFR activity. METHODS Different editing PPRHs were designed and transfected in NB6 cells followed by incubation in a DHFR-selective medium lacking hypoxanthine and thymidine. Surviving colonies were analyzed by DNA sequencing, RT-PCR, Western blotting and DHFR enzymatic activity. RESULTS Transfection of editing PPRHs originated colonies in the DHFR-selective medium. DNA sequencing results proved that the DHFR sequence in all these colonies corresponded to the wildtype sequence with just one copy of exon 2. In the edited colonies, the skipping of the additional exon was confirmed at the mRNA level, the DHFR protein was restored, and it showed high levels of DHFR activity. CONCLUSIONS Editing-PPRHs are able to cause exon skipping at the DNA level and could be applied as a possible therapeutic tool for rare diseases.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences & IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| | | |
Collapse
|
15
|
Gieron-Korthals M, Fernandez R. New Developments in Diagnosis, Treatment, and Management of Duchenne Muscular Dystrophy. Adv Pediatr 2020; 67:183-196. [PMID: 32591061 DOI: 10.1016/j.yapd.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Maria Gieron-Korthals
- Department of Pediatrics, Division of Child Neurology, University of South Florida, Morsani College of Medicine, 17 Davis Boulevard, Suite 200, Tampa, FL 33606, USA.
| | - Raymond Fernandez
- Pediatric Neurology Associates, 4150 North Armenia Avenue, Suite 103, Tampa, FL 33607, USA; Muscular Dystrophy Association Care Center, Shriners Hospital for Children, Tampa, FL, USA
| |
Collapse
|
16
|
Danilov KA, Vassilieva SG, Polikarpova AV, Starikova AV, Shmidt AA, Galkin II, Tsitrina AA, Egorova TV, Orlov SN, Kotelevtsev YV. In vitro assay for the efficacy assessment of AAV vectors expressing microdystrophin. Exp Cell Res 2020; 392:112033. [PMID: 32360435 DOI: 10.1016/j.yexcr.2020.112033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
AAV-delivered microdystrophin genes hold great promise for Duchenne muscular dystrophy (DMD) treatment. It is anticipated that the optimization of engineered dystrophin genes will be required to increase the efficacy and reduce the immunogenicity of transgenic proteins. An in vitro system is required for the efficacy testing of genetically engineered dystrophin genes. We report here on the proof of concept for an in vitro assay based on the assessment of sarcolemma damage after repetitively applied electrical stimuli. The primary cell culture of myoblasts was established from wild-type C57BL/10ScSnJ and dystrophin-deficient mdx mice. The preparation parameters and the differentiation of contractile myotubes were optimized. DAPI and TO-PRO-3 dyes were used to assess myotubular membrane permeability in response to electrical pulse stimulation (EPS). Myotubes derived from mdx mice exhibited a greater increase in membrane damage, as assessed by TO-PRO-3-measured permeability after EPS, than was exhibited by the healthy control myotubes. AAV-DJ particles carrying the microdystrophin gene were used to transduce mdx-derived differentiated myotubes. Microdystrophin delivery ameliorated the disease phenotype and reduced the EPS-induced membrane damage to a level comparable to that of the healthy controls. Thus, the in vitro system was shown to be capable of supporting studies on DMD gene therapy.
Collapse
Affiliation(s)
- Kirill A Danilov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; Atlas Biomed Group Limited, Tintagel House, 92 Albert Embankment, Lambeth, SE1 7TY, London, United Kingdom.
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Anna V Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Anna V Starikova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Anna A Shmidt
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Ivan I Galkin
- Marlin Biotech LLC, Moscow, 143026, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Alexandra A Tsitrina
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Sergei N Orlov
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; National Research Tomsk State University, Tomsk, 634050, Russia.
| | - Yuri V Kotelevtsev
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| |
Collapse
|
17
|
Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 2019; 45:630-645. [PMID: 31257147 PMCID: PMC6642283 DOI: 10.1016/j.ebiom.2019.06.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration, caused by the absence of dystrophin. Exon skipping by antisense oligonucleotides (ASOs) has recently gained recognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino backbone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO laboratory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuromuscular diseases.
Collapse
Key Words
- aso, antisense oligonucleotides
- cns, central nervous system
- cpp, cell penetrating peptide
- dgc, dystrophin glyco-protein complex
- dmd, duchenne muscular dystrophy
- fda, us food and drug administration
- pmo, phosphorodiamidate morpholino
- ppmo, peptide-conjugated pmos
- ps, phosphorothioate
- sma, spinal muscular atrophy
- 2ʹ-ome, 2ʹ-o-methyl
- 2ʹ-moe, 2ʹ-o-methoxyethyl
- 6mwt, 6-minute walk test
Collapse
Affiliation(s)
- Maria K Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan.
| |
Collapse
|
18
|
Bolduc V, Foley AR, Solomon-Degefa H, Sarathy A, Donkervoort S, Hu Y, Chen GS, Sizov K, Nalls M, Zhou H, Aguti S, Cummings BB, Lek M, Tukiainen T, Marshall JL, Regev O, Marek-Yagel D, Sarkozy A, Butterfield RJ, Jou C, Jimenez-Mallebrera C, Li Y, Gartioux C, Mamchaoui K, Allamand V, Gualandi F, Ferlini A, Hanssen E, Wilton SD, Lamandé SR, MacArthur DG, Wagener R, Muntoni F, Bönnemann CG. A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice-correction therapies. JCI Insight 2019; 4:124403. [PMID: 30895940 DOI: 10.1172/jci.insight.124403] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Herimela Solomon-Degefa
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Apurva Sarathy
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Grace S Chen
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Katherine Sizov
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Haiyan Zhou
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sara Aguti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Beryl B Cummings
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Monkol Lek
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taru Tukiainen
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jamie L Marshall
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, USA
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Russell J Butterfield
- Department of Neurology and Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Cristina Jou
- Pathology Department and Biobanc de l'Hospital Infantil Sant Joan de Déu per a la Investigació, Hospital Sant Joan de Déu, Barcelona, Spain.,Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropediatrics Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,CIBERER (ISCIII), Madrid, Spain
| | - Yan Li
- Peptide/Protein Sequencing Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland, USA
| | - Corine Gartioux
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Valérie Allamand
- Sorbonne Université, Inserm, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,Medical Genetics Unit, Department of Medical Science, University of Ferrara, Ferrara, Italy
| | - Eric Hanssen
- Bio21 Advanced Microscopy Facility, The University of Melbourne, Melbourne, Australia
| | | | - Steve D Wilton
- Centre for Molecular Medicine and Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Daniel G MacArthur
- Analytical and Translation Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Raimund Wagener
- Center for Biochemistry, Faculty of Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Wai H, Douglas AGL, Baralle D. RNA splicing analysis in genomic medicine. Int J Biochem Cell Biol 2018; 108:61-71. [PMID: 30594648 DOI: 10.1016/j.biocel.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
High-throughput next-generation sequencing technologies have led to a rapid increase in the number of sequence variants identified in clinical practice via diagnostic genetic tests. Current bioinformatic analysis pipelines fail to take adequate account of the possible splicing effects of such variants, particularly where variants fall outwith canonical splice site sequences, and consequently the pathogenicity of such variants may often be missed. The regulation of splicing is highly complex and as a result, in silico prediction tools lack sufficient sensitivity and specificity for reliable use. Variants of all kinds can be linked to aberrant splicing in disease and the need for correct identification and diagnosis grows ever more crucial as novel splice-switching antisense oligonucleotide therapies start to enter clinical usage. RT-PCR provides a useful targeted assay of the splicing effects of identified variants, while minigene assays, massive parallel reporter assays and animal models can also be used for more detailed study of a particular splicing system, given enough time and resources. However, RNA-sequencing (RNA-seq) has the potential to be used as a rapid diagnostic tool in genomic medicine. By utilising data science approaches and machine learning, it may prove possible to finally understand and interpret the 'splicing code' and apply this knowledge in human disease diagnostics.
Collapse
Affiliation(s)
- Htoo Wai
- Human Development and Health, Faculty of Medicine, University of Southampton, UK
| | - Andrew G L Douglas
- Human Development and Health, Faculty of Medicine, University of Southampton, UK; Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, UK; Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
20
|
Roovers J, De Jonghe P, Weckhuysen S. The therapeutic potential of RNA regulation in neurological disorders. Expert Opin Ther Targets 2018; 22:1017-1028. [PMID: 30372655 DOI: 10.1080/14728222.2018.1542429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gene regulation is the term used to describe the mechanisms by which a cell increases or decreases the amount of a gene product (RNA or protein). In complex organs such as the brain, gene regulation is of the utmost importance; aberrations in the regulation of specific genes can lead to neurological disorders. Understanding these mechanisms can create new strategies for targeting these disorders and progress is being made. Two drugs that function at the RNA level (nusinersen and eteplirsen) have now been approved by the FDA for the treatment of Spinomuscular atrophy and Duchenne muscular dystrophy, respectively; several other compounds for neurological disease are currently being investigated in preclinical studies and clinical trials. Areas covered: We highlight how gene regulation at the level of RNA molecules can be used as a therapeutic strategy to treat neurological disorders. We provide examples of how such an approach is being studied or used and discuss the current hurdles. Expert opinion: Targeting gene expression at the RNA level is a promising strategy to treat genetic neurological disorders. Safe administration, long-term efficacy, and potential side effects, however, still need careful evaluation before RNA therapeutics can be applied on a larger scale.
Collapse
Affiliation(s)
- Jolien Roovers
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium
| | - Peter De Jonghe
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| | - Sarah Weckhuysen
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| |
Collapse
|
21
|
Dystrophin Cardiomyopathies: Clinical Management, Molecular Pathogenesis and Evolution towards Precision Medicine. J Clin Med 2018; 7:jcm7090291. [PMID: 30235804 PMCID: PMC6162458 DOI: 10.3390/jcm7090291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/02/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Duchenne’s muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Collapse
|
22
|
Douglas AGL. Non-coding RNA in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia: A perfect storm of dysfunction. Noncoding RNA Res 2018; 3:178-187. [PMID: 30533567 PMCID: PMC6260478 DOI: 10.1016/j.ncrna.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022] Open
Abstract
A hexanucleotide repeat expansion in the first intron/promoter region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both sense and antisense transcripts exist at the C9orf72 locus but the function of the antisense lncRNA is unknown. RNA toxicity of the transcribed repeat expansion has been implicated in the pathogenesis of C9orf72-related ALS/FTD, not only through direct sequestration of important RNA binding proteins but also indirectly through non-ATG dependent translation into dipeptide repeats. Formation of RNA/DNA hybrid R-loops may also play a key role in the pathogenesis of this condition and this mechanism could provide a link between the repeat expansion, DNA damage, repeat instability and deficiency of RNA binding proteins. Non-coding C9orf72 antisense transcripts could also act to epigenetically regulate gene expression at the locus. The potential effects of such non-coding RNAs should be considered in the design of antisense oligonucleotide therapeutics for C9orf72-related ALS/FTD. Furthermore, the mechanisms of RNA dysregulation exemplified by C9orf72-related disease may help illustrate more broadly how a “perfect storm” of dysfunction occurs in ALS/FTD and how targeting these factors could lead to corrective or preventative therapies.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
23
|
Viola HM, Johnstone VP, Adams AM, Fletcher S, Hool LC. A Morpholino Oligomer Therapy Regime That Restores Mitochondrial Function and Prevents mdx Cardiomyopathy. JACC Basic Transl Sci 2018; 3:391-402. [PMID: 30062225 PMCID: PMC6059013 DOI: 10.1016/j.jacbts.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Current clinical trials demonstrate Duchenne muscular dystrophy (DMD) patients receiving phosphorodiamidate morpholino oligomer (PMO) therapy exhibit improved ambulation and stable pulmonary function; however, cardiac abnormalities remain. Utilizing the same PMO chemistry as current clinical trials, we have identified a non-toxic PMO treatment regimen that restores metabolic activity and prevents DMD cardiomyopathy. We propose that a treatment regimen of this nature may have the potential to significantly improve morbidity and mortality from DMD by improving ambulation, stabilizing pulmonary function, and preventing the development of cardiomyopathy.
Collapse
Key Words
- DMD, Duchenne muscular dystrophy
- ICa-L, L-type Ca2+ channel
- JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide
- L-type calcium channels
- PMO, phosphorodiamidate morpholino oligomer
- RT-PCR, reverse transcriptase polymerase chain reaction
- cardiomyopathy
- mdx, murine model of Duchenne muscular dystrophy
- mitochondria
- wt, wild type
- Ψm, mitochondrial membrane potential
Collapse
Affiliation(s)
- Helena M. Viola
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Victoria P.A. Johnstone
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Abbie M. Adams
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
- Perron Institute for Neuroscience and Translational Science, and Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia C. Hool
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Wyatt EJ, Demonbreun AR, Kim EY, Puckelwartz MJ, Vo AH, Dellefave-Castillo LM, Gao QQ, Vainzof M, Pavanello RCM, Zatz M, McNally EM. Efficient exon skipping of SGCG mutations mediated by phosphorodiamidate morpholino oligomers. JCI Insight 2018; 3:99357. [PMID: 29720576 DOI: 10.1172/jci.insight.99357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.
Collapse
Affiliation(s)
- Eugene J Wyatt
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ellis Y Kim
- Committee on Molecular Medicine and Molecular Pathogenesis and
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H Vo
- Committee on Developmental Biology and Regenerative Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Quan Q Gao
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariz Vainzof
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Rita C M Pavanello
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
25
|
Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2018; 10:943-954. [PMID: 28768735 PMCID: PMC5560066 DOI: 10.1242/dmm.030148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery. Summary: Translational research for spinal muscular atrophy (SMA) should address the development of non-CNS and survival motor neuron (SMN)-independent therapeutic approaches to complement and enhance the benefits of CNS-directed and SMN-dependent therapies.
Collapse
Affiliation(s)
- Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Catherina G Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|
26
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Carver MP, Charleston JS, Shanks C, Zhang J, Mense M, Sharma AK, Kaur H, Sazani P. Toxicological Characterization of Exon Skipping Phosphorodiamidate Morpholino Oligomers (PMOs) in Non-human Primates. J Neuromuscul Dis 2018; 3:381-393. [PMID: 27854228 DOI: 10.3233/jnd-160157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Phosphorodiamidate morpholino oligomers (PMOs) are a class of exon skipping drugs including eteplirsen, which has shown considerable promise for treatment of the degenerative neuromuscular disease, Duchenne musculardystrophy (DMD). OBJECTIVE Toxicity studies in non-human primates (NHPs) of 12 weeks duration with two new PMOs for DMD, SRP-4045 and SRP-4053, along with results from a chronic study in NHPs of 39 weeks duration for eteplirsen, are described here. METHODS PMOs were administered once-weekly by bolus intravenous (IV) injections to male NHPs. Endpoints evaluated included plasma exposures, clinical observations, body weight/food consumption, eye exams, electrocardiograms, male reproductive hormones/endpoints, complement alternative pathway, clinical pathology, urinalysis, and macroscopic/light microscopic pathology. RESULTS Findings in these studies were limited to the kidneys, with a common presentation of tubular basophilia, vacuolation, and/or minimal degeneration that was considered non-adverse. No necrosis, glomerular lesions, or effects on renal function tests such as serum creatinine or urea nitrogen were observed, suggesting that PMO-related kidney findings are not likely to develop into frank nephrotoxicity. There were no adverse effects on other potential target organs after repeated IV injections at the highest dose levels tested, 320 mg/kg. CONCLUSIONS Nonclinical results in NHPs for these three PMOs, together with the excellent clinical safety established for eteplirsen to date, suggest that once-weekly IV administration of PMOs for lifetime durations at therapeutic doses will be well tolerated by patients with DMD.
Collapse
Affiliation(s)
- Michael P Carver
- R&D Pharmacology/Toxicology, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Jay S Charleston
- R&D Pharmacology/Toxicology, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Courtney Shanks
- R&D Pharmacology/Toxicology, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Jianbo Zhang
- R&D Pharmacology/Toxicology, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | - Mark Mense
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | - Peter Sazani
- Research and Innovation, Sarepta Therapeutics, Inc., Cambridge, MA, USA
| |
Collapse
|
28
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
29
|
van der Bent ML, Paulino da Silva Filho O, van Luijk J, Brock R, Wansink DG. Assisted delivery of antisense therapeutics in animal models of heritable neurodegenerative and neuromuscular disorders: a systematic review and meta-analysis. Sci Rep 2018; 8:4181. [PMID: 29520012 PMCID: PMC5843643 DOI: 10.1038/s41598-018-22316-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotide (AON)-based therapies hold promise for a range of neurodegenerative and neuromuscular diseases and have shown benefit in animal models and patients. Success in the clinic is nevertheless still limited, due to unfavourable biodistribution and poor cellular uptake of AONs. Extensive research is currently being conducted into the formulation of AONs to improve delivery, but thus far there is no consensus on which of those strategies will be the most effective. This systematic review was designed to answer in an unbiased manner which delivery strategies most strongly enhance the efficacy of AONs in animal models of heritable neurodegenerative and neuromuscular diseases. In total, 95 primary studies met the predefined inclusion criteria. Study characteristics and data on biodistribution and toxicity were extracted and reporting quality and risk of bias were assessed. Twenty studies were eligible for meta-analysis. We found that even though the use of delivery systems provides an advantage over naked AONs, it is not yet possible to select the most promising strategies. Importantly, standardisation of experimental procedures is warranted in order to reach conclusions about the most efficient delivery strategies. Our best practice guidelines for future experiments serve as a step in that direction.
Collapse
Affiliation(s)
- M Leontien van der Bent
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Nijmegen, The Netherlands
| | - Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Judith van Luijk
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department of Health Evidence, Radboud university medical center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Wood MJA, Talbot K, Bowerman M. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape. Hum Mol Genet 2018; 26:R151-R159. [PMID: 28977438 DOI: 10.1093/hmg/ddx215] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/03/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of spinal cord motor neurons, muscle atrophy and infantile death or severe disability. It is caused by severe reduction of the ubiquitously expressed survival motor neuron (SMN) protein, owing to loss of the SMN1 gene. This would be completely incompatible with survival without the presence of a quasi-identical duplicated gene, SMN2, specific to humans. SMN2 harbours a silent point mutation that favours the production of transcripts lacking exon 7 and a rapidly degraded non-functional SMNΔ7 protein, but from which functional full length SMN protein is produced at very low levels (∼10%). Since the seminal discovery of the SMA-causing gene in 1995, research has focused on the development of various SMN replacement strategies culminating, in December 2016, in the approval of the first precise molecularly targeted therapy for SMA (nusinersen), and a pivotal proof of principle that therapeutic antisense oligonucleotide (ASO) treatment can effectively target the central nervous system (CNS) to treat neurological and neuromuscular disease. Nusinersen is a steric block ASO that binds the SMN2 messenger RNA and promotes exon 7 inclusion and thus increases full length SMN expression. Here, we consider the implications of this therapeutic landmark for SMA therapeutics and discuss how future developments will need to address the challenges of delivering ASO therapies to the CNS, with appropriate efficiency and activity, and how SMN-based therapy should be used in combination with complementary strategies to provide an integrated approach to treat CNS and peripheral pathologies in SMA.
Collapse
Affiliation(s)
- Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford OX1 3QX, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford OX1 3QX, Oxford, UK
| |
Collapse
|
31
|
Cossu G, Birchall M, Brown T, De Coppi P, Culme-Seymour E, Gibbon S, Hitchcock J, Mason C, Montgomery J, Morris S, Muntoni F, Napier D, Owji N, Prasad A, Round J, Saprai P, Stilgoe J, Thrasher A, Wilson J. Lancet Commission: Stem cells and regenerative medicine. Lancet 2018; 391:883-910. [PMID: 28987452 DOI: 10.1016/s0140-6736(17)31366-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester. Manchester Academic Health Science Centre, UK.
| | | | | | - Paolo De Coppi
- Institute of Child Health, University College London, London, UK
| | | | - Sahra Gibbon
- Department of Anthropology, University College London, London, UK
| | | | - Chris Mason
- Advanced Centre for Biochemical Engineering, UCL and AvroBio, Cambridge, MA, USA
| | | | - Steve Morris
- Department of Applied Health Research, University College London, London, UK
| | | | - David Napier
- Department of Anthropology, University College London, London, UK
| | - Nazanin Owji
- Eastman Dental Institute, University College London, London, UK
| | | | - Jeff Round
- Department of Health Economics, University of Bristol, Bristol, UK
| | - Prince Saprai
- Faculty of Laws, University College London, London, UK
| | - Jack Stilgoe
- Department of Science and Technology Studies, University College London, London, UK
| | - Adrian Thrasher
- Institute of Child Health, University College London, London, UK
| | - James Wilson
- Department of Philosophy, University College London, London, UK
| |
Collapse
|
32
|
Aslesh T, Maruyama R, Yokota T. Skipping Multiple Exons to Treat DMD-Promises and Challenges. Biomedicines 2018; 6:E1. [PMID: 29301272 PMCID: PMC5874658 DOI: 10.3390/biomedicines6010001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disorder caused by mutations in the DMD gene. Antisense-mediated exon-skipping is a promising therapeutic strategy that makes use of synthetic nucleic acids to skip frame-disrupting exon(s) and allows for short but functional protein expression by restoring the reading frame. In 2016, the U.S. Food and Drug Administration (FDA) approved eteplirsen, which skips DMD exon 51 and is applicable to approximately 13% of DMD patients. Multiple exon skipping, which is theoretically applicable to 80-90% of DMD patients in total, have been demonstrated in animal models, including dystrophic mice and dogs, using cocktail antisense oligonucleotides (AOs). Although promising, current drug approval systems pose challenges for the use of a cocktail AO. For example, both exons 6 and 8 need to be skipped to restore the reading frame in dystrophic dogs. Therefore, the cocktail of AOs targeting these exons has a combined therapeutic effect and each AO does not have a therapeutic effect by itself. The current drug approval system is not designed to evaluate such circumstances, which are completely different from cocktail drug approaches in other fields. Significant changes are needed in the drug approval process to promote the cocktail AO approach.
Collapse
Affiliation(s)
- Tejal Aslesh
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812-112 St. Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
33
|
Chen G, Ma Q, Goswami D, Shang J, Miller GM. Modulation of nuclear REST by alternative splicing: a potential therapeutic target for Huntington's disease. J Cell Mol Med 2017; 21:2974-2984. [PMID: 28524599 PMCID: PMC5661251 DOI: 10.1111/jcmm.13209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is caused by a genetically mutated huntingtin (mHtt) protein with expanded polyQ stretch, which impairs cytosolic sequestration of the repressor element-1 silencing transcription factor (REST), resulting in excessive nuclear REST and subsequent repression of neuronal genes. We recently demonstrated that REST undergoes extensive, context-dependent alternative splicing, of which exon-3 skipping (∆E3 )-a common event in human and nonhuman primates-causes loss of a motif critical for REST nuclear targeting. This study aimed to determine whether ∆E3 can be targeted to reduce nuclear REST and rescue neuronal gene expression in mouse striatal-derived, mHtt-expressing STHdhQ111/Q111 cells-a well-established cellular model of HD. We designed two morpholino antisense oligos (ASOs) targeting the splice sites of Rest E3 and examined their effects on ∆E3 , nuclear Rest accumulation and Rest-controlled gene expression in STHdhQ111/Q111 cells. We found that (1) the ASOs treatment significantly induced ∆E3 , reduced nuclear Rest, and rescued transcription and/or mis-splicing of specific neuronal genes (e.g. Syn1 and Stmn2) in STHdhQ111/Q111 cells; and (2) the ASOs-induced transcriptional regulation was dependent on ∆E3 induction and mimicked by siRNA-mediated knock-down of Rest expression. Our findings demonstrate modulation of nuclear REST by ∆E3 and its potential as a new therapeutic target for HD and provide new insights into environmental regulation of genome function and pathogenesis of HD. As ∆E3 is modulated by cellular signalling and linked to various types of cancer, we anticipate that ∆E3 contributes to environmentally tuned REST function and may have a broad range of clinical implications.
Collapse
Affiliation(s)
- Guo‐Lin Chen
- Department of Pharmaceutical Sciences and Center for Drug DiscoverySchool of PharmacyNortheastern UniversityBostonMAUSA
- Guangxi Collaborative Innovation Center for BiomedicineGuangxi Medical UniversityNanningGuangxiChina
- Research Center for Regenerative Medicine of GuangxiGuangxi Medical UniversityNanningGuangxiChina
| | - Qi Ma
- Department of PsychiatryInstitute for Human PerformanceSUNY Upstate Medical UniversitySyracuseNYUSA
| | - Dharmendra Goswami
- Center for the Study of Traumatic EncephalopathyBoston University School of MedicineBostonMAUSA
- Department of NeurologyBoston University School of MedicineBostonMAUSA
- VA Boston HealthCare SystemBostonMAUSA
| | - Jianyu Shang
- Department of Pharmaceutical Sciences and Center for Drug DiscoverySchool of PharmacyNortheastern UniversityBostonMAUSA
| | - Gregory M. Miller
- Department of Pharmaceutical Sciences and Center for Drug DiscoverySchool of PharmacyNortheastern UniversityBostonMAUSA
- Department of Chemical EngineeringSchool of EngineeringNortheastern UniversityBostonMAUSA
| |
Collapse
|
34
|
De Roeck A, Van den Bossche T, van der Zee J, Verheijen J, De Coster W, Van Dongen J, Dillen L, Baradaran-Heravi Y, Heeman B, Sanchez-Valle R, Lladó A, Nacmias B, Sorbi S, Gelpi E, Grau-Rivera O, Gómez-Tortosa E, Pastor P, Ortega-Cubero S, Pastor MA, Graff C, Thonberg H, Benussi L, Ghidoni R, Binetti G, de Mendonça A, Martins M, Borroni B, Padovani A, Almeida MR, Santana I, Diehl-Schmid J, Alexopoulos P, Clarimon J, Lleó A, Fortea J, Tsolaki M, Koutroumani M, Matěj R, Rohan Z, De Deyn P, Engelborghs S, Cras P, Van Broeckhoven C, Sleegers K. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. Acta Neuropathol 2017; 134:475-487. [PMID: 28447221 PMCID: PMC5563332 DOI: 10.1007/s00401-017-1714-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer’s disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)—control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5–41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
Collapse
|
35
|
Farrelly-Rosch A, Lau CL, Patil N, Turner BJ, Shabanpoor F. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 2017; 108:213-221. [PMID: 28389270 DOI: 10.1016/j.neuint.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality worldwide, is characterised by the homozygous loss of the survival motor neuron 1 (SMN1) gene. The consequent degeneration of spinal motor neurons and progressive atrophy of voluntary muscle groups results in paralysis and eventually premature infantile death. Humans possess a second nearly identical copy of SMN1, known as SMN2. However, SMN2 produces only 10-20% functional SMN protein due to aberrant splicing of its pre-mRNA that leads to the exclusion of exon 7. This level of SMN is insufficient to rescue the phenotype. Recently developed splice-switching antisense oligonuclotides (SSO) have shown great promise in correcting the aberrant splicing of SMN2 towards producing functional SMN protein. Several FDA approved drugs are being repurposed for SMA treatment including valproic acid (VPA), a histone deacetylase inhibitor, which has been shown to increase overall SMN2 expression. In this study, we have characterised the effects of single and combined treatment of VPA and a SSO based on phosphorodiamidate morpholino oligomer (PMO) chemistry. We conjugated both VPA and PMO to a single cell-penetrating peptide (Apolipoprotein E (ApoE)) for their simultaneous intracellular delivery. Treatment of SMA Type I patient-derived fibroblasts with the conjugates showed no additive increase in the level of full-length SMN2 mRNA expression over both 4 and 16 h treatments indicating that conjugation of VPA to ApoE-PMO has limited benefit. However, treatment with a combination of VPA and ApoE-PMO induced more favourable splice switching activity than either agent alone, promoting exon 7 inclusion in SMN2 transcripts. Our results suggest that combination therapy of VPA and ApoE-PMO is superior in upregulating SMN2 production in vitro, as compared to singular treatment of each compound at both transcriptional and protein levels. This study provides the first indication of a novel dual therapy approach for the potential treatment of SMA.
Collapse
Affiliation(s)
- Anna Farrelly-Rosch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Chew Ling Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Nitin Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia; School of Chemistry, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
36
|
Johnstone VPA, Viola HM, Hool LC. Dystrophic Cardiomyopathy-Potential Role of Calcium in Pathogenesis, Treatment and Novel Therapies. Genes (Basel) 2017; 8:genes8040108. [PMID: 28338606 PMCID: PMC5406855 DOI: 10.3390/genes8040108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by defects in the DMD gene and results in progressive wasting of skeletal and cardiac muscle due to an absence of functional dystrophin. Cardiomyopathy is prominent in DMD patients, and contributes significantly to mortality. This is particularly true following respiratory interventions that reduce death rate and increase ambulation and consequently cardiac load. Cardiomyopathy shows an increasing prevalence with age and disease progression, and over 95% of patients exhibit dilated cardiomyopathy by the time they reach adulthood. Development of the myopathy is complex, and elevations in intracellular calcium, functional muscle ischemia, and mitochondrial dysfunction characterise the pathophysiology. Current therapies are limited to treating symptoms of the disease and there is therefore an urgent need to treat the underlying genetic defect. Several novel therapies are outlined here, and the unprecedented success of phosphorodiamidate morpholino oligomers (PMOs) in preclinical and clinical studies is overviewed.
Collapse
Affiliation(s)
- Victoria P A Johnstone
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Helena M Viola
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Livia C Hool
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.
| |
Collapse
|
37
|
Xu J, Lu Z, Narayan A, Le Rouzic VP, Xu M, Hunkele A, Brown TG, Hoefer WF, Rossi GC, Rice RC, Martínez-Rivera A, Rajadhyaksha AM, Cartegni L, Bassoni DL, Pasternak GW, Pan YX. Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine. J Clin Invest 2017; 127:1561-1573. [PMID: 28319053 DOI: 10.1172/jci88760] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Extensive 3' alternative splicing of the mu opioid receptor gene OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7-associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4-associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7-associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4-associated variant, suggesting an interaction of exon 7-associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3' alternative splicing.
Collapse
|
38
|
Lim KRQ, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:533-545. [PMID: 28280301 PMCID: PMC5338848 DOI: 10.2147/dddt.s97635] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Duchenne muscular dystrophy is a fatal neuromuscular disorder affecting around one in 3,500–5,000 male births that is characterized by progressive muscular deterioration. It is inherited in an X-linked recessive fashion and is caused by loss-of-function mutations in the DMD gene coding for dystrophin, a cytoskeletal protein that stabilizes the plasma membrane of muscle fibers. In September 2016, the US Food and Drug Administration granted accelerated approval for eteplirsen (or Exondys 51), a drug that acts to promote dystrophin production by restoring the translational reading frame of DMD through specific skipping of exon 51 in defective gene variants. Eteplirsen is applicable for approximately 14% of patients with DMD mutations. This article extensively reviews and discusses the available information on eteplirsen to date, focusing on pharmacological, efficacy, safety, and tolerability data from preclinical and clinical trials. Issues faced by eteplirsen, particularly those relating to its efficacy, will be identified. Finally, the place of eteplirsen and exon skipping as a general therapeutic strategy in Duchenne muscular dystrophy treatment will be discussed.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta
| | - Rika Maruyama
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta; The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
39
|
Lehto T, Ezzat K, Wood MJA, El Andaloussi S. Peptides for nucleic acid delivery. Adv Drug Deliv Rev 2016; 106:172-182. [PMID: 27349594 DOI: 10.1016/j.addr.2016.06.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Abstract
Nucleic acids and their synthetic oligonucleotide (ON) analogs are a group of gene therapeutic compounds which hold enormous clinical potential. Despite their undoubted potential, clinical translation of these molecules, however, has been largely held back by their limited bioavailability in the target tissues/cells. To overcome this, many different drug delivery systems have been devised. Among others, short delivery peptides, called cell-penetrating peptides (CPPs), have been demonstrated to allow for efficient delivery of nucleic acids and their ON analogs, in both cell culture and animal models. In this review, we provide brief overview of the latest advances in nucleic acid delivery with CPPs, covering the two main vectorization strategies, covalent conjugation and nanoparticle formation-based approach. In conclusion, CPP-based drug delivery systems have the capacity to overcome the hurdle of delivery and thus have the potential to facilitate the clinical translation of nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Taavi Lehto
- Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden; Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Kariem Ezzat
- Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Matthew J A Wood
- Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX Oxford, United Kingdom
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden; Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX Oxford, United Kingdom
| |
Collapse
|
40
|
Sumi D, Takeda C, Yasuoka D, Himeno S. Hydrogen peroxide triggers a novel alternative splicing of arsenic (+3 oxidation state) methyltransferase gene. Biochem Biophys Res Commun 2016; 480:18-22. [PMID: 27721063 DOI: 10.1016/j.bbrc.2016.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022]
Abstract
We previously reported that two splicing variants of human AS3MT mRNA, exon-3 skipping form (Δ3) and exons-4 and -5 skipping form (Δ4,5), were detected in HepG2 cells and that both variants lacked arsenic methylation activity (Sumi et al., 2011). Here we studied whether hydrogen peroxide (H2O2) triggers alternative splicing of AS3MT mRNA. The results showed that exposure of HepG2 cells to H2O2 resulted in increased levels of a novel spliced form skipping exon-3 to exon-10 (Δ3-10) in an H2O2-concentration-dependent manner, although no change was detected in the mRNA levels of Δ3 AS3MT. We found decreased protein levels of serine/arginine-rich 40 (SRp40), which we determined to be a candidate splice factor for controlling the splicing of AS3MT mRNA. We next compared the amounts of methylated arsenic metabolites between control and H2O2-exposed HepG2 cells after the addition of arsenite as a substance. The results showed lower levels of methylated arsenic metabolites in HepG2 cells exposed to H2O2. These data suggest that the splicing of AS3MT pre-mRNA was disconcerted by oxidative stress and that abnormal alternative splicing of AS3MT mRNA may affect arsenic methylation ability.
Collapse
Affiliation(s)
- Daigo Sumi
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Chieri Takeda
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Daiki Yasuoka
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
41
|
Liu Z, Zhang P, He X, Liu S, Tang S, Zhang R, Wang X, Tan J, Peng B, Jiang L, Hong S, Zou L. New multiplex real-time PCR approach to detect gene mutations for spinal muscular atrophy. BMC Neurol 2016; 16:141. [PMID: 27534852 PMCID: PMC4989483 DOI: 10.1186/s12883-016-0651-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is the most common autosomal recessive disease in children, and the diagnosis is complicated and difficult, especially at early stage. Early diagnosis of SMA is able to improve the outcome of SMA patients. In our study, Real-time PCR was developed to measure the gene mutation or deletion of key genes for SMA and to further analyse genotype-phenotype correlation. METHODS The multiple real-time PCR for detecting the mutations of survival of motor neuron (SMN), apoptosis inhibitory protein (NAIP) and general transcription factor IIH, polypeptide 2 gene (GTF2H2) was established and confirmed by DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). The diagnosis and prognosis of 141 hospitalized children, 100 normal children and further 2000 cases of dry blood spot (DBS) samples were analysed by this multiple real-time PCR. RESULTS The multiple real-time PCR was established and the accuracy of it to detect the mutations of SMN, NAIP and GTF2H2 was at least 98.8 % comparing with DNA sequencing and MLPA. Among 141 limb movement disorders children, 75 cases were SMA. 71 cases of SMA (94.67 %) were with SMN c.840 mutation, 9 cases (12 %) with NAIP deletion and 3 cases (4 %) with GTF2H2 deletion. The multiple real-time PCR was able to diagnose and predict the prognosis of SMA patients. Simultaneously, the real-time PCR was applied to detect trace DNA from DBS and able to make an early diagnosis of SMA. CONCLUSION The clinical and molecular characteristics of SMA in Southwest of China were presented. Our work provides a novel way for detecting SMA in children by using real-time PCR and the potential usage in newborn screening for early diagnosis of SMA.
Collapse
Affiliation(s)
- Zhidai Liu
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Penghui Zhang
- Center for Clinical Laboratory, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Rong Zhang
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Xinbin Wang
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Junjie Tan
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Peng
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Siqi Hong
- Department of Neurology, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Zou
- Center for Clinical Molecular Medicine, Children's Hospital, Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China. .,Ministry of Education Key Laboratory of Development and Disorders, Children's Hospital, Chongqing Medical University, Yuzhong District, Chongqing, China. .,Key Laboratory of Pediatrics in Chongqing, Children's Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
42
|
The lack of the Celf2a splicing factor converts a Duchenne genotype into a Becker phenotype. Nat Commun 2016; 7:10488. [PMID: 26796035 PMCID: PMC4736020 DOI: 10.1038/ncomms10488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/18/2015] [Indexed: 01/18/2023] Open
Abstract
Substitutions, deletions and duplications in the dystrophin gene lead to either the severe Duchenne muscular dystrophy (DMD) or mild Becker muscular dystrophy depending on whether out-of-frame or in-frame transcripts are produced. We identified a DMD case (GSΔ44) where the correlation between genotype and phenotype is not respected, even if carrying a typical Duchenne mutation (exon 44 deletion) a Becker-like phenotype was observed. Here we report that in this patient, partial restoration of an in-frame transcript occurs by natural skipping of exon 45 and that this is due to the lack of Celf2a, a splicing factor that interacts with exon 45 in the dystrophin pre-mRNA. Several experiments are presented that demonstrate the central role of Celf2a in controlling exon 45 splicing; our data point to this factor as a potential target for the improvement of those DMD therapeutic treatments, which requires exon 45 skipping. Muscular Dystrophy can be caused by mutations in the dystrophin gene, causing the severe Duchenne form or the mild Becker form depending on if the transcript is in or out-of-frame. Here the authors identify a Duchenne-type mutation that gives a Becker-like phenotype due to skipping of exon 45.
Collapse
|
43
|
Wojtczak BA, Warminski M, Kowalska J, Lukaszewicz M, Honcharenko M, Smith CIE, Strömberg R, Darzynkiewicz E, Jemielity J. Clickable trimethylguanosine cap analogs modified within the triphosphate bridge: synthesis, conjugation to RNA and susceptibility to degradation. RSC Adv 2016. [DOI: 10.1039/c5ra25684d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphate-modified m3G cap analogs were synthesized, conjugated to RNA using “click chemistry”, and studied for susceptibility to hNUDT16 enzyme.
Collapse
Affiliation(s)
| | - Marcin Warminski
- Division of Biophysics
- Institute of Experimental Physics
- Faculty of Physics
- University of Warsaw
- Poland
| | - Joanna Kowalska
- Division of Biophysics
- Institute of Experimental Physics
- Faculty of Physics
- University of Warsaw
- Poland
| | - Maciej Lukaszewicz
- Division of Biophysics
- Institute of Experimental Physics
- Faculty of Physics
- University of Warsaw
- Poland
| | | | - C. I. Edvard Smith
- Department of Laboratory Medicine
- Karolinska Institutet
- Karolinska University Hospital
- Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition
- Karolinska Institutet
- Sweden
| | | | - Jacek Jemielity
- Centre of New Technologies
- University of Warsaw
- 02-089 Warsaw
- Poland
| |
Collapse
|
44
|
Cerveró C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J. Chronic Treatment with the AMPK Agonist AICAR Prevents Skeletal Muscle Pathology but Fails to Improve Clinical Outcome in a Mouse Model of Severe Spinal Muscular Atrophy. Neurotherapeutics 2016; 13:198-216. [PMID: 26582176 PMCID: PMC4720671 DOI: 10.1007/s13311-015-0399-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder characterized by spinal and brainstem motor neuron (MN) loss and skeletal muscle paralysis. Currently, there is no effective treatment other than supportive care to ameliorate the quality of life of patients with SMA. Some studies have reported that physical exercise, by improving muscle strength and motor function, is potentially beneficial in SMA. The adenosine monophosphate-activated protein kinase agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) has been reported to be an exercise mimetic agent that is able to regulate muscle metabolism and increase endurance both at rest and during exercise. Chronic AICAR administration has been shown to ameliorate the dystrophic muscle phenotype and motor behavior in the mdx mouse, a model of Duchenne muscular dystrophy. Here, we investigated whether chronic AICAR treatment was able to elicit beneficial effects on motor abilities and neuromuscular histopathology in a mouse model of severe SMA (the SMNΔ7 mouse). We report that AICAR improved skeletal muscle atrophy and structural changes found in neuromuscular junctions of SMNΔ7 animals. However, although AICAR prevented the loss of glutamatergic excitatory synapses on MNs, this compound was not able to mitigate MN loss or the microglial and astroglial reaction occurring in the spinal cord of diseased mice. Moreover, no improvement in survival or motor performance was seen in SMNΔ7 animals treated with AICAR. The beneficial effects of AICAR in SMA found in our study are SMN-independent, as no changes in the expression of this protein were seen in the spinal cord and skeletal muscle of diseased animals treated with this compound.
Collapse
Affiliation(s)
- Clàudia Cerveró
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Neus Montull
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Av. Rovira Roure 80, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
45
|
|
46
|
Bestas B, Turunen JJ, Blomberg KEM, Wang Q, Månsson R, El Andaloussi S, Berglöf A, Smith CIE. Splice-correction strategies for treatment of X-linked agammaglobulinemia. Curr Allergy Asthma Rep 2015; 15:510. [PMID: 25638286 PMCID: PMC4312560 DOI: 10.1007/s11882-014-0510-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disease caused by mutations in the gene coding for Bruton’s tyrosine kinase (BTK). Deficiency of BTK leads to a developmental block in B cell differentiation; hence, the patients essentially lack antibody-producing plasma cells and are susceptible to various infections. A substantial portion of the mutations in BTK results in splicing defects, consequently preventing the formation of protein-coding mRNA. Antisense oligonucleotides (ASOs) are therapeutic compounds that have the ability to modulate pre-mRNA splicing and alter gene expression. The potential of ASOs has been exploited for a few severe diseases, both in pre-clinical and clinical studies. Recently, advances have also been made in using ASOs as a personalized therapy for XLA. Splice-correction of BTK has been shown to be feasible for different mutations in vitro, and a recent proof-of-concept study demonstrated the feasibility of correcting splicing and restoring BTK both ex vivo and in vivo in a humanized bacterial artificial chromosome (BAC)-transgenic mouse model. This review summarizes the advances in splice correction, as a personalized medicine for XLA, and outlines the promises and challenges of using this technology as a curative long-term treatment option.
Collapse
Affiliation(s)
- Burcu Bestas
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, Novum Hälsovägen 7, 141 57, Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ezzat K, Aoki Y, Koo T, McClorey G, Benner L, Coenen-Stass A, O'Donovan L, Lehto T, Garcia-Guerra A, Nordin J, Saleh AF, Behlke M, Morris J, Goyenvalle A, Dugovic B, Leumann C, Gordon S, Gait MJ, El-Andaloussi S, Wood MJA. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. NANO LETTERS 2015; 15:4364-73. [PMID: 26042553 PMCID: PMC6415796 DOI: 10.1021/acs.nanolett.5b00490] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Exons
- Genetic Therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Micelles
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/chemistry
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacokinetics
- Oligonucleotides, Antisense/therapeutic use
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
Collapse
Affiliation(s)
- Kariem Ezzat
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Yoshitsugu Aoki
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ●Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Taeyoung Koo
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ‡Center for Genome Engineering, Institute for Basic Science, Seoul 151-747, South Korea
- §Functional Genomics, University of Science and Technology, Daejeon 305-338, South Korea
| | - Graham McClorey
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Leif Benner
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Anna Coenen-Stass
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Liz O'Donovan
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Taavi Lehto
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Antonio Garcia-Guerra
- #Clarendon Laboratory, Department of Physics, University of Oxford, OX13PU, Oxford, United Kingdom
| | - Joel Nordin
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Amer F Saleh
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mark Behlke
- ∇Integrated DNA Technologies (IDT), Coralville, Iowa 55241, United States
| | - John Morris
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Aurelie Goyenvalle
- ○Université de Versailles Saint Quentin, Montigny le Bretonneux 78180, France
| | - Branislav Dugovic
- ◆Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Christian Leumann
- ◆Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Siamon Gordon
- ¶Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Michael J Gait
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Samir El-Andaloussi
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Matthew J A Wood
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| |
Collapse
|
48
|
van Westering TLE, Betts CA, Wood MJA. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 2015; 20:8823-55. [PMID: 25988613 PMCID: PMC6272314 DOI: 10.3390/molecules20058823] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
49
|
Nancy MM, Nora RM, Rebeca MC. Peptidic tools applied to redirect alternative splicing events. Peptides 2015; 67:1-11. [PMID: 25748022 DOI: 10.1016/j.peptides.2015.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 01/25/2023]
Abstract
Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases.
Collapse
Affiliation(s)
- Martínez-Montiel Nancy
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Rosas-Murrieta Nora
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Martínez-Contreras Rebeca
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico.
| |
Collapse
|
50
|
Duan D. Duchenne muscular dystrophy gene therapy in the canine model. HUM GENE THER CL DEV 2015; 26:57-69. [PMID: 25710459 PMCID: PMC4442571 DOI: 10.1089/humc.2015.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, Department of Neurology School of Medicine, University of Missouri , Columbia, MO 65212
| |
Collapse
|