1
|
Chen M, Xu G, Guo W, Lin Y, Yao Z. Bilobalide Activates Autophagy and Enhances the Efficacy of Bone Marrow Mesenchymal Stem Cells on Spinal Cord Injury Via Upregulating FMRP to Promote WNK1 mRNA Decay. Neurochem Res 2024; 50:33. [PMID: 39601946 DOI: 10.1007/s11064-024-04287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) represents an encouraging strategy for the repair of spinal cord injury (SCI), however, its effectiveness on treating SCI remains controversial. Bilobalide isolated from Ginkgo biloba leaves shows significant neuroprotective effects. We examined the role and underlying mechanism of bilobalide in the efficacy of BMSC transplantation on SCI. Primary BMSCs were isolated from neonatal rats, and cell viability was assessed by MTT assay. Neuronal markers (MAP-2, NeuN, NSE and Tuj1), autophagy markers (LC3 and Beclin1), and Fragile X mental retardation protein (FMRP)/With-no-lysine kinase-1 (WNK1) signaling were measured using RT-qPCR and western blotting. The relationship of FMRP and WNK1 was estimated by RNA immunoprecipitation, while WNK1 mRNA stability was assessed with actinomycin D assay. In a SCI rat model, tissue injury was examined using HE and Nissl staining. Bilobalide treatment facilitated neural differentiation of BMSCs, as well as enhanced autophagy and inhibited WNK1 signaling. The promotive effect of bilobalide on BMSC differentiation was antagonized when overexpressing WNK1 or inhibiting autophagy. Bilobalide upregulated FMRP to promote WNK1 mRNA decay, thus reducing WNK1 expression. FMRP knockdown reversed the promoted functions of bilobalide on autophagy and neuronal differentiation in BMSCs. Additionally, compared to either monotherapy, simultaneous treatments with bilobalide and BMSCs further facilitated autophagy and neuronal differentiation, thereby enhancing the repair of SCI in rats. Bilobalide enhances autophagy activity to promote BMSC neuronal differentiation via FMRP/WNK1 axis, thus improving functional recovery following SCI, which indicates a promising therapeutic approach for SCI.
Collapse
Affiliation(s)
- Min Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Guanghui Xu
- Department of Orthopaedics, Fujian Provincial Governmental Hospital, Fuzhou, 350003, Fujian Province, People's Republic of China
| | - Wenbin Guo
- Department of Pathology, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Yu Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China
- Department of Orthopedics, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, Fujian Province, People's Republic of China
| | - Zhipeng Yao
- Department of Orthopedics, Fujian Medical University Union Hospital, No.29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
2
|
Hardt R, Dehghani A, Schoor C, Gödderz M, Cengiz Winter N, Ahmadi S, Sharma R, Schork K, Eisenacher M, Gieselmann V, Winter D. Proteomic investigation of neural stem cell to oligodendrocyte precursor cell differentiation reveals phosphorylation-dependent Dclk1 processing. Cell Mol Life Sci 2023; 80:260. [PMID: 37594553 PMCID: PMC10439241 DOI: 10.1007/s00018-023-04892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.
Collapse
Affiliation(s)
- Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Alireza Dehghani
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Carmen Schoor
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Markus Gödderz
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Nur Cengiz Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Institute of Human Genetics, University Hospital Cologne, 50931, Cologne, Germany
| | - Shiva Ahmadi
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Bayer Pharmaceuticals, 42113, Wuppertal, Germany
| | - Ramesh Sharma
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
3
|
Yang H, Wang H, Zhang X, Yang Y, Li H. Upregulated LINC00319 aggravates neuronal injury induced by oxygen-glucose deprivation via modulating miR-200a-3p. Exp Ther Med 2021; 22:844. [PMID: 34149890 PMCID: PMC8210224 DOI: 10.3892/etm.2021.10276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/12/2020] [Indexed: 11/11/2022] Open
Abstract
Ischemic stroke is one of the main causes of physical disability and mortality worldwide. Long non-coding RNAs (lncRNAs) are reported to be dysregulated in various biological progressions and serve important roles in pathological processes of cerebral ischemia. However, their biological actions and potential mechanisms in the progression of ischemic stroke remain unknown. The present study aimed to investigate the functions of LINC00319 on ischemic brain injury. It was identified that LINC00319 was significantly upregulated in the Gene Expression Omnibus profile of ischemic stroke. Furthermore, LINC00319 overexpression elevated caspase-3 activity and increased the apoptotic rate of neuronal cells, as well as decreased cell viability and glucose uptake. It was also demonstrated that LINC00319 participated in oxygen-glucose deprivation (OGD)-induced cerebral ischemic injury. LINC00319 could competitively bind with microRNA (miR)-200a-3p and decrease its expression. Moreover, miR-200a-3p could partly offset the negative effects of LINC00319 overexpression on neuronal injury caused by OGD. Collectively, the present results suggested that LINC00319 promoted apoptosis and aggravated neuronal injury induced by OGD by regulating miR-200a-3p, which may be important for ischemic stroke treatment.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - He Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Xiaodan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Yuehan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| | - Hongbin Li
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154001, P.R. China
| |
Collapse
|
4
|
Xu K, Zhang Y. Down-regulation of NAA10 mediates the neuroprotection induced by sevoflurane preconditioning via regulating ERK1/2 phosphorylation. Neurosci Lett 2021; 755:135897. [PMID: 33872734 DOI: 10.1016/j.neulet.2021.135897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE In the present study, the regulation mechanism of NAA10 (N-Alpha-Acetyltransferase 10) in sevoflurane preconditioning induced neuroprotective effect was explored. METHODS Firstly, si-NAA10 or negative control (NC) were constructed for cell transfection and injected into intracerebroventricular of rats. Oxygen-glucose deprivation/reperfusion (OGD/R) model in vitro and middle cerebral artery occlusion (MCAO) model in vivo were established to simulate cerebral I/R injury. QRT-PCR analysis and western blotting assay were performed to assess the expression of NAA10. TTC staining, neurological evaluation and cell counting kit-8 (CCK-8) were performed to evaluate the effect of NAA10 on sevoflurane induced neuroprotection. TUNEL assay and flow cytometry were used to detect the apoptosis in vivo and in vitro. RESULTS It showed that sevoflurane preconditioning increased the expression of NAA10 in MCAO rats. TTC staining, TUNEL assay and neurological evaluation results suggested that si-NAA10 attenuated the neuroprotective effect of sevoflurane preconditioning against MCAO. CCK-8 assay, flow cytometry, qRT-PCR and western blot results showed that NAA10 mediated sevoflurane preconditioning-induced neuroprotection in vitro. Furthermore, western blot results showed that down-regulation of NAA10 could reverse the attenuation of ERK1/2 phosphorylation induced by sevoflurane preconditioning in vivo or in vitro. CONCLUSION Down-regulation of NAA10 regulated ERK1/2 phosphorylation mediating sevoflurane preconditioning induced neuroprotective effects. The results revealed the regulatory mechanism of NAA10 in the neuroprotective effect of sevoflurane preconditioning.
Collapse
Affiliation(s)
- Kuibin Xu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, China
| | - Ying Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, China.
| |
Collapse
|
5
|
Huang C, Lei C, Pan B, Fang S, Chen Y, Cao W, Liu L. Potential Prospective Biomarkers for Non-small Cell Lung Cancer: Mini-Chromosome Maintenance Proteins. Front Genet 2021; 12:587017. [PMID: 33936158 PMCID: PMC8079985 DOI: 10.3389/fgene.2021.587017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Minichromosome maintenance proteins (MCMs) are considered to be essential factors coupling DNA replication to both cell cycle progression and checkpoint regulation. Previous studies have shown that dysregulation of MCMs are implicated in tumorigenesis of lung cancer. However, the distinct expression/mutation patterns and prognostic values of MCMs in lung cancer have yet to be systematically elucidated. In the present study, we analyzed the transcriptional levels, mutations, and prognostic value of MCM1-10 in non-small cell lung cancer (NSCLC) patients using multiple bioinformatics tools, including ONCOMINE, GEPIA, Kaplan-Meier Plotter, cBioPortal, and GESA. The analysis results from GEPIA dataset showed that MCM2/4/10 was significantly high expressed in both lung adenocarcinoma (LUAD) and squamous cell lung carcinomas (LUSCs). Meanwhile, the expression levels of MCM2/4/6/7/8 were associated with advanced tumor stages. Subsequent survival analysis using the Kaplan-Meier Plotter indicated that high expression levels of MCM1/2/3/4/5/6/7/8/10 were associated with worse overall survival (OS), while high expression level of MCM9 predicted better OS in these patients. Furthermore, we experimentally validated overexpression of MCM2 and MCM4 in NSCLC, thus the results from this study support a view that they may serve as potential prospective biomarkers to identify high-risk subgroups of NSCLC patients.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chuqi Lei
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Senbiao Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yubao Chen
- Department of Computational Biology, Beijing Computing Center, Beijing, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy-Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
6
|
Hanf KJM, Arndt JW, Liu Y, Gong BJ, Rushe M, Sopko R, Massol R, Smith B, Gao Y, Dalkilic-Liddle I, Lee X, Mojta S, Shao Z, Mi S, Pepinsky RB. Functional activity of anti-LINGO-1 antibody opicinumab requires target engagement at a secondary binding site. MAbs 2021; 12:1713648. [PMID: 31928294 PMCID: PMC6973334 DOI: 10.1080/19420862.2020.1713648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
LINGO-1 is a membrane protein of the central nervous system (CNS) that suppresses myelination of axons. Preclinical studies have revealed that blockade of LINGO-1 function leads to CNS repair in demyelinating animal models. The anti-LINGO-1 antibody Li81 (opicinumab), which blocks LINGO-1 function and shows robust remyelinating activity in animal models, is currently being investigated in a Phase 2 clinical trial as a potential treatment for individuals with relapsing forms of multiple sclerosis (AFFINITY: clinical trial.gov number NCT03222973). Li81 has the unusual feature that it contains two LINGO-1 binding sites: a classical site utilizing its complementarity-determining regions and a cryptic secondary site involving Li81 light chain framework residues that recruits a second LINGO-1 molecule only after engagement of the primary binding site. Concurrent binding at both sites leads to formation of a 2:2 complex of LINGO-1 with the Li81 antigen-binding fragment, and higher order complexes with intact Li81 antibody. To elucidate the role of the secondary binding site, we designed a series of Li81 variant constructs that eliminate it while retaining the classic site contacts. These Li81 mutants retained the high affinity binding to LINGO-1, but lost the antibody-induced oligodendrocyte progenitor cell (OPC) differentiation activity and myelination activity in OPC- dorsal root ganglion neuron cocultures seen with Li81. The mutations also attenuate antibody-induced internalization of LINGO-1 on cultured cortical neurons, OPCs, and cells over-expressing LINGO-1. Together these studies reveal that engagement at both LINGO-1 binding sites of Li81 is critical for robust functional activity of the antibody.
Collapse
Affiliation(s)
- Karl J M Hanf
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Joseph W Arndt
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - YuTing Liu
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Bang Jian Gong
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Mia Rushe
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Richelle Sopko
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Ramiro Massol
- Research and Early Development, Biogen, Cambridge, MA, USA
| | - Benjamin Smith
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Yan Gao
- Research and Early Development, Biogen, Cambridge, MA, USA
| | | | - Xinhua Lee
- Research and Early Development, Biogen, Cambridge, MA, USA
| | - Shanell Mojta
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Zhaohui Shao
- Research and Early Development, Biogen, Cambridge, MA, USA
| | - Sha Mi
- Research and Early Development, Biogen, Cambridge, MA, USA
| | - R Blake Pepinsky
- Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| |
Collapse
|
7
|
Circ-camk4 involved in cerebral ischemia/reperfusion induced neuronal injury. Sci Rep 2020; 10:7012. [PMID: 32332879 PMCID: PMC7181679 DOI: 10.1038/s41598-020-63686-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Stroke and subsequent cerebral ischemia/reperfusion (I/R) injury is a frequently occurring disease that can have serious consequences in the absence of timely intervention. Circular RNAs (circRNAs) in association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression. However, whether circRNAs have a role in cerebral I/R injury pathogenesis, especially soon after onset, is unclear. In this study, we used the SD rat middle cerebral artery occlusion (MCAO) model of stroke to examine the role of circRNAs in cerebral I/R injury. We used high-throughput sequencing (HTS) to compare the expression levels of circRNAs in cerebral cortex tissue from MCAO rats during the occlusion-reperfusion latency period 3 hours after I/R injury with those in control cerebral cortices. Our sequencing results revealed that expression levels of 44 circRNAs were significantly altered after I/R, with 16 and 28 circRNAs showing significant up- and down-regulation, respectively, relative to levels in control cortex. We extended these results in vitro in primary cultured neuron cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R) using qRT-PCR to show that levels of circ-camk4 were increased in OGD/R neurons relative to control neurons. Bioinformatics analyses predicted that several miRNAs could be associated with circ-camk4 and this prediction was confirmed in a RNA pull-down assay. KEGG analysis to predict pathways that involve circ-camk4 included the glutamatergic synapse pathway, MAPK signaling pathway, and apoptosis signaling pathways, all of which are known to be involved in brain injury after I/R. Our results also demonstrate that levels of the human homolog to circ-camk4 (hsa-circ-camk4) are elevated in SH-SY5Y cells exposed to OGD/R treatment. Overexpression of hsa-circ-camk4 in SH-SY5Y cells significantly increased the rate of cell death after OGD/R, suggesting that circ-camk4 may play a key role in progression of cerebral I/R injury.
Collapse
|
8
|
Albrecht S, Korr S, Nowack L, Narayanan V, Starost L, Stortz F, Araúzo‐Bravo MJ, Meuth SG, Kuhlmann T, Hundehege P. The K
2P
‐channel TASK1 affects Oligodendroglial differentiation but not myelin restoration. Glia 2019; 67:870-883. [DOI: 10.1002/glia.23577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Stefanie Albrecht
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Sabrina Korr
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Luise Nowack
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Venu Narayanan
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
| | - Laura Starost
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Franziska Stortz
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Marcos J. Araúzo‐Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute San Sebastian Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| | - Tanja Kuhlmann
- Institute of NeuropathologyUniversity Hospital Münster Münster Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Münster Münster Germany
- Cells in Motion, Cluster of Excellence Münster Germany
| |
Collapse
|
9
|
Rahmani B, Fekrmandi F, Ahadi K, Ahadi T, Alavi A, Ahmadiani A, Asadi S. A novel nonsense mutation in WNK1/HSN2 associated with sensory neuropathy and limb destruction in four siblings of a large Iranian pedigree. BMC Neurol 2018; 18:195. [PMID: 30497409 PMCID: PMC6262971 DOI: 10.1186/s12883-018-1201-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hereditary sensory and autonomic neuropathy type 2 (HSAN2) is an autosomal recessive disorder with predominant sensory dysfunction and severe complications such as limb destruction. There are different subtypes of HSAN2, including HSAN2A, which is caused by mutations in WNK1/HSN2 gene. Methods An Iranian family with four siblings and autosomal recessive inheritance pattern whom initially diagnosed with HSAN2 underwent whole exome sequencing (WES) followed by segregation analysis. Results According to the filtering criteria of the WES data, a novel candidate variation, c.3718C > A in WNK1/HSN2 gene that causes p.Tyr1025* was identified. This variation results in a truncated protein with 1025 amino acids instead of the wild-type product with 2645 amino acids. Sanger sequencing revealed that the mutation segregates with disease status in the pedigree. Conclusions The identified novel nonsense mutation in WNK1/HSN2 in an Iranian HSAN2 pedigree presents allelic heterogeneity of this gene in different populations. The result of current study expands the spectrum of mutations of the HSN2 gene as the genetic background of HSAN2A as well as further supports the hypothesis that HSN2 is a causative gene for HSAN2A. However, it seems that more research is required to determine the exact effects of this product in the nervous system.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fekrmandi
- Department of Radiation Oncology, University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | - Keivan Ahadi
- Department of Orthopaedic Surgery, Milad Hospital, Tehran, Iran
| | - Tannaz Ahadi
- Neuromusculoskeletal Research Centre, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Song XJ, Han W, He R, Li TY, Xie LL, Cheng L, Chen HS, Jiang L. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats. Neurochem Res 2018; 43:721-735. [PMID: 29383653 DOI: 10.1007/s11064-018-2474-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022]
Abstract
Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.
Collapse
Affiliation(s)
- Xiao-Jie Song
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Wei Han
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Rong He
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Tian-Yi Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Ling-Ling Xie
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Li Cheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Heng-Sheng Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Li Jiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China. .,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China.
| |
Collapse
|
11
|
Cheung CHY, Hsu CL, Chen KP, Chong ST, Wu CH, Huang HC, Juan HF. MCM2-regulated functional networks in lung cancer by multi-dimensional proteomic approach. Sci Rep 2017; 7:13302. [PMID: 29038488 PMCID: PMC5643318 DOI: 10.1038/s41598-017-13440-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
DNA replication control is vital for maintaining genome stability and the cell cycle, perhaps most notably during cell division. Malignancies often exhibit defective minichromosome maintenance protein 2 (MCM2), a cancer proliferation biomarker that serves as a licensing factor in the initiation of DNA replication. MCM2 is also known to be one of the ATPase active sites that facilitates conformational changes and drives DNA unwinding at the origin of DNA replication. However, the biological networks of MCM2 in lung cancer cells via protein phosphorylation remain unmapped. The RNA-seq datasets from The Cancer Genome Atlas (TCGA) revealed that MCM2 overexpression is correlated with poor survival rate in lung cancer patients. To uncover MCM2-regulated functional networks in lung cancer, we performed multi-dimensional proteomic approach by integrating analysis of the phosphoproteome and proteome, and identified a total of 2361 phosphorylation sites on 753 phosphoproteins, and 4672 proteins. We found that the deregulation of MCM2 is involved in lung cancer cell proliferation, the cell cycle, and migration. Furthermore, HMGA1S99 phosphorylation was found to be differentially expressed under MCM2 perturbation in opposite directions, and plays an important role in regulating lung cancer cell proliferation. This study therefore enhances our capacity to therapeutically target cancer-specific phosphoproteins.
Collapse
Affiliation(s)
- Chantal Hoi Yin Cheung
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Kai-Pu Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Siao-Ting Chong
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chang-Hsun Wu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, 11221, Taiwan.
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Zhang ZH, Zhao WQ, Ma FF, Zhang H, Xu XH. Rab10 Disruption Results in Delayed OPC Maturation. Cell Mol Neurobiol 2017; 37:1303-1310. [PMID: 28132130 PMCID: PMC11482111 DOI: 10.1007/s10571-017-0465-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Oligodendrocyte precursor cell (OPC) maturation requires membrane addition for myelin sheath formation. Since the Rab system has been shown to contribute to membrane addition in other cell types, in this study, we explored the role of Rab in OPC maturation. SiRNA and shRNA techniques and conditional knockout mice provided in vitro and in vivo evidence that Rab10 is involved in OPC maturation and may affect myelination during OPC development.
Collapse
Affiliation(s)
- Zhao-Huan Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Department of Neurology, Changzheng Hospital, Shanghai, 200003, China
| | - Wei-Qian Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fan-Fei Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiao-Hui Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Abstract
Oligodendrocyte precursor cell (OPC) development into myelinated oligodendrocytes demands vigorous membrane addition. Since myristoylated alanine-rich C-kinase substrate (MARCKS) reportedly contributes to Ras-associated protein (Rab)-10-associated vesicle insertion into neuronal membranes, we investigated the role of MARCKS in OPC maturation. We found that either knockdown of MARCKS or interruption of its interaction with Rab10 would cause a decrease of the cell membrane area during OPC development. Enhanced MARCKS phosphorylation by Nogo66 or myelin debris treatment inhibited OPC maturation, while its dephosphorylation by protein phosphatase 2 A activator D-erythro-sphingosine promoted OPC development in the presence of myelin debris. Our results demonstrated that MARCKS is involved in OPC maturation by interacting with Rab10.
Collapse
|
14
|
Foale S, Berry M, Logan A, Fulton D, Ahmed Z. LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders? Neural Regen Res 2017; 12:1247-1251. [PMID: 28966634 PMCID: PMC5607814 DOI: 10.4103/1673-5374.213538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since it inhibits axonal regeneration after spinal cord injury in a RhoA dependent manner while inhibiting leucine rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1) disinhibits neuron outgrowth. Furthermore, LINGO-1 suppresses oligodendrocyte precursor cell maturation and myelin production. Inhibiting the action of LINGO-1 encourages remyelination both in vitro and in vivo. Accordingly, LINGO-1 antagonists show promise as therapies for demyelinating diseases. An analogous protein to LINGO-1, amphoterin-induced gene and open reading frame-3 (AMIGO3), exerts the same inhibitory effect on the axonal outgrowth of central nervous system neurons, as well as interacting with the same receptors as LINGO-1. However, AMIGO3 is upregulated more rapidly after spinal cord injury than LINGO-1. We speculate that AMIGO3 has a similar inhibitory effect on oligodendrocyte precursor cell maturation and myelin production as with axogenesis. Therefore, inhibiting AMIGO3 will likely encourage central nervous system axonal regeneration as well as the production of myelin from local oligodendrocyte precursor cell, thus providing a promising therapeutic target and an area for future investigation.
Collapse
Affiliation(s)
- Simon Foale
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Liu H, Xu E, Liu J, Xiong H. Oligodendrocyte Injury and Pathogenesis of HIV-1-Associated Neurocognitive Disorders. Brain Sci 2016; 6:brainsci6030023. [PMID: 27455335 PMCID: PMC5039452 DOI: 10.3390/brainsci6030023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Oligodendrocytes wrap neuronal axons to form myelin, an insulating sheath which is essential for nervous impulse conduction along axons. Axonal myelination is highly regulated by neuronal and astrocytic signals and the maintenance of myelin sheaths is a very complex process. Oligodendrocyte damage can cause axonal demyelination and neuronal injury, leading to neurological disorders. Demyelination in the cerebrum may produce cognitive impairment in a variety of neurological disorders, including human immunodeficiency virus type one (HIV-1)-associated neurocognitive disorders (HAND). Although the combined antiretroviral therapy has markedly reduced the incidence of HIV-1-associated dementia, a severe form of HAND, milder forms of HAND remain prevalent even when the peripheral viral load is well controlled. HAND manifests as a subcortical dementia with damage in the brain white matter (e.g., corpus callosum), which consists of myelinated axonal fibers. How HIV-1 brain infection causes myelin injury and resultant white matter damage is an interesting area of current HIV research. In this review, we tentatively address recent progress on oligodendrocyte dysregulation and HAND pathogenesis.
Collapse
Affiliation(s)
- Han Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Enquan Xu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Jianuo Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|