1
|
Sorkina T, Bagalkot T, Cheng MH, Guthrie DA, Newman AH, Watkins SC, Sorkin A. Monoamine transporter ubiquitination and inward-open conformation synergistically maximize transporter endocytosis. SCIENCE ADVANCES 2024; 10:eadq9793. [PMID: 39576869 PMCID: PMC11584022 DOI: 10.1126/sciadv.adq9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Monoamine transporters function in neuronal membranes to control extracellular concentrations of their substrates. Cell-surface expression of transporters is regulated by substrates and intracellular signaling, but the underlying mechanisms remain unclear. Here, we found that substrates of the dopamine transporter (DAT), amphetamine and dopamine, synergize with protein kinase C (PKC)-dependent DAT ubiquitination to markedly elevate clathrin-mediated endocytosis of DAT, which is accompanied by DAT movement out of plasma membrane protrusions with a negative curvature. Disruption of the outward-open (OO) DAT conformation or its stabilization in the inward-open (IO) conformation recapitulates substrate effects on DAT endocytosis. Amphetamine strongly increases PKC-dependent endocytosis of norepinephrine transporter (NET) but not of serotonin transporter (SERT), correlating with a substantially weaker ubiquitination of SERT compared to NET. We propose a "shape-transition" model whereby shifting from convex-shaped OO conformers to IO conformers minimizes retention of transporters in negatively curved membranes, which facilitates their PKC-dependent ubiquitination and recruitment to positively invaginated clathrin-coated membranes, driving robust transporter endocytosis.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute of Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
3
|
Piniella D, Martínez-Blanco E, Bartolomé-Martín D, Sanz-Martos AB, Zafra F. Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Martínez-Blanco
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain.
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Tomlinson ID, Kovtun O, Torres R, Bellocchio LG, Josephs T, Rosenthal SJ. A Novel Biotinylated Homotryptamine Derivative for Quantum Dot Imaging of Serotonin Transporter in Live Cells. Front Cell Neurosci 2021; 15:667044. [PMID: 34867196 PMCID: PMC8637195 DOI: 10.3389/fncel.2021.667044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is the primary target for selective serotonin reuptake inhibitor (SSRI) antidepressants that are thought to exert their therapeutic effects by increasing the synaptic concentration of serotonin. Consequently, probes that can be utilized to study cellular trafficking of SERT are valuable research tools. We have developed a novel ligand (IDT785) that is composed of a SERT antagonist (a tetrahydro pyridyl indole derivative) conjugated to a biotinylated poly ethylene glycol (PEG) via a phenethyl linker. This compound was determined to be biologically active and inhibited SERT-mediated reuptake of IDT307 with the half-maximal inhibitory concentration of 7.2 ± 0.3 μM. We demonstrated that IDT785 enabled quantum dot (QD) labeling of membrane SERT in transfected HEK-293 cultures that could be blocked using the high affinity serotonin reuptake inhibitor paroxetine. Molecular docking studies suggested that IDT785 might be binding to the extracellular vestibule binding site rather than the orthosteric substrate binding site, which could be attributable to the hydrophilicity of the PEG chain and the increased loss of degrees of freedom that would be required to penetrate into the orthosteric binding site. Using IDT785, we were able to study the membrane localization and membrane dynamics of YFP-SERT heterologously expressed in HEK-293 cells and demonstrated that SERT expression was enriched in the membrane edge and in thin cellular protrusions.
Collapse
Affiliation(s)
- Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Shukla S, Baumgart T. Enzymatic trans-bilayer lipid transport: Mechanisms, efficiencies, slippage, and membrane curvature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183534. [PMID: 33340491 PMCID: PMC8351443 DOI: 10.1016/j.bbamem.2020.183534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic plasma membrane's lipid composition is found to be ubiquitously asymmetric comparing inner and outer leaflets. This membrane lipid asymmetry plays a crucial role in diverse cellular processes critical for cell survival. A specialized set of transmembrane proteins called translocases, or flippases, have evolved to maintain this membrane lipid asymmetry in an energy-dependent manner. One potential consequence of local variations in membrane lipid asymmetry is membrane remodeling, which is essential for cellular processes such as intracellular trafficking. Recently, there has been a surge in the identification and characterization of flippases, which has significantly advanced the understanding of their functional mechanisms. Furthermore, there are intriguing possibilities for a coupling between membrane curvature and flippase activity. In this review we highlight studies that link membrane shape and remodeling to differential stresses generated by the activity of lipid flippases with an emphasis on data obtained through model membrane systems. We review the common mechanistic models of flippase-mediated lipid flipping and discuss common techniques used to test lipid flippase activity. We then compare the existing data on lipid translocation rates by flippases and conclude with potential future directions for this field.
Collapse
Affiliation(s)
- Sankalp Shukla
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
6
|
Abstract
Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Vernita D Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
7
|
Kovtun O, Tomlinson ID, Ferguson RS, Rosenthal SJ. Quantum dots reveal heterogeneous membrane diffusivity and dynamic surface density polarization of dopamine transporter. PLoS One 2019; 14:e0225339. [PMID: 31751387 PMCID: PMC6872175 DOI: 10.1371/journal.pone.0225339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The presynaptic dopamine transporter mediates rapid reuptake of synaptic dopamine. Although cell surface DAT trafficking recently emerged as an important component of DAT regulation, it has not been systematically investigated. Here, we apply our single quantum dot (Qdot) tracking approach to monitor DAT plasma membrane dynamics in several heterologous expression cell hosts with nanometer localization accuracy. We demonstrate that Qdot-tagged DAT proteins exhibited highly heterogeneous membrane diffusivity dependent on the local membrane topography. We also show that Qdot-tagged DATs were localized away from the flat membrane regions and were dynamically retained in the membrane protrusions and cell edges for the duration of imaging. Single quantum dot tracking of wildtype DAT and its conformation-defective coding variants (R60A and W63A) revealed a significantly accelerated rate of dysfunctional DAT membrane diffusion. We believe our results warrant an in-depth investigation as to whether compromised membrane dynamics is a common feature of brain disorder-derived DAT mutants.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Riley S. Ferguson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Cheng MH, Ponzoni L, Sorkina T, Lee JY, Zhang S, Sorkin A, Bahar I. Trimerization of dopamine transporter triggered by AIM-100 binding: Molecular mechanism and effect of mutations. Neuropharmacology 2019; 161:107676. [PMID: 31228486 DOI: 10.1016/j.neuropharm.2019.107676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
Abstract
Recent work demonstrated the propensity of dopamine transporters (DATs) to form trimers or higher oligomers, enhanced upon binding a furopyrimidine, AIM-100. AIM-100 binding promotes DAT endocytosis and thereby moderates dopaminergic transmission. Despite the neurobiological significance of these events, the molecular mechanisms that underlie the stabilization of DAT trimer and the key interactions that modulate the trimerization of DAT, and not serotonin transporter SERT, remain unclear. In the present study, we determined three structural models, termed trimer-W238, -C306 and -Y303, for possible trimerization of DATs . To this aim, we used structural data resolved for DAT and its structural homologs that share the LeuT fold, advanced computational modeling and simulations, site-directed mutagenesis experiments and live-cell imaging assays. The models are in accord with the versatility of LeuT fold to stabilize dimeric or higher order constructs. Selected residues show a high propensity to occupy interfacial regions. Among them, D231-W238 in the extracellular loop EL2, including the intersubunit salt-bridge forming pair D231/D232-R237 (not present in SERT) (in trimer-W238), the loop EL3 (trimers-C306 and -Y303), and W497 on the intracellularly exposed IL5 loop (trimer-C306) and its spatial neighbors (e.g. K525) near the C-terminus are computationally predicted and experimentally confirmed to play important roles in enabling the correct folding and/or oligomerization of DATs in the presence of AIM-100. The study suggests the possibility of controlling the effective transport of dopamine by altering the oligomerization state of DAT upon small molecule binding, as a possible intervention strategy to modulate dopaminergic signaling. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luca Ponzoni
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana Sorkina
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - She Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat Commun 2018; 9:4152. [PMID: 30297718 PMCID: PMC6175956 DOI: 10.1038/s41467-018-06532-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of proteins to sense membrane curvature is essential to cellular function. All known sensing mechanisms rely on protein domains with specific structural features such as wedge-like amphipathic helices and crescent-shaped BAR domains. Yet many proteins that contain these domains also contain large intrinsically disordered regions. Here we report that disordered domains are themselves potent sensors of membrane curvature. Comparison of Monte Carlo simulations with in vitro and live-cell measurements demonstrates that the polymer-like behavior of disordered domains found in endocytic proteins drives them to partition preferentially to convex membrane surfaces, which place fewer geometric constraints on their conformational entropy. Further, proteins containing both structured curvature sensors and disordered regions are more than twice as curvature sensitive as their respective structured domains alone. These findings demonstrate an entropic mechanism of curvature sensing that is independent of protein structure and illustrate how structured and disordered domains can synergistically enhance curvature sensitivity. Many proteins which sense membrane curvature contain intrinsically disordered domains. Here the authors use Monte Carlo simulations combined with experimental approaches and report that disordered domains are potent sensors of membrane curvature.
Collapse
|
10
|
Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine Reuptake Efficiency. eNeuro 2018; 5:eN-NWR-0298-17. [PMID: 29430519 PMCID: PMC5804147 DOI: 10.1523/eneuro.0298-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila (dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neurons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity, population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular simulations. The complex morphology of axon terminals near active zones was observed to give rise to large variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase. The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopaminergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission.
Collapse
|
11
|
Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter. Sci Rep 2017; 7:5399. [PMID: 28710426 PMCID: PMC5511133 DOI: 10.1038/s41598-017-05637-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022] Open
Abstract
Dopamine transporter (DAT) has been shown to accumulate in filopodia in neurons and non-neuronal cells. To examine the mechanisms of DAT filopodial targeting, we used quantitative live-cell fluorescence microscopy, and compared the effects of the DAT inhibitor cocaine and its fluorescent analog JHC1-64 on the plasma membrane distribution of wild-type DAT and two non-functional DAT mutants, R60A and W63A, that do not accumulate in filopodia. W63A did not bind JHC1-64, whereas R60A did, although less efficiently compared to the wild-type DAT. Molecular dynamics simulations predicted that R60A preferentially assumes an outward-facing (OF) conformation through compensatory intracellular salt bridge formation, which in turn favors binding of cocaine. Imaging analysis showed that JHC1-64-bound R60A mutant predominantly localized in filopodia, whereas free R60A molecules were evenly distributed within the plasma membrane. Cocaine binding significantly increased the density of R60A, but not that of W63A, in filopodia. Further, zinc binding, known to stabilize the OF state, also increased R60A concentration in filopodia. Finally, amphetamine, that is thought to disrupt DAT OF conformation, reduced the concentration of wild-type DAT in filopodia. Altogether, these data indicate that OF conformation is required for the efficient targeting of DAT to, and accumulation in, filopodia.
Collapse
|
12
|
Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: An integration of molecular mechanisms. J Cell Biol 2016; 214:375-87. [PMID: 27528656 PMCID: PMC4987295 DOI: 10.1083/jcb.201604003] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/03/2023] Open
Abstract
Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.
Collapse
Affiliation(s)
- Iris K Jarsch
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | - Frederic Daste
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| |
Collapse
|