1
|
Talebi M, Ayatollahi SA, As’Habi MA, Kobarfard F, Khoramjouy M, Boroujeni FN, Faizi M, Ghassempour A. Investigating the neuroprotective effects of Dracocephalum moldavica extract and its effect on metabolomic profile of rat model of sporadic Alzheimer's disease. Heliyon 2025; 11:e42412. [PMID: 39981356 PMCID: PMC11840490 DOI: 10.1016/j.heliyon.2025.e42412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive condition marked by multiple underlying mechanisms. Therefore, the investigation of natural products that can target multiple pathways presents a potential gate for the understanding and management of AD. This study aimed to assess the neuroprotective effects of the hydroalcoholic extract of Dracocephalum moldavica (DM) on cognitive impairment, biomarker changes, and putative metabolic pathways in a rat model of AD induced by intracerebroventricular streptozotocin (ICV-STZ). The DM extract was standardized and quantified based on examining total phenolic, total flavonoid, rosmarinic acid, and quercetin contents using colorimetry and high-performance liquid chromatography (HPLC) methods. The antioxidant potential of the extract was evaluated by 2,2-Diphenyl-1-picrylhydrazyl and nitric oxide radical scavenging assays. Male Wistar rats were injected with STZ (3 mg/kg, single dose, bilateral ICV) to induce a sporadic AD (sAD) model. Following model induction, rats were orally administered with DM extract (100, 200, and 400 mg/kg/day) or donepezil (5 mg/kg/day) for 21 days. Cognitive function was assessed using the radial arm water maze behavioral test. The histopathological evaluations were conducted in the cortex and hippocampus regions. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to assess metabolite changes in various brain regions. DM extract significantly attenuated cognitive dysfunction induced by ICV-STZ according to behavioral and histopathological investigations. Thirty-two discriminating metabolites related to the amino acid metabolism; the glutamate/gamma-aminobutyric acid/glutamine cycle; nucleotide metabolism; lipid metabolism (glycerophospholipids, sphingomyelins, ceramides, phosphatidylserines, and prostaglandins), and glucose metabolic pathways were identified in the brains of rats with sAD simultaneously for the first time in this model. Polyphenols in DM extract may contribute to the regulation of these pathways. After treatment with DM extract, 10 metabolites from the 32 identified ones were altered in the brain tissue of a rat model of sAD, most commonly at doses of 200 and 400 mg/kg. In conclusion, this study demonstrates the neuroprotective potential of DM by upregulation/downregulation of various pathophysiological biomarkers such as adenine, glycerophosphoglycerol, inosine, prostaglandins, and sphingomyelin induced by ICV-STZ in sAD. These findings are consistent with cognitive behavioral results and histopathological outcomes.
Collapse
Affiliation(s)
- Marjan Talebi
- Student Research Committee, Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali As’Habi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| |
Collapse
|
2
|
De La Monte SM, Yang Y, Tong M. Brain and Serum Membrane Vesicle (Exosome) Profiles in Experimental Alcohol-Related Brain Degeneration: Forging the Path to Non-Invasive Liquid Biopsy Diagnostics. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:360-384. [PMID: 39931524 PMCID: PMC11810071 DOI: 10.3390/jmp5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Background Alcohol-related brain degeneration (ARBD) is associated with cognitive-motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology in ARBD could lead to therapeutic interventions. Objective This study examines the potential utility of a non-invasive strategy for detecting WM ARBD using exosomes isolated from serum. Comparative analyses were made with paired tissue (Tx) and membrane vesicles (MVs) from the temporal lobe (TL). Methods Long Evans rats were fed for 8 weeks with isocaloric liquid diets containing 37% or 0% caloric ethanol (n = 8/group). TL-Tx, TL-MVs, and serum exosomes (S-EVs) were used to examine ethanol's effects on oligodendrocyte glycoprotein, astrocyte, and oxidative stress markers. Results Ethanol significantly decreased the TL-Tx expression of platelet-derived growth factor receptor alpha (PDGFRA), 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), glial fibrillary acidic protein (GFAP), and 8-OHdG, whereas in the TL-MVs, ethanol increased CNPase, PDGFRA, and 8-OHdG, but decreased MOG and GFAP concordantly with TL-Tx. Ethanol modulated the S-EV expression by reducing PLP, nestin, GFAP, and 4-hydroxynonenal (HNE). Conclusion Chronic ethanol exposures differentially alter the expression of oligodendrocyte/myelin, astrocyte, and oxidative stress markers in the brain, brain MVs, and S-EVs. However, directionally concordant effects across all three compartments were limited. Future studies should advance these efforts by characterizing the relationship between ABRD and molecular pathological changes in brain WM-specific exosomes in serum.
Collapse
Affiliation(s)
- Suzanne M. De La Monte
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02908, USA
- Departments of Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women & Infants Hospital, and the Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Yiwen Yang
- Graduate Program in Biotechnology, Brown University, Providence, RI 02912, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02908, USA
| |
Collapse
|
3
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
4
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Homans C, Yalcin EB, Tong M, Gallucci G, Bautista D, Moriel N, de la Monte S. Therapeutic Effects of Myriocin in Experimental Alcohol-Related Neurobehavioral Dysfunction and Frontal Lobe White Matter Biochemical Pathology. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2022; 12:23-42. [PMID: 36815096 PMCID: PMC9942847 DOI: 10.4236/jbbs.2022.122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background & Objective Chronic excessive alcohol consumption causes white matter degeneration with myelin loss and impaired neuronal conductivity. Subsequent rarefaction of myelin accounts for the sustained deficits in cognition, learning, and memory. Correspondingly, chronic heavy or repeated binge alcohol exposures in humans and experimental models alter myelin lipid composition leading to build-up of ceramides which can be neurotoxic and broadly inhibitory to brain functions. Methods This study examined the effects of chronic + binge alcohol exposures (8 weeks) and intervention with myriocin, a ceramide inhibitor, on neurobehavioral functions (Open Field, Novel Object Recognition, and Morris Water Maze tests) and frontal lobe white matter myelin lipid biochemical pathology in an adult Long-Evans rat model. Results The ethanol-exposed group had significant deficits in executive functions with increased indices of anxiety and impairments in spatial learning acquisition. Myriocin partially remediated these effects of ethanol while not impacting behavior in the control group. Ethanol-fed rats had significantly smaller brains with broadly reduced expression of sulfatides and reduced expression of two of the three sphingomyelins detected in frontal white matter. Myriocin partially resolved these effects corresponding with improvements in neurobehavioral function. Conclusion Therapeutic strategies that support cerebral white matter myelin expression of sulfatide and sphingomyelin may help remediate cognitive-behavioral dysfunction following chronic heavy alcohol consumption in humans.
Collapse
Affiliation(s)
- Camilla Homans
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Gina Gallucci
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - David Bautista
- Warren Alpert Medical School of Brown University, Providence, RI, USA,Brown University, Providence, RI, USA
| | - Natalia Moriel
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne de la Monte
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA,Warren Alpert Medical School of Brown University, Providence, RI, USA,Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Women and Infants Hospital of Rhode Island, Providence VA Medical Center, Providence, RI, USA,
| |
Collapse
|
6
|
Shenzhiling oral solution promotes myelin repair through PI3K/Akt-mTOR pathway in STZ-induced SAD mice. 3 Biotech 2021; 11:361. [PMID: 34295606 DOI: 10.1007/s13205-021-02900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Most forms of Alzheimer's disease are sporadic. A model of sporadic Alzheimer's disease induced with bilateral intraventricular injection of streptozotocin leads to insulin resistance in the brain accompanied by memory decline, synaptic dysfunction, amyloid plaque deposition, oxidative stress, and neuronal apoptosis, all of which mimic the pathologies associated with sporadic Alzheimer's disease. Myelin injury is an essential component of Alzheimer's disease, playing a key role in early cognitive impairment. Our previously research found that sporadic Alzheimer's disease model showed myelin injury and that Shenzheling oral solution improved mild-to-moderate Alzheimer's disease; therefore, the protective effect of Shenzheling oral solution on myelin injury in early cognitive impairment is worth attention. In this study, the Morris water maze test results showed impairments in the learning and memory functions of mice in the model group, whereas the learning and memory function significantly improved after drug intervention. Immunohistochemistry showed increased β-amyloid plaques in the model group and decreased amounts in the drug group. Moreover, results of electron microscopy, western blot, and polymerase chain reaction showed that Shenzhiling oral solution improved early cognitive impairment and repaired myelin sheath damage; the potential mechanism of these effects may relate to the PI3K/Akt-mTOR signaling pathway. These findings support the application and promotion of Shenzhiling oral solution to treat sporadic Alzheimer's disease. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02900-x.
Collapse
|
7
|
Rapid Peak Alignment for MALDI-TOF Lipid Analysis. JOURNAL OF BIOANALYTICAL METHODS AND TECHNIQUES 2021; 1:104. [PMID: 36848295 PMCID: PMC9948349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The ability to measure structural and functional alterations in cellular and tissue lipids with small footprint, accessible instrumentation has sparked interest in their role in disease pathology. However, various lipidomic analytical tools tend to be cumbersome and time-consuming. A rapid, accurate, and straight forward peak alignment software routine would greatly facilitate the analysis of large datasets, such as those produced by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Herein, we describe a novel Rapid Peak Alignment Method (RPAM) which allows untargeted analysis of lipids expressed in brain white matter following chronic ethanol exposure in an established experimental model. The RPAM outputs data comparable to manual peak alignments but the processing time requires only 90 minutes instead of 8-10 hours. This method is readily adapted to a broad range of models, tissue types, and human diseases.
Collapse
|
8
|
Sabogal-Guáqueta AM, Arias-Londoño JD, Gutierrez-Vargas J, Sepulveda-Falla D, Glatzel M, Villegas-Lanau A, Cardona-Gómez GP. Common disbalance in the brain parenchyma of dementias: Phospholipid profile analysis between CADASIL and sporadic Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165797. [PMID: 32302650 DOI: 10.1016/j.bbadis.2020.165797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 10/25/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is the most common form of dementia, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent hereditary ischemic small vessel disease of the brain. Relevant biomarkers or specific metabolic signatures could provide powerful tools to manage these diseases. Therefore, the main goal of this study was to compare the postmortem frontal cortex gray matter, white matter and cerebrospinal fluid (CSF) between a cognitively healthy group and CADASIL and SAD groups. We evaluated 352 individual lipids, belonging to 13 lipid classes/subclasses, using mass spectrometry, and the lipid profiles were subjected to multivariate analysis to discriminate between the dementia groups (CADASIL and SAD) and healthy controls. The main lipid molecular species showing greater discrimination by partial least squares-discriminant analysis (PLS-DA) and a higher significance multivariate correlation (sMC) index were as follows: phosphatidylserine (PS) PS(44:7) and lysophosphatidylethanolamine (LPE) LPE(18:2) in gray matter (GM); phosphatidylethanolamine (PE) PE(32:2) and phosphatidylcholine PC PC(44:6) in white matter (WM), and ether PE (ePE) ePE(38:2) and ether PC (ePC) ePC(34:3) in CSF. Common phospholipid molecular species were obtained in both dementias, such as PS(44:7) and lyso PC (LPC) LPC(22:5) in GM, PE(32:2) in WM and phosphatidic acid (PA) PA(38:5) and PC(42:7) in CFS. Our exploratory study suggests that phospholipids (PLs) involved in neurotransmission alteration, connectivity impairment and inflammation response in GM, WM and CSF are a transversal phenomenon affecting dementias such as CADASIL and SAD independent of the etiopathogenesis, thus providing a possible common prodromal phospholipidic biomarker of dementia.
Collapse
Affiliation(s)
- Angélica María Sabogal-Guáqueta
- Cellular and Molecular Neurobiology Area, Group of Neuroscience, SIU, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No. 52 - 21, Medellín, Colombia
| | - Julián David Arias-Londoño
- Department of Systems Engineering, University of Antioquia UdeA, Calle 70 No. 52 - 21, Medellín, Colombia
| | | | - D Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany; Brain Biobank, Group of Neuroscience, SIU, Faculty of Medicine, University of Antioquia, Calle 70 No. 52 - 21, Medellín, Colombia
| | - M Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Andrés Villegas-Lanau
- Brain Biobank, Group of Neuroscience, SIU, Faculty of Medicine, University of Antioquia, Calle 70 No. 52 - 21, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience, SIU, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No. 52 - 21, Medellín, Colombia.
| |
Collapse
|
9
|
Banerjee S, Hashemi M, Zagorski K, Lyubchenko YL. Interaction of Aβ42 with Membranes Triggers the Self-Assembly into Oligomers. Int J Mol Sci 2020; 21:ijms21031129. [PMID: 32046252 PMCID: PMC7036922 DOI: 10.3390/ijms21031129] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
The self-assembly of amyloid β (Aβ) proteins into oligomers is the major pathogenic event leading to Alzheimer’s disease (AD). Typical in vitro experiments require high protein concentrations, whereas the physiological concentration of Aβ is in the picomolar to low nanomolar range. This complicates the translation of results obtained in vitro to understanding the aggregation process in vivo. Here, we demonstrate that Aβ42 self-assembles into aggregates on membrane bilayers at low nanomolar concentrations - a pathway in which the membrane plays the role of a catalyst. Additionally, physiological ionic conditions (150 mM NaCl) significantly enhance on-membrane aggregation, leading to the rapid formation of oligomers. The self-assembly process is reversible, so assembled aggregates can dissociate from the membrane surface into the bulk solution to further participate in the aggregation process. Molecular dynamics simulations demonstrate that the transient membrane-Aβ interaction dramatically changes the protein conformation, facilitating the assembly of dimers. The results indicate peptide–membrane interaction is the critical step towards oligomer formation at physiologically low protein concentrations.
Collapse
|
10
|
Folch J, Olloquequi J, Ettcheto M, Busquets O, Sánchez-López E, Cano A, Espinosa-Jiménez T, García ML, Beas-Zarate C, Casadesús G, Bulló M, Auladell C, Camins A. The Involvement of Peripheral and Brain Insulin Resistance in Late Onset Alzheimer's Dementia. Front Aging Neurosci 2019; 11:236. [PMID: 31551756 PMCID: PMC6743006 DOI: 10.3389/fnagi.2019.00236] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Nowadays, Alzheimer's disease (AD) is a severe sociological and clinical problem. Since it was first described, there has been a constant increase in its incidence and, for now, there are no effective treatments since current approved medications have only shown short-term symptomatic benefits. Therefore, it is imperative to increase efforts in the search for molecules and non-pharmacological strategies that are capable of slowing or stopping the progress of the disease and, ideally, to reverse it. The amyloid cascade hypothesis based on the fundamental role of amyloid has been the central hypothesis in the last 30 years. However, since amyloid-directed treatments have shown no relevant beneficial results other theories have been postulated to explain the origin of the pathology. The brain is a highly metabolically active energy-consuming tissue in the human body. It has an almost complete dependence on the metabolism of glucose and uses most of its energy for synaptic transmission. Thus, alterations on the utilization or availability of glucose may be cause for the appearance of neurodegenerative pathologies like AD. In this review article, the hypothesis known as Type 3 Diabetes (T3D) will be evaluated by summarizing some of the data that has been reported in recent years. According to published research, the adherence over time to low saturated fatty acids diets in the context of the Mediterranean diet would reduce the inflammatory levels in brain, with a decrease in the pro-inflammatory glial activation and mitochondrial oxidative stress. In this situation, the insulin receptor pathway would be able to fine tune the mitochondrial biogenesis in neuronal cells, regulation the adenosine triphosphate/adenosine diphosphate intracellular balance, and becoming a key factor involved in the preservation of the synaptic connexions and neuronal plasticity. In addition, new targets and strategies for the treatment of AD will be considered in this review for their potential as new pharmacological or non-pharmacological approaches.
Collapse
Affiliation(s)
- Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili (URV), Reus, Spain.,Berlin Institute of Health (BIH), Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Miren Ettcheto
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili (URV), Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili (URV), Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-Química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-Química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Triana Espinosa-Jiménez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-Química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, CUCBA, Guadalajar, México
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Mónica Bulló
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili (URV), Reus, Spain.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain.,Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Pierzynowska K, Podlacha M, Gaffke L, Majkutewicz I, Mantej J, Węgrzyn A, Osiadły M, Myślińska D, Węgrzyn G. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer's disease. Neuropharmacology 2019; 148:332-346. [PMID: 30710571 DOI: 10.1016/j.neuropharm.2019.01.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is one of severe neurological diseases for which no effective treatment is currently available. The use of genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been proposed previously as one of approaches to improve the disease symptoms, as some positive effects of this compound in cellular and animal models were reported. Inhibition of apoptosis and antioxidative functions were suggested as causes of these effects. Here, we demonstrate that high genistein dose (150 mg/kg/day; the dose significantly higher than those used previously in AD studies by others) can activate autophagy in the streptozotocin-induced rat model of the sporadic form of AD. We found that this dose of genistein led to complete degradation of β-amyloid and hyperphosphorylated tau protein in the brain, while experiments with cell cultures demonstrated that these effects require autophagy stimulation, which has never been shown before. Importantly, behavior of high dose genistein-treated AD rats was completely corrected, i.e. it was indistinguishable from that of healthy animals. This was observed in all performed behavioral tests: Morris water maze test, elevated plus-maze test, open field test, and locomotor measurements in an actometer. We conclude that autophagy-dependent mechanism is responsible for genistein-mediated correction of AD when this isoflavone is used at the high dose.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Podlacha
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdańsk, Poland
| | - Marta Osiadły
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
12
|
de la Monte SM. The Full Spectrum of Alzheimer's Disease Is Rooted in Metabolic Derangements That Drive Type 3 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:45-83. [PMID: 31062325 PMCID: PMC9996398 DOI: 10.1007/978-981-13-3540-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The standard practice in neuropathology is to diagnose Alzheimer's disease (AD) based on the distribution and abundance of neurofibrillary tangles and Aβ deposits. However, other significant abnormalities including neuroinflammation, gliosis, white matter degeneration, non-Aβ microvascular disease, and insulin-related metabolic dysfunction require further study to understand how they could be targeted to more effectively remediate AD. This review addresses non-Aβ and non-pTau AD-associated pathologies, highlighting their major features, roles in neurodegeneration, and etiopathic links to deficits in brain insulin and insulin-like growth factor signaling and cognitive impairment. The discussion delineates why AD with its most characteristic clinical and pathological phenotypic profiles should be regarded as a brain form of diabetes, i.e., type 3 diabetes, and entertains the hypothesis that type 3 diabetes is just one of the categories of insulin resistance diseases that can occur independently or overlap with one or more of the others, including type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Neurology, Neuropathology, and Neurosurgery, Rhode Island Hospital, and the Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI, USA.
| |
Collapse
|
13
|
Hunter M, Demarais NJ, Faull RLM, Grey AC, Curtis MA. Subventricular zone lipidomic architecture loss in Huntington's disease. J Neurochem 2018; 146:613-630. [PMID: 29804301 DOI: 10.1111/jnc.14468] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
The human subventricular zone (SVZ) has a defined cytological and neurochemical architecture, with four constituent laminae that act in concert to support its neurogenic activity. Lipidomic specialisation has previously been demonstrated in the neurologically normal human SVZ, with enrichment of functionally important lipid classes in each lamina. The SVZ is also responsive to neurodegenerative disorders, where thickening of the niche and enhanced proliferation of resident cells were observed in Huntington's disease (HD) brains. In this study, we hypothesised lipidomic changes in the HD SVZ. Using matrix-assisted laser desorption/ionisation (MALDI) imaging mass spectrometry, this analysis shows differences in the lipidomic architecture in the post-mortem Vonsattel grade III cases. Relative to matched, neurologically normal specimens (N = 4), the lipidomic signature of the HD SVZ (N = 4) was characterized by loss of sulfatides and triglycerides in the myelin layer, with an ectopic and focal accumulation of sphingomyelins and ceramide-1-phosphate observed in this lamina. A striking loss of lipidomic patterning was also observed in the ependymal layer, where the local abundance of phosphatidylinositols was significantly reduced in HD. This comprehensive spatially resolved lipidomic analysis of the human HD SVZ identifies alterations in lipid architecture that may shed light on the mechanisms of SVZ responses to neurodegeneration in HD. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Mandana Hunter
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|