1
|
Pietan L, Phillippi E, Melo M, El-Shanti H, Smith BJ, Darbro B, Braun T, Casavant T. Genome-wide Machine Learning Analysis of Anosmia and Ageusia with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318493. [PMID: 39677430 PMCID: PMC11643161 DOI: 10.1101/2024.12.04.24318493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The COVID-19 pandemic has caused substantial worldwide disruptions in health, economy, and society, manifesting symptoms such as loss of smell (anosmia) and loss of taste (ageusia), that can result in prolonged sensory impairment. Establishing the host genetic etiology of anosmia and ageusia in COVID-19 will aid in the overall understanding of the sensorineural aspect of the disease and contribute to possible treatments or cures. By using human genome sequencing data from the University of Iowa (UI) COVID-19 cohort (N=187) and the National Institute of Health All of Us (AoU) Research Program COVID-19 cohort (N=947), we investigated the genetics of anosmia and/or ageusia by employing feature selection techniques to construct a novel variant and gene prioritization pipeline, utilizing machine learning methods for the classification of patients. Models were assessed using a permutation-based variable importance (PVI) strategy for final prioritization of candidate variants and genes. The highest held-out test set area under the receiver operating characteristic (AUROC) curve for models and datasets from the UI cohort was 0.735 and 0.798 for the variant and gene analysis respectively and for the AoU cohort was 0.687 for the variant analysis. Our analysis prioritized several novel and known candidate host genetic factors involved in immune response, neuronal signaling, and calcium signaling supporting previously proposed hypotheses for anosmia/ageusia in COVID-19.
Collapse
Affiliation(s)
- Lucas Pietan
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth Phillippi
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Marcelo Melo
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Hatem El-Shanti
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Terry Braun
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Casavant
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Center for Bioinformatics and Computational Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Polikarpova AV, Egorova TV, Lunev EA, Tsitrina AA, Vassilieva SG, Savchenko IM, Silaeva YY, Deykin AV, Bardina MV. CRISPR/Cas9-generated mouse model with humanizing single-base substitution in the Gnao1 for safety studies of RNA therapeutics. Front Genome Ed 2023; 5:1034720. [PMID: 37077890 PMCID: PMC10106585 DOI: 10.3389/fgeed.2023.1034720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The development of personalized medicine for genetic diseases requires preclinical testing in the appropriate animal models. GNAO1 encephalopathy is a severe neurodevelopmental disorder caused by heterozygous de novo mutations in the GNAO1 gene. GNAO1 c.607 G>A is one of the most common pathogenic variants, and the mutant protein Gαo-G203R likely adversely affects neuronal signaling. As an innovative approach, sequence-specific RNA-based therapeutics such as antisense oligonucleotides or effectors of RNA interference are potentially applicable for selective suppression of the mutant GNAO1 transcript. While in vitro validation can be performed in patient-derived cells, a humanized mouse model to rule out the safety of RNA therapeutics is currently lacking. In the present work, we employed CRISPR/Cas9 technology to introduce a single-base substitution into exon 6 of the Gnao1 to replace the murine Gly203-coding triplet (GGG) with the codon used in the human gene (GGA). We verified that genome-editing did not interfere with the Gnao1 mRNA or Gαo protein synthesis and did not alter localization of the protein in the brain structures. The analysis of blastocysts revealed the off-target activity of the CRISPR/Cas9 complexes; however, no modifications of the predicted off-target sites were detected in the founder mouse. Histological staining confirmed the absence of abnormal changes in the brain of genome-edited mice. The created mouse model with the “humanized” fragment of the endogenous Gnao1 is suitable to rule out unintended targeting of the wild-type allele by RNA therapeutics directed at lowering GNAO1 c.607 G>A transcripts.
Collapse
Affiliation(s)
- Anna V. Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Tatiana V. Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Evgenii A. Lunev
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Tsitrina
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
| | - Irina M. Savchenko
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya Y. Silaeva
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Deykin
- Marlin Biotech, Sochi, Russia
- Core Facility Center, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health, Joint Center for Genetic Technologies, Belgorod National Research University, Belgorod, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Marlin Biotech, Sochi, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Maryana V. Bardina,
| |
Collapse
|
3
|
Habif JC, Xie C, Martens JR. Visualizing and Manipulating Olfactory Cilia Through Viral Delivery Coupled with En Face Imaging of Intact OE. Methods Mol Biol 2023; 2710:1-18. [PMID: 37688720 DOI: 10.1007/978-1-0716-3425-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Olfactory cilia are the obligate transducers of the odorant signal, and thus their study has been a focus of investigation in the olfactory field. Various methodologies have been established to visualize the cilia of olfactory sensory neurons; however, these approaches are limited to static imaging and often lack the ability to resolve individual cilia projecting from solitary neurons in the postnatal mouse. Here we detail a procedure of the visualization of olfactory cilia by ectopic expression of fluorescently tagged proteins. The procedure can be used for the observation and manipulation of the olfactory cilia and ciliary proteins in both static and dynamic conditions.
Collapse
Affiliation(s)
- Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
4
|
Debnath A, Williams PDE, Bamber BA. Reduced Ca2+ transient amplitudes may signify increased or decreased depolarization depending on the neuromodulatory signaling pathway. Front Neurosci 2022; 16:931328. [PMID: 35937887 PMCID: PMC9354622 DOI: 10.3389/fnins.2022.931328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromodulators regulate neuronal excitability and bias neural circuit outputs. Optical recording of neuronal Ca2+ transients is a powerful approach to study the impact of neuromodulators on neural circuit dynamics. We are investigating the polymodal nociceptor ASH in Caenorhabditis elegans to better understand the relationship between neuronal excitability and optically recorded Ca2+ transients. ASHs depolarize in response to the aversive olfactory stimulus 1-octanol (1-oct) with a concomitant rise in somal Ca2+, stimulating an aversive locomotory response. Serotonin (5-HT) potentiates 1-oct avoidance through Gαq signaling, which inhibits L-type voltage-gated Ca2+ channels in ASH. Although Ca2+ signals in the ASH soma decrease, depolarization amplitudes increase because Ca2+ mediates inhibitory feedback control of membrane potential in this context. Here, we investigate octopamine (OA) signaling in ASH to assess whether this negative correlation between somal Ca2+ and depolarization amplitudes is a general phenomenon, or characteristic of certain neuromodulatory pathways. Like 5-HT, OA reduces somal Ca2+ transient amplitudes in ASH neurons. However, OA antagonizes 5-HT modulation of 1-oct avoidance behavior, suggesting that OA may signal through a different pathway. We further show that the pathway for OA diminution of ASH somal Ca2+ consists of the OCTR-1 receptor, the Go heterotrimeric G-protein, and the G-protein activated inwardly rectifying channels IRK-2 and IRK-3, and this pathway reduces depolarization amplitudes in parallel with somal Ca2+ transient amplitudes. Therefore, even within a single neuron, somal Ca2+ signal reduction may indicate either increased or decreased depolarization amplitude, depending on which neuromodulatory signaling pathways are activated, underscoring the need for careful interpretation of Ca2+ imaging data in neuromodulatory studies.
Collapse
Affiliation(s)
- Arunima Debnath
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Paul D. E. Williams
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bruce A. Bamber
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Bruce A. Bamber,
| |
Collapse
|
5
|
Tereshko L, Turrigiano GG, Sengupta P. Primary cilia in the postnatal brain: Subcellular compartments for organizing neuromodulatory signaling. Curr Opin Neurobiol 2022; 74:102533. [PMID: 35405626 PMCID: PMC9167775 DOI: 10.1016/j.conb.2022.102533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Primary cilia have well characterized roles in early brain development, relaying signals critical for neurogenesis and brain formation during embryonic stages. Less understood are the contributions of cilia-mediated signaling to postnatal brain function. Several cilia-localized receptors that bind neuropeptides and neurotransmitters endogenous to the brain have been identified in adult neurons, but the functional significance of signaling through these cilia-localized receptors is largely unexplored. Ciliopathic disorders in humans often manifest with neurodevelopmental abnormalities and cognitive deficits. Intriguingly, recent research has also linked several neuropsychiatric disorders and neurodegenerative diseases to ciliary dysfunction. This review summarizes recent evidence suggesting that cilia signaling may dynamically regulate postnatal neuronal physiology and connectivity, and highlights possible links among cilia, neuronal circuitry, neuron survival, and neurological disorders.
Collapse
Affiliation(s)
- Lauren Tereshko
- Department of Biology, Brandeis University, Waltham, MA 02454, USA; Biogen, Cambridge, MA 02142, USA
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
6
|
Derby CD, McClintock TS, Caprio J. Understanding responses to chemical mixtures: looking forward from the past. Chem Senses 2022; 47:bjac002. [PMID: 35226060 PMCID: PMC8883806 DOI: 10.1093/chemse/bjac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
7
|
Gronowitz ME, Liu A, Qiu Q, Yu CR, Cleland TA. A physicochemical model of odor sampling. PLoS Comput Biol 2021; 17:e1009054. [PMID: 34115747 PMCID: PMC8221795 DOI: 10.1371/journal.pcbi.1009054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/23/2021] [Accepted: 05/09/2021] [Indexed: 11/19/2022] Open
Abstract
We present a general physicochemical sampling model for olfaction, based on established pharmacological laws, in which arbitrary combinations of odorant ligands and receptors can be generated and their individual and collective effects on odor representations and olfactory performance measured. Individual odor ligands exhibit receptor-specific affinities and efficacies; that is, they may bind strongly or weakly to a given receptor, and can act as strong agonists, weak agonists, partial agonists, or antagonists. Ligands interacting with common receptors compete with one another for dwell time; these competitive interactions appropriately simulate the degeneracy that fundamentally defines the capacities and limitations of odorant sampling. The outcome of these competing ligand-receptor interactions yields a pattern of receptor activation levels, thereafter mapped to glomerular presynaptic activation levels based on the convergence of sensory neuron axons. The metric of greatest interest is the mean discrimination sensitivity, a measure of how effectively the olfactory system at this level is able to recognize a small change in the physicochemical quality of a stimulus. This model presents several significant outcomes, both expected and surprising. First, adding additional receptors reliably improves the system's discrimination sensitivity. Second, in contrast, adding additional ligands to an odorscene initially can improve discrimination sensitivity, but eventually will reduce it as the number of ligands increases. Third, the presence of antagonistic ligand-receptor interactions produced clear benefits for sensory system performance, generating higher absolute discrimination sensitivities and increasing the numbers of competing ligands that could be present before discrimination sensitivity began to be impaired. Finally, the model correctly reflects and explains the modest reduction in odor discrimination sensitivity exhibited by transgenic mice in which the specificity of glomerular targeting by primary olfactory neurons is partially disrupted.
Collapse
Affiliation(s)
- Mitchell E. Gronowitz
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Adam Liu
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Qiang Qiu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Thomas A. Cleland
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
8
|
Abstract
There is increasing appreciation that G-protein-coupled receptors (GPCRs) can initiate diverse cellular responses by activating multiple G proteins, arrestins, and other biochemical effectors. Structurally different ligands targeting the same receptor are thought to stabilize the receptor in multiple distinct active conformations such that specific subsets of signaling effectors are engaged at the exclusion of others, creating a bias toward a particular outcome, which has been referred to as ligand-induced selective signaling, biased agonism, ligand-directed signaling, and functional selectivity, among others. The potential involvement of functional selectivity in mammalian olfactory signal transduction has received little attention, notwithstanding the fact that mammalian olfactory receptors comprise the largest family of mammalian GPCRs. This position review considers the possibility that, although such complexity in G-protein function may have been lost in the specialization of olfactory receptors to serve as sensory receptors, the ability of olfactory receptor neurons (ORNs) to function as signal integrators and growing appreciation that this functionality is widespread in the receptor population suggest otherwise. We pose that functional selectivity driving 2 opponent inputs have the potential to generate an output that reflects the balance of ligand-dependent signaling, the direction of which could be either suppressive or synergistic and, as such, needs to be considered as a mechanistic basis for signal integration in mammalian ORNs.
Collapse
Affiliation(s)
- Barry W Ache
- Whitney Laboratory, Departments of Biology and Neuroscience, and Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|