1
|
Na D, Zhang Z, Meng M, Li M, Gao J, Kong J, Zhang G, Guo Y. Energy Metabolism and Brain Aging: Strategies to Delay Neuronal Degeneration. Cell Mol Neurobiol 2025; 45:38. [PMID: 40259102 PMCID: PMC12011708 DOI: 10.1007/s10571-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Aging is characterized by a gradual decline in physiological functions, with brain aging being a major risk factor for numerous neurodegenerative diseases. Given the brain's high energy demands, maintaining an adequate ATP supply is crucial for its proper function. However, with advancing age, mitochondria dysfunction and a deteriorating energy metabolism lead to reduced overall energy production and impaired mitochondrial quality control (MQC). As a result, promoting healthy aging has become a key focus in contemporary research. This review examines the relationship between energy metabolism and brain aging, highlighting the connection between MQC and energy metabolism, and proposes strategies to delay brain aging by targeting energy metabolism.
Collapse
Affiliation(s)
- Donghui Na
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Zechen Zhang
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Meng
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China
| | - Junyan Gao
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China.
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
2
|
Liu J, Sun X, Wu Y, Lv Z, Zhou N, Bian C, Sun S. Hypoxia induces ferroptotic cell death mediated by activation of the inner mitochondrial membrane fission protein MTP18/Drp1 in invertebrates. J Biol Chem 2025; 301:108326. [PMID: 39971157 PMCID: PMC11957787 DOI: 10.1016/j.jbc.2025.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Hypoxia and ischemia damage sensitive organelles such as mitochondria, and mitochondrial dysfunction contributes to metabolic disorders in crustaceans under hypoxia. The mechanisms associated with ferroptosis in hypoxic disorders have not been determined in crustaceans. In particular, the early molecular events of mitochondrial dynamics in crustaceans require clarification. In this study, two evolutionarily conserved mitochondrial fission proteins, Drp1 and MTP18, were identified in oriental river prawn (Macrobrachium nipponense). In vitro, ferroptosis-mediated impairment of mitochondrial membrane potential was induced by hypoxia in oriental river prawn hemocytes. In hypoxia-induced hemocytes, activation of Drp1 by increased phosphorylation at S616 was identified. Drp1 mitochondrial translocation also increased, and mitochondrial fusion-related protein expression decreased in vivo. Altered mitochondrial fission-fusion dynamics have been linked to mitochondrial dysfunction, inducing a classic ferroptosis mechanism. Marf overexpression or Drp1 knockdown protected against mitochondrial dysfunction and ferroptotic cell death in vitro. Furthermore, hypoxia-induced mitochondrial fission was verified to be driven by Drp1/MTP18 interaction. Under hypoxia, MTP18 transcription was increased by the binding of activated HIF-1α to hypoxia response elements in its promoter. Conjointly, MTP18 knockdown resulted in less apoptosis and decreased prawn mortality in gill tissue in vitro, suggesting that adaptation to hypoxia involves a vital function by MTP18. In conclusion, we uncovered a conserved role of mitochondrial fission in hypoxia-induced ferroptotic cell death. Therefore, we suggest that specific modulation of MTP18/DRP1-mediated mitochondrial dynamics might be a potential therapeutic strategy in hypoxic stress-induced tissue injury in invertebrates.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Xichao Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Yijie Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Zhimin Lv
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Na Zhou
- School of Pharmacy and State Key Laboratory for Quality Research of Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource,Macau University of Science and Technology, Taipa, Macau, China
| | - Chao Bian
- College of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Wang XX, Chen WZ, Li C, Xu RS. Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev Neurosci 2024; 35:549-563. [PMID: 38381656 DOI: 10.1515/revneuro-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease which damages upper and lower motor neurons (UMN and LMN) innervating the muscles of the trunk, extremities, head, neck and face in cerebrum, brain stem and spinal cord, which results in the progressive weakness, atrophy and fasciculation of muscle innervated by the related UMN and LMN, accompanying with the pathological signs leaded by the cortical spinal lateral tract lesion. The pathogenesis about ALS is not fully understood, and no specific drugs are available to cure and prevent the progression of this disease at present. In this review, we reviewed the structure and associated functions of copper-zinc superoxide dismutase 1 (SOD1), discuss why SOD1 is crucial to the pathogenesis of ALS, and outline the pathogenic mechanisms of SOD1 in ALS that have been identified at recent years, including glutamate-related excitotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, axonal transport disruption, prion-like propagation, and the non-cytologic toxicity of glial cells. This review will help us to deeply understand the current progression in this field of SOD1 pathogenic mechanisms in ALS.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wen-Zhi Chen
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
| | - Ren-Shi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Central South University, Jiangxi Hospital, Nanchang 330006, Jiangxi Province, China
- Medical College of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
4
|
Ciuro M, Sangiorgio M, Cacciato V, Cantone G, Fichera C, Salvatorelli L, Magro G, Leanza G, Vecchio M, Valle MS, Gulino R. Mitigating the Functional Deficit after Neurotoxic Motoneuronal Loss by an Inhibitor of Mitochondrial Fission. Int J Mol Sci 2024; 25:7059. [PMID: 39000168 PMCID: PMC11241433 DOI: 10.3390/ijms25137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an extremely complex neurodegenerative disease involving different cell types, but motoneuronal loss represents its main pathological feature. Moreover, compensatory plastic changes taking place in parallel to neurodegeneration are likely to affect the timing of ALS onset and progression and, interestingly, they might represent a promising target for disease-modifying treatments. Therefore, a simplified animal model mimicking motoneuronal loss without the other pathological aspects of ALS has been established by means of intramuscular injection of cholera toxin-B saporin (CTB-Sap), which is a targeted neurotoxin able to kill motoneurons by retrograde suicide transport. Previous studies employing the mouse CTB-Sap model have proven that spontaneous motor recovery is possible after a subtotal removal of a spinal motoneuronal pool. Although these kinds of plastic changes are not enough to counteract the functional effects of the progressive motoneuron degeneration, it would nevertheless represent a promising target for treatments aiming to postpone ALS onset and/or delay disease progression. Herein, the mouse CTB-Sap model has been used to test the efficacy of mitochondrial division inhibitor 1 (Mdivi-1) as a tool to counteract the CTB-Sap toxicity and/or to promote neuroplasticity. The homeostasis of mitochondrial fission/fusion dynamics is indeed important for cell integrity, and it could be affected during neurodegeneration. Lesioned mice were treated with Mdivi-1 and then examined by a series of behavioral test and histological analyses. The results have shown that the drug may be capable of reducing functional deficits after the lesion and promoting synaptic plasticity and neuroprotection, thus representing a putative translational approach for motoneuron disorders.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Valeria Cacciato
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Giuliano Cantone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Carlo Fichera
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (L.S.); (G.M.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (L.S.); (G.M.)
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.C.); (M.S.); (V.C.); (G.C.); (C.F.); (M.V.); (M.S.V.)
| |
Collapse
|
5
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Seki S, Kitaoka Y, Kawata S, Nishiura A, Uchihashi T, Hiraoka SI, Yokota Y, Isomura ET, Kogo M, Tanaka S. Characteristics of Sensory Neuron Dysfunction in Amyotrophic Lateral Sclerosis (ALS): Potential for ALS Therapy. Biomedicines 2023; 11:2967. [PMID: 38001967 PMCID: PMC10669304 DOI: 10.3390/biomedicines11112967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.
Collapse
Affiliation(s)
- Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|