1
|
Rasmussen CLM, Burkhart A, Moos T, Thomsen LB. Reporting preclinical gene therapy studies in the field of Niemann-Pick type C disease according to the ARRIVE guidelines. Orphanet J Rare Dis 2025; 20:214. [PMID: 40329398 PMCID: PMC12054331 DOI: 10.1186/s13023-024-03479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/21/2024] [Indexed: 05/08/2025] Open
Abstract
The lack of essential information when reporting animal studies causing lower reproducibility has been stressed for decades. The ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines were first published in 2010, to improve reporting of animal research, making in vivo studies more transparent thereby improving the scientific quality. Regardless of an endorsement from the scientific community, there is still a continuous need to improve animal research reporting, which unfortunately also is the case in the field of Niemann-Pick type C disease (NPC). NPC is a lipid storage disorder, caused by mutations in either the Npc1 or Npc2 gene. Despite years of research, no cure for this fatal disease exists. In 2020, an updated version of the ARRIVE guidelines (ARRIVE 2.0), was published, describing the ten most essential elements to be included when reporting pre-clinical studies. Here we systematically reviewed the compliance with the ARRIVE guidelines using the "ARRIVE Essential 10" checklist in a series of pre-clinical studies investigating gene therapy as a treatment strategy for NPC. None of the reviewed papers fulfilled the ARRIVE 2.0 guidelines. Information regarding sample size, randomization, blinding, and statistical methodology was lacking. Hopefully, the newly updated ARRIVE guidelines will aid researchers in planning and publishing in vivo experiments in the future. More awareness of the importance of including these essential items is needed, both from editors, reviewers and researchers, for complete endorsement of the ARRIVE guidelines in the scientific community.
Collapse
Affiliation(s)
- Charlotte Laurfelt Munch Rasmussen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, DK-9260, Gistrup, Denmark.
- The Biomedical Laboratory, Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 23, DK-5000, Odense C, Denmark.
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, DK-9260, Gistrup, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, DK-9260, Gistrup, Denmark
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, DK-9260, Gistrup, Denmark.
| |
Collapse
|
2
|
Rasmussen CLM, Frederiksen SF, Heegaard CW, Thomsen MS, Hede E, Laczek B, Körbelin J, Wüstner D, Thomsen LB, Schwaninger M, Jensen ON, Moos T, Burkhart A. Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2. Fluids Barriers CNS 2025; 22:13. [PMID: 39891227 PMCID: PMC11786545 DOI: 10.1186/s12987-025-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Patients with the genetic disorder Niemann-Pick type C2 disease (NP-C2) suffer from lysosomal accumulation of cholesterol causing both systemic and severe neurological symptoms. In a murine NP-C2 model, otherwise successful intravenous Niemann-Pick C2 protein (NPC2) replacement therapy fails to alleviate progressive neurodegeneration as infused NPC2 cannot cross the blood-brain barrier (BBB). Genetic modification of brain endothelial cells (BECs) is thought to enable secretion of recombinant proteins thereby overcoming the restrictions of the BBB. We hypothesized that an adeno-associated virus (AAV-BR1) encoding the Npc2 gene could cure neurological symptoms in Npc2-/- mice through transduction of BECs, and possibly neurons via viral passage across the BBB. METHODS Six weeks old Npc2-/- mice were intravenously injected with the AAV-BR1-NPC2 vector. Composite phenotype scores and behavioral tests were assessed for the following 6 weeks and visually documented. Post-mortem analyses included gene expression analyses, verification of neurodegeneration in Purkinje cells, determination of NPC2 transduction in the CNS, assessment of gliosis, quantification of gangliosides, and co-detection of cholesterol with NPC2 in degenerating neurons. RESULTS Treatment with the AAV-BR1-NPC2 vector improved motor functions, reduced neocortical inflammation, and preserved Purkinje cells in most of the mice, referred to as high responders. The vector exerted tropism for BECs and neurons resulting in a widespread NPC2 distribution in the brain with a concomitant reduction of cholesterol in adjacent neurons, presumably not transduced by the vector. Mass spectrometry imaging revealed distinct lipid alterations in the brains of Npc2-/- mice, with increased GM2 and GM3 ganglioside accumulation in the cerebellum and hippocampus. AAV-BR1-NPC2 treatment partially normalized these ganglioside distributions in high responders, including restoration of lipid profiles towards those of Npc2+/+ controls. CONCLUSION The data suggests cross-correcting gene therapy to the brain via delivery of NPC2 from BECs and neurons.
Collapse
Affiliation(s)
- Charlotte Laurfelt Munch Rasmussen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Signe Frost Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Christian Würtz Heegaard
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Eva Hede
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Bartosz Laczek
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Jakob Körbelin
- Department of Oncology, Hematology, and Bone Marrow Transplantation, University of Medical Center Hamburg-Eppendorf, Martinisstr. 52, 20246, Hamburg, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark.
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Selma Lagerlöfts Vej 249, 9260, Gistrup, Denmark.
| |
Collapse
|
3
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
4
|
Gruol DL. The Neuroimmune System and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2511-2537. [PMID: 37950146 PMCID: PMC11585519 DOI: 10.1007/s12311-023-01624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
The recognition that there is an innate immune system of the brain, referred to as the neuroimmune system, that preforms many functions comparable to that of the peripheral immune system is a relatively new concept and much is yet to be learned. The main cellular components of the neuroimmune system are the glial cells of the brain, primarily microglia and astrocytes. These cell types preform many functions through secretion of signaling factors initially known as immune factors but referred to as neuroimmune factors when produced by cells of the brain. The immune functions of glial cells play critical roles in the healthy brain to maintain homeostasis that is essential for normal brain function, to establish cytoarchitecture of the brain during development, and, in pathological conditions, to minimize the detrimental effects of disease and injury and promote repair of brain structure and function. However, dysregulation of this system can occur resulting in actions that exacerbate or perpetuate the detrimental effects of disease or injury. The neuroimmune system extends throughout all brain regions, but attention to the cerebellar system has lagged that of other brain regions and information is limited on this topic. This article is meant to provide a brief introduction to the cellular and molecular components of the brain immune system, its functions, and what is known about its role in the cerebellum. The majority of this information comes from studies of animal models and pathological conditions, where upregulation of the system facilitates investigation of its actions.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|