1
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
2
|
Sahib BO, Hussein IH, Alibrahim NT, Mansour AA. Management Outcomes in Males With Hypogonadotropic Hypogonadism Treated With Gonadotropins. Cureus 2023; 15:e35601. [PMID: 37007338 PMCID: PMC10063211 DOI: 10.7759/cureus.35601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Background Hypogonadotropic hypogonadism is an important cause of male infertility and loss of secondary sexual characteristics. Gonadotropin replacement is mandatory for sexual function, bone health, and normal psychological status. This study is to compare the effectiveness of different gonadotropin therapy modalities in the management of male hypogonadism. Methods A randomized open-label prospective study of 51 patients attended the Faiha Specialized Diabetes, Endocrine and Metabolism Center (FDEMC) with hypogonadotropic hypogonadism, divided randomly into three groups. The first group was treated with human chorionic gonadotropin (hCG) alone, the second group was treated with a combination of both hCG and human menopausal gonadotropin (HMG), while the third group started with hCG alone then followed by combination therapy after six months. Results All modalities of therapy result in a significant increase in mean testicular volume although no clinically significant difference between the groups, but the combination group had the highest increment. The increment in serum testosterone level was statistically significant among the different groups of treatment (p-value < 0.0001). When comparing groups, a higher mean maximum testosterone level (710.4±102.7 ng/dL) was obtained with the combination group followed by the sequential group, with mean maximum testosterone levels (636.0±68.6 ng/dL) (p-value = 0.031). Factors negatively affecting testosterone level include BMI > 30 kg/m2, initial testicular volume < 5 mL, and duration of therapy < 13 months. Conclusions Induction of puberty using recombinant hCG alone is sufficient to induce secondary sexual characteristics, while for fertility issues combination from the start or sequential therapy has better for spermatogenesis. There was no effect of prior exogenous testosterone treatment on final spermatogenesis.
Collapse
|
3
|
Chu KY, Kulandavelu S, Masterson TA, Ibrahim E, Arora H, Ramasamy R. Short-acting testosterone appears to have lesser effect on male reproductive potential compared to long-acting testosterone in mice. ACTA ACUST UNITED AC 2020; 1:46-52. [PMID: 32914138 DOI: 10.1016/j.xfss.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective To compare the effect of exogenous short-acting and long-acting testosterone on male reproductive potential in mice. Design In vivo mouse model. Setting University-based basic science research laboratory. Animals A total of 30 wild-type C57BL/6 male and female mice were used for this experimentation. The male mice were used for control group and testosterone supplementation, while both male and female mice were used for the breeding portion of the study. Interventions Exogenous testosterone was administered either in short-acting formulation (Monday-Wednesday-Friday dosing schedule, testosterone propionate 0.2 mg/kg), or long-acting formulation (3-month dosing schedule - testosterone pellets 150 mg) to male mice. Main Outcome Measures Time to pregnancy, Luteinizing hormone (LH) levels, and testicular weight. Results Mice treated with long-acting testosterone appear to have longer time to pregnancy when compared to wild-type (33 ± 11 vs 23 ± 2.6 days, p ≤ 0.05) and mice that received short-acting testosterone propionate (26 ± 5.9 days). Mice treated with long-acting testosterone had smaller testes weight when compared to control (0.08 ± 0.01 vs 0.11 ± 0.01g; p ≤ 0.01), while the short-acting testosterone treated mice had similar testis weight when compared to control (0.09 ± 0.02 vs 0.11 ± 0.01g; ns). The serum testosterone level was elevated in mice that received testosterone pellets (285.78 ng/dL) and testosterone propionate (122.16 ng/dL) versus control (68.4 ng/dL). In mice that received long-acting testosterone pellets, LH levels at 3 months were almost undetectable while those that received short-acting testosterone remained similar to control (0.017 ± 0.058 vs 0.348 ± 0.232 IU/L; p ≤ 0.01). Female reproductive potential parameters including litter size and pup weight were collected and observed to have no difference between groups. Conclusion Through a mouse breeding study, mice that received short-acting testosterone were shown to have fertility potential similar to wild-type male mice. Long-acting exogenous testosterone appeared to impair male reproductive capacity and LH levels when compared to short-acting testosterone. Short-acting testosterone appeared to cause less LH suppression. Identifying strategies to increase testosterone while simultaneously preserving male fertility is important for treating young men with hypogonadism.
Collapse
Affiliation(s)
- Kevin Y Chu
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Shathiyah Kulandavelu
- Department of Pediatrics, University of Miami Miller School of Medicine; Interdisciplinary Stem Cell Institute, Miami, FL 33136
| | - Thomas A Masterson
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Emad Ibrahim
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Himanshu Arora
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ranjith Ramasamy
- Department of Urology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
4
|
Adorni MP, Zimetti F, Cangiano B, Vezzoli V, Bernini F, Caruso D, Corsini A, Sirtori CR, Cariboni A, Bonomi M, Ruscica M. High-Density Lipoprotein Function Is Reduced in Patients Affected by Genetic or Idiopathic Hypogonadism. J Clin Endocrinol Metab 2019; 104:3097-3107. [PMID: 30835274 DOI: 10.1210/jc.2018-02027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/26/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Low testosterone levels are associated with an increased incidence of cardiovascular (CV) events, but the underlying biochemical mechanisms are not fully understood. The clinical condition of hypogonadism offers a unique model to unravel the possible role of lipoprotein-associated abnormalities in CV risk. In particular, the assessment of the functional capacities of high-density lipoproteins (HDLs) may provide insights besides traditional risk factors. DESIGN To determine whether reduced testosterone levels correlate with lipoprotein function, HDL cholesterol (HDL-C) efflux capacity (CEC) and serum cholesterol loading capacity (CLC). PARTICIPANTS Genetic and idiopathic hypogonadal patients (n = 20) and control subjects (n = 17). RESULTS Primary and secondary hypogonadal patients presented with lower HDL ATP-binding cassette transporter A1 (ABCA1)-, ATP-binding cassette transporter G1 (ABCG1)-, and aqueous diffusion-mediated CEC (-19.6%, -40.9%, and -12.9%, respectively), with a 16.2% decrement of total CEC. In the whole series, positive correlations between testosterone levels and both total HDL CEC (r2 = 0.359, P = 0.0001) and ABCG1 HDL CEC (r2 = 0.367, P = 0.0001) were observed. Conversely, serum CLC was markedly raised (+43%) in hypogonadals, increased, to a higher extent, in primary vs secondary hypogonadism (18.45 ± 2.78 vs 15.15 ± 2.10 µg cholesterol/mg protein) and inversely correlated with testosterone levels (r2 = 0.270, P = 0.001). HDL-C concentrations did not correlate with either testosterone levels, HDL CEC (total, ABCG1, and ABCA1) or serum CLC. CONCLUSIONS In hypogonadal patients, proatherogenic lipoprotein-associated changes are associated with lower cholesterol efflux and increased influx, thus offering an explanation for a potentially increased CV risk.
Collapse
Affiliation(s)
| | | | - Biagio Cangiano
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Valeria Vezzoli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Multimedica Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy
| | - Cesare R Sirtori
- Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Laboratory of Endocrine and Metabolic Research and Division of Endocrine and Metabolic Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Lonardo A, Mantovani A, Lugari S, Targher G. NAFLD in Some Common Endocrine Diseases: Prevalence, Pathophysiology, and Principles of Diagnosis and Management. Int J Mol Sci 2019; 20:2841. [PMID: 31212642 PMCID: PMC6600657 DOI: 10.3390/ijms20112841] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Secondary nonalcoholic fatty liver disease (NAFLD) defines those complex pathophysiological and clinical consequences that ensue when the liver becomes an ectopic site of lipid storage owing to reasons other than its mutual association with the metabolic syndrome. Disorders affecting gonadal hormones, thyroid hormones, or growth hormones (GH) may cause secondary forms of NAFLD, which exhibit specific pathophysiologic features and, in theory, the possibility to receive an effective treatment. Here, we critically discuss epidemiological and pathophysiological features, as well as principles of diagnosis and management of some common endocrine diseases, such as polycystic ovary syndrome (PCOS), hypothyroidism, hypogonadism, and GH deficiency. Collectively, these forms of NAFLD secondary to specific endocrine derangements may be envisaged as a naturally occurring disease model of NAFLD in humans. Improved understanding of such endocrine secondary forms of NAFLD promises to disclose novel clinical associations and innovative therapeutic approaches, which may potentially be applied also to selected cases of primary NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit Internal Medicine-Ospedale Civile di Baggiovara-AOU, 41125 Modena, Italy.
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy.
| | - Simonetta Lugari
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy.
| |
Collapse
|
6
|
|
7
|
Sadaie MR, Farhoudi M, Zamanlu M, Aghamohammadzadeh N, Amouzegar A, Rosenbaum RE, Thomas GA. What does the research say about androgen use and cerebrovascular events? Ther Adv Drug Saf 2018; 9:439-455. [PMID: 30364888 DOI: 10.1177/2042098618773318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the benefits of androgen therapy and neurosteroids in aging men, while concerns remain about the potential associations of exogenous steroids and incidents of cerebrovascular events and ischemic stroke (IS). Testosterone is neuroprotective, neurotrophic and a potent stimulator of neuroplasticity. These benefits are mediated primarily through conversion of a small amount of testosterone to estradiol by the catalytic activity of estrogen synthetase (aromatase cytochrome P450 enzyme). New studies suggest that abnormal serum levels of the nonaromatized potent metabolite of testosterone, either high or low dihydrotestosterone (DHT), is a risk factor for stroke. Associations between pharmacologic androgen use and the incidence of IS are questionable, because a significant portion of testosterone is converted to DHT. There is also insufficient evidence to reject a causal relationship between the pro-testosterone adrenal androgens and incidence of IS. Moreover, vascular intima-media thickness, which is a predictor of stroke and myocardial symptoms, has correlations with sex hormones. Current diagnostic and treatment criteria for androgen therapy for cerebrovascular complications are unclear. Confounding variables, including genetic and metabolic alterations of the key enzymes of steroidogenesis, ought to be considered. Information extracted from pharmacogenetic testing may aid in expounding the protective-destructive properties of neurosteroids, as well as the prognosis of androgen therapy, in particular their cerebrovascular outcomes. This investigative review article addresses relevant findings of the clinical and experimental investigations of androgen therapy, emphasizes the significance of genetic testing of androgen responsiveness towards individualized therapy in post-IS injuries as well as identifying pertinent questions.
Collapse
Affiliation(s)
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masumeh Zamanlu
- Neurosciences Research Center (NSRC), Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Aghamohammadzadeh
- Department of Endocrinology, Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Gary A Thomas
- Penn State Hershey Neurology, Penn State University, PA, USA
| |
Collapse
|