1
|
DNA Microarray-based Detection of Bacteria in Samples Containing Antibiotics: Effect of Antibiotics on the Performance of Pathogen Detection Assays. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Zopf D, Pittner A, Dathe A, Grosse N, Csáki A, Arstila K, Toppari JJ, Schott W, Dontsov D, Uhlrich G, Fritzsche W, Stranik O. Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection. ACS Sens 2019; 4:335-343. [PMID: 30657315 DOI: 10.1021/acssensors.8b01073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding can be reversed using chemical means (10 mM HCl). It is demonstrated that multiplexed detection and identification of several fungal pathogen DNA sequences subsequently on one sensor array are possible by this approach.
Collapse
Affiliation(s)
- David Zopf
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Angelina Pittner
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - André Dathe
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Jena University Hospital, Friedrich-Schiller-University, Teichgraben 8, 07743 Jena, Germany
| | - Norman Grosse
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Andrea Csáki
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Kai Arstila
- University of Jyväskylä, Department of Physics and Nanoscience Center, P.O. Box 35, 40014 Jyväskylä, Finland
| | - J. Jussi Toppari
- University of Jyväskylä, Department of Physics and Nanoscience Center, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Walter Schott
- SIOS Meßtechnik GmbH, Am Vogelherd 46, 98693 Ilmenau, Germany
| | - Denis Dontsov
- SIOS Meßtechnik GmbH, Am Vogelherd 46, 98693 Ilmenau, Germany
| | - Günter Uhlrich
- ABS Gesellschaft für Automatisierung, Bildverarbeitung und Software mbH, Stockholmer Straße 3, 07747 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Ondrej Stranik
- Leibniz Institute of Photonic Technology (IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
3
|
Chen W, Chen Y, Wang M, Chi Y. Ultrasensitive chemiluminescence biosensors using nucleic acid-functionalized silver-cysteine nanowires as signal amplifying labels. Analyst 2019; 143:1575-1582. [PMID: 29509198 DOI: 10.1039/c7an02085f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultrasensitive chemiluminescence (CL) sensors for biomolecules (DNA and proteins) have been developed by adopting DNA-functionalized silver-cysteine hybrid nanowires (p-SCNWs) as signal amplifying labels. The sensing is established from a sandwich-type DNA hybridization, where the target DNA strands are initially hybridized with the capture DNA located at paramagnetic microspheres (PMs) and subsequently hybridized with p-SCNWs functionalized with the signal DNA probe. After magnetic separation, p-SCNWs on the hybrids were completely decomposed with HNO3 to release numerous silver ions. The powerful catalysis of silver ions toward the redox reaction of K2S2O8-Mn2+-H3PO4 causes the generation of KMnO4 that is capable of oxidizing luminol at high pH, triggering an amplified chemiluminescent signal emission. The sensing combines the extraordinary sensitivity of the catalytic chemiluminescence technology and the amplifying strategy via releasing large quantities of silver ions as the catalyst from each hybrid, enabling the assay of target DNA strands at a concentration as low as 0.34 fM. The CL signals associated with single-base pair mismatched DNA strands and non-complementary DNA strands are able to be discriminated well from the CL signal related to the complementary DNA hybridization. Likewise, the combination of p-SCNWs functionalized with an aptamer and PMs/aptamer/thrombin complex allowed the chemiluminescence sensing of thrombin with a low limit of detection corresponding to 0.17 pM.
Collapse
Affiliation(s)
- Wenjuan Chen
- Key laboratory for analytical science of food safety and biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and College of Chemistry, Fuzhou University, Fujian 350108, China.
| | | | | | | |
Collapse
|
4
|
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 2018; 117:112-128. [PMID: 29890393 PMCID: PMC6082696 DOI: 10.1016/j.bios.2018.05.050] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The rapid diagnosis of pathogens is crucial in the early stages of treatment of diseases where the choice of the correct drug can be critical. Although conventional cell culture-based techniques have been widely utilized in clinical applications, newly introduced optical-based, microfluidic chips are becoming attractive. The advantages of the novel methods compared to the conventional techniques comprise more rapid diagnosis, lower consumption of patient sample and valuable reagents, easy application, and high reproducibility in the detection of pathogens. The miniaturized channels used in microfluidic systems simulate interactions between cells and reagents in microchannel structures, and evaluate the interactions between biological moieties to enable diagnosis of microorganisms. The overarching goal of this review is to provide a summary of the development of microfluidic biochips and to comprehensively discuss different applications of microfluidic biochips in the detection of pathogens. New types of microfluidic systems and novel techniques for viral pathogen detection (e.g. HIV, HVB, ZIKV) are covered. Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells. The introduction of smartphones to replace microscope based observation has substantially improved cell detection, and allows facile data processing and transfer for presentation purposes.
Collapse
Affiliation(s)
- Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Neda Soleimani
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Visible DNA Microarray System as an Adjunctive Molecular Test in Identification of Pathogenic Fungi Directly from a Blood Culture Bottle. J Clin Microbiol 2018. [PMID: 29514940 DOI: 10.1128/jcm.01908-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A DNA microarray platform, based on the nucleotide sequences of the internal transcribed spacer regions (ITS1 and ITS2) of the rRNA gene, was developed to identify 32 fungal pathogens at the species level. The probe sequences were spotted onto polycarbonate slides with a mini-microarray printer, and after the hybridization, the results were visible with the naked eye. The performance of the microarray platform was evaluated against the commercial automated systems (Vitek 2 and BD Phoenix systems) and DNA sequencing (gold standard). A total of 461 blood culture bottles were tested: 127 positive for fungi, 302 positive for bacteria, and 32 that were negative. Once the microorganisms were identified by automated systems, fungal DNA was extracted directly from the blood culture bottles. The DNA products were tested using the microarray platform, and DNA sequencing was performed. The results of the microarray and DNA sequencing were concordant in 96.7% of cases, and the results from the automated systems and DNA sequencing were concordant in 98.4%. Of all the nucleotide sequences contained in the microarray platform, the microarray failed to identify four fungal isolates (one Candida parapsilosis, two Candida tropicalis, and one Cryptococcus neoformans). Of note, the microarray detected Candida krusei DNA in two blood cultures from the same patient, whereas the automated system was only positive for Enterococcus faecium Our microarray system provided reliable and fast fungal identification compared to that from DNA sequencing and the automated systems. The simplicity of reading the results by the naked eye made this DNA platform a suitable method for fungal molecular diagnosis.
Collapse
|
6
|
Nasrabadi Z, Ranjbar R, Poorali F, Sarshar M. Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization. Electron Physician 2017; 9:4405-4411. [PMID: 28713514 PMCID: PMC5498707 DOI: 10.19082/4405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Simultaneous and rapid detection of multiple foodborne bacterial pathogens is important for the prevention of foodborne illnesses. OBJECTIVE The aim of this study was to evaluate the use of 16S rDNA and 23S rDNA sequences as targets for simultaneous detection of eight foodborne bacterial pathogens. METHODS Nineteen bacterial oligonucleotide probes were synthesized and applied to nylon membranes. Digoxygenin labeled 16S rDNA and 23S rDNA from bacteria were amplified by PCR using universal primers, and the amplicons were hybridized to the membrane array. Hybridization signals were visualized by NBT/BCIP color development. RESULTS The eight intestinal bacterial pathogens including Salmonella enterica, Escherichia coli, Bacillus cereus, Vibrio cholerae, Shigella dysenteriae, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis were appropriately detected in a panel of oligonucleotide array hybridization. The experimental results showed that the method could discriminate the bacterial pathogens successfully. The sensitivity of oligonucleotide array was 103 CFU/ml. CONCLUSION This study showed that 16S rDNA and 23S rDNA genes had sufficient sequence diversity for species identification and were useful for monitoring the populations of foodborne pathogenic bacteria. Furthermore, results obtained in this study revealed that oligonucleotide array hybridization had a powerful capability to detect and identify the bacterial pathogens simultaneously.
Collapse
Affiliation(s)
- Zohreh Nasrabadi
- Department of Microbiology, Faculty of Science, Islamic Azad University, Karaj branch, Karaj, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Poorali
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
7
|
Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Yoo SM, Lee SY. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol 2015; 34:7-25. [PMID: 26506111 DOI: 10.1016/j.tibtech.2015.09.012] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Pathogenic microorganisms are causative agents of various infectious diseases that are becoming increasingly serious worldwide. For the successful treatment of pathogenic infection, the rapid and accurate detection of multiple pathogenic microorganisms is of great importance in all areas related to health and safety. Among various sensor systems, optical biosensors allow easy-to-use, rapid, portable, multiplexed, and cost-effective diagnosis. Here, we review current trends and advances in pathogen-diagnostic optical biosensors. The technological and methodological approaches underlying diverse optical-sensing platforms and methods for detecting pathogenic microorganisms are reviewed, together with the strengths and drawbacks of each technique. Finally, challenges in developing efficient optical biosensor systems and future perspectives are discussed.
Collapse
Affiliation(s)
- Seung Min Yoo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus Program), BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus Program), BioProcess Engineering Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Miller S, Karaoz U, Brodie E, Dunbar S. Solid and Suspension Microarrays for Microbial Diagnostics. METHODS IN MICROBIOLOGY 2015; 42:395-431. [PMID: 38620236 PMCID: PMC7172482 DOI: 10.1016/bs.mim.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Advancements in molecular technologies have provided new platforms that are being increasingly adopted for use in the clinical microbiology laboratory. Among these, microarray methods are particularly well suited for diagnostics as they allow multiplexing, or the ability to test for multiple targets simultaneously from the same specimen. Microarray technologies commonly used for the detection and identification of microbial targets include solid-state microarrays, electronic microarrays and bead suspension microarrays. Microarray methods have been applied to microbial detection, genotyping and antimicrobial resistance gene detection. Microarrays can offer a panel approach to diagnose specific patient presentations, such as respiratory or gastrointestinal infections, and can discriminate isolates by genotype for tracking epidemiology and outbreak investigations. And, as more information has become available on specific genes and pathways involved in antimicrobial resistance, we are beginning to be able to predict susceptibility patterns based on sequence detection for particular organisms. With further advances in automated microarray processing methods and genotype-phenotype prediction algorithms, these tests will become even more useful as an adjunct or replacement for conventional antimicrobial susceptibility testing, allowing for more rapid selection of targeted therapy for infectious diseases.
Collapse
Affiliation(s)
- Steve Miller
- Clinical Microbiology Laboratory, University of California, San Francisco, California, USA
| | - Ulas Karaoz
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Eoin Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
10
|
Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal. Curr Microbiol 2014; 70:43-50. [PMID: 25146188 DOI: 10.1007/s00284-014-0681-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/08/2014] [Indexed: 10/24/2022]
Abstract
Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.
Collapse
|
12
|
Yoo SM, Lee SY. DNA microarray for the identification of pathogens causing bloodstream infections. Expert Rev Mol Diagn 2014; 10:263-8. [DOI: 10.1586/erm.10.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Zhang SX. Enhancing molecular approaches for diagnosis of fungal infections. Future Microbiol 2013; 8:1599-611. [DOI: 10.2217/fmb.13.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular tests can improve the diagnosis of fungal infections. Despite the increasing application for fungal detection, molecular tests are still not accepted as a diagnostic criterion to define invasive fungal diseases. This limitation is largely due to a lack of a standardized method. Method standardization can be achieved by following a consensus protocol developed by a working group, by performing a molecular test in a centralized laboratory or by using a commercial assay that provides a standardized method and quality-controlled reagents. Forming a consortium or a working group consisting of large-scale diagnostic mycology laboratories can accelerate the process of validating and implementing a commercial molecular assay for clinical use through a joint effort between industry partners and clinicians. Development of molecular tests not only for the detection of fungi but also for the identification of antifungal drug resistance directly in blood, bronchoalveolar lavage fluid, cerebrospinal fluid, and formalin-fixed and paraffin-embedded tissues greatly enhances fungal diagnostic capacities. Advances of developing quantitative assays and RNA detection platforms may provide another avenue to further improve fungal diagnostics.
Collapse
Affiliation(s)
- Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, 600 Wolfe Street, Meyer B1-193, Baltimore 21287, MD, USA
| |
Collapse
|
14
|
Lü F, Feng X, Liu L, Wang S. Protein-assisted conjugated polymer microarray: Fabrication and sensing applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6025-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Visual analysis of DNA microarray data for accurate molecular identification of non-albicans Candida isolates from patients with candidemia episodes. J Clin Microbiol 2013; 51:3826-9. [PMID: 23784121 DOI: 10.1128/jcm.01050-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The performance of a visual slide-based DNA microarray for the identification of non-albicans Candida spp. was evaluated. Among 167 isolates that had previously been identified by Vitek 2, the agreement between DNA microarray and sequencing results was 97.6%. This DNA microarray platform showed excellent performance.
Collapse
|
16
|
PCR-reverse blot hybridization assay for screening and identification of pathogens in sepsis. J Clin Microbiol 2013; 51:1451-7. [PMID: 23447637 DOI: 10.1128/jcm.01665-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specific and 13 species-specific probes; it uses additional probes for antibiotic resistance genes, i.e., the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) and the vanA and vanB genes of vancomycin-resistant enterococci (VRE). The REBA Sepsis-ID test successfully identified clinical isolates and blood culture samples as containing Gram-positive bacteria, Gram-negative bacteria, or fungi. The results matched those obtained with conventional microbiological methods. For the REBA Sepsis-ID test, of the 115 blood culture samples tested, 47 (40.8%) and 49 (42.6%) samples were identified to the species and genus levels, respectively, and the remaining 19 samples (16.5%), which included five Gram-positive rods, were identified as Gram-positive bacteria, Gram-negative bacteria, or fungi. The antibiotic resistances of the MRSA and VRE strains were identified using both conventional microbiological methods and the REBA Sepsis-ID test. In conclusion, the REBA Sepsis-ID test developed for this study is a fast and reliable test for the identification of Gram-positive bacteria, Gram-negative bacteria, fungi, and antibiotic resistance genes (including mecA for MRSA and the vanA and vanB genes for VRE) in bloodstream infections.
Collapse
|
17
|
Utility of PCR amplification and DNA microarray hybridization of 16S rDNA for rapid diagnosis of bacteremia associated with hematological diseases. Int J Infect Dis 2012; 17:e271-6. [PMID: 23228627 DOI: 10.1016/j.ijid.2012.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/05/2012] [Accepted: 10/25/2012] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES The rapid diagnosis of bacteremia is crucial for patient management including the choice of antimicrobial therapy, especially in cases of hematological disease, because neutropenia occurs frequently during antineoplastic chemotherapy or disease progression. We describe a rapid detection and identification system that uses universal PCR primers to amplify a variable region of bacterial 16S ribosomal DNA (rDNA), followed by DNA microarray hybridization. METHODS Probes for 72 microorganisms including most causal clinical pathogens were spotted onto a microarray plate. The DNA microarray and conventional methods of identification were applied to 335 cultures from patients with hematological diseases. RESULTS Forty-one samples (12.2%) tested positive by conventional blood culture test in a few days, while 40 cases (11.9%) were identified by the new method within 24 h. The sensitivity and specificity of this new method were 93% and 99%, respectively, compared with conventional blood culture testing. CONCLUSIONS PCR combined with a DNA microarray is useful for the management of febrile patients with hematological diseases.
Collapse
|
18
|
Emerging real-time technologies in molecular medicine and the evolution of integrated ‘pharmacomics’ approaches to personalized medicine and drug discovery. Pharmacol Ther 2012; 136:295-304. [DOI: 10.1016/j.pharmthera.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 01/05/2023]
|
19
|
Accurate and rapid identification of Candida spp. frequently associated with fungemia by using PCR and the microarray-based Prove-it Sepsis assay. J Clin Microbiol 2012; 50:3635-40. [PMID: 22952267 DOI: 10.1128/jcm.01461-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid identification of microbes responsible for bloodstream infections (BSIs) allows more focused and effective therapies and outcomes. DNA sequence-based methods offer an opportunity for faster, accurate diagnosis and for effective therapy. As our objective of the study, the ability of the Prove-it Sepsis platform, already proven as a rapid PCR- and microarray-based assay for the majority of sepsis-causing bacteria, was extended to also rapidly identify clinically relevant yeasts in blood culture. The performance characteristics of this extended platform are described. We found that the extended diagnostic Prove-it Sepsis platform was found to be highly accurate when analyzing primary isolates, spiked blood cultures, nucleic acid extracts from a retrospective blood culture data set, and primary blood cultures. Comparison of the blood culture results from the Prove-it Sepsis platform with those from conventional culture-based methods or by gene sequencing demonstrated a sensitivity of 99% and a specificity of 98% for fungal targets (based on analysis of a total of 388 specimens). Total assay time was 3 h from DNA extraction to BSI diagnosis. These results extend the performance characteristics of the Prove-it platform for bacteria to the easy, rapid, and accurate detection and species identification of yeasts in positive blood cultures. Incorporation of this extended and rapid diagnostic platform into the tools for clinical patient management would allow possibly faster identification and more focused therapies for BSIs.
Collapse
|
20
|
Detection of extended-spectrum β-lactamase and Klebsiella pneumoniae Carbapenemase genes directly from blood cultures by use of a nucleic acid microarray. J Clin Microbiol 2012; 50:2901-4. [PMID: 22718942 DOI: 10.1128/jcm.01023-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growing crisis of multidrug-resistant (MDR) Gram-negative bacteria requires that current technologies permit the rapid detection of extended-spectrum β-lactamase (bla(ESBL)) and Klebsiella pneumoniae carbapenemase (bla(KPC)) genes. In the present study, we assessed the performance characteristics of a commercially available nucleic acid microarray system for the detection of bla(ESBL) and bla(KPC) genes directly from positive blood cultures. Using blood cultures (BCs) that contained Gram-negative bacilli identified by Gram staining, we isolated bacterial DNA using spin columns (BC-C) and rapid water lysis (BC-W). Twenty ESBL/KPC-positive and 20 ESBL/KPC-negative blood culture samples, as well as 20 non-lactose-fermenting organisms, were tested. The 20 isolates that were ESBL positive by phenotypic testing were also evaluated on solid medium (SM), and the DNA was extracted by use of a spin column (SM-C). The resulting 140 DNA extractions were assessed for DNA quantity and quality using 260/280-nm absorbance ratios, and DNA microarray analysis was performed in a blinded fashion. Microarray and phenotypic results were concordant for 98.3% of BC-W, 90% of BC-C, and 95% of SM-C samples. Compared to phenotypic testing, the sensitivity and specificity for BC-C samples were 88.9% and 100%, respectively, and for BC-W samples, the sensitivity and specificity were 94.4% and 100%, respectively. BC-W samples yielded the highest concordance with phenotypic results. Nucleic acid microarrays offer promise in the identification of bla(ESBL) and bla(KPC) genes directly from blood cultures, thereby reducing the time to identification of these important pathogens.
Collapse
|
21
|
Park TJ, Lee SJ, Pan JG, Jung HC, Park JY, Park JP, Lee SY. DNA capturing machinery through spore-displayed proteins. Lett Appl Microbiol 2011; 53:445-51. [PMID: 21801185 DOI: 10.1111/j.1472-765x.2011.03131.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The purpose of this study was to develop a general method for the facile development of a new DNA biosensor which utilizes streptavidin-displayed spores as a molecular machinery. METHODS AND RESULTS Fluorescence spectroscopy was used as a monitoring tool for the streptavidin displayed on the surface of Bacillus thuringiensis spores and as a diagnosis method for DNA detection. As a proof-of-concept, four pathogenic bacteria including Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumonia were used for the detection of pathogenic species. In addition, a set of mutant variants of Wilson's disease were also used for the detection of single nucleotide polymorphism (SNP) in this system. CONCLUSIONS This strategy, utilizing streptavidin-displayed spores, is capable of capturing DNA targets for the detection of pathogenic bacteria and for mutation analysis in Wilson's disease. SIGNIFICANCE AND IMPACT OF THE STUDY This approach could be useful as a simple platform for developing sensitive spore-based biosensors for any desired DNA targets in diagnostic applications.
Collapse
Affiliation(s)
- T J Park
- BioProcess Engineering Research Center, KAIST, Daejeon, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim DK, Yoo SM, Park TJ, Yoshikawa H, Tamiya E, Park JY, Lee SY. Plasmonic Properties of the Multispot Copper-Capped Nanoparticle Array Chip and Its Application to Optical Biosensors for Pathogen Detection of Multiplex DNAs. Anal Chem 2011; 83:6215-22. [DOI: 10.1021/ac2007762] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Do-Kyun Kim
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seung Min Yoo
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Department of Chemical & Biomolecular Engineering (BK21), Department of Bio & Brain Engineering, Department of Biological Sciences, and Bioinformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Tae Jung Park
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hiroyuki Yoshikawa
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jung Youn Park
- Biotechnology Research Division, National Fisheries Research & Development Institute (NFRDI), 408-1 Sirang-ri, Gijang, Busan 619-705, Republic of Korea
| | - Sang Yup Lee
- BioProcess Engineering Research Center, Center for Systems & Synthetic Biotechnology, and Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
- Department of Chemical & Biomolecular Engineering (BK21), Department of Bio & Brain Engineering, Department of Biological Sciences, and Bioinformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
23
|
Development of a DNA microarray for enterococcal species, virulence, and antibiotic resistance gene determinations among isolates from poultry. Appl Environ Microbiol 2011; 77:2625-33. [PMID: 21335389 DOI: 10.1128/aem.00263-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray. Among the 171 isolates studied, five different enterococcal species were identified by using the API 20 Strep system: Enterococcus faecium, E. faecalis, E. durans, E. gallinarum, and E. avium. The Enteroarray detected the same species as API 20 Strep, as well as two more: E. casseliflavus and E. hirae. Species comparisons resulted in 15% (27 isolates) disagreement between the two methods among the five API 20 Strep identifiable species and 24% (42 isolates) disagreement when considering the seven Enteroarray identified species. The species specificity of key antibiotic and virulence genes identified by the Enteroarray were consistent with the literature adding further robustness to the redundant taxonomic probe data. Sequencing of the cpn60 gene further confirmed the complete accuracy of the microarray results. The new Enteroarray should prove to be a useful tool to accurately genotype strains of enterococci and assess their virulence potential.
Collapse
|
24
|
Acceleration of the direct identification of Staphylococcus aureus versus coagulase-negative staphylococci from blood culture material: a comparison of six bacterial DNA extraction methods. Eur J Clin Microbiol Infect Dis 2010; 30:337-42. [PMID: 20972809 PMCID: PMC3034886 DOI: 10.1007/s10096-010-1090-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/01/2010] [Indexed: 11/21/2022]
Abstract
To accelerate differentiation between Staphylococcus aureus and coagulase-negative staphylococci (CNS), this study aimed to compare six different DNA extraction methods from two commonly used blood culture materials, i.e. BACTEC and BacT/ALERT. Furthermore, we analysed the effect of reduced blood culture incubation for the detection of staphylococci directly from blood culture material. A real-time polymerase chain reaction (PCR) duplex assay was used to compare the six different DNA isolation protocols on two different blood culture systems. Negative blood culture material was spiked with methicillin-resistant S. aureus (MRSA). Bacterial DNA was isolated with automated extractor easyMAG (three protocols), automated extractor MagNA Pure LC (LC Microbiology Kit MGrade), a manual kit MolYsis Plus and a combination of MolYsis Plus and the easyMAG. The most optimal isolation method was used to evaluate reduced bacterial incubation times. Bacterial DNA isolation with the MolYsis Plus kit in combination with the specific B protocol on the easyMAG resulted in the most sensitive detection of S. aureus, with a detection limit of 10 CFU/ml, in BacT/ALERT material, whereas using BACTEC resulted in a detection limit of 100 CFU/ml. An initial S. aureus or CNS load of 1 CFU/ml blood can be detected after 5 h of incubation in BacT/ALERT 3D by combining the sensitive isolation method and the tuf LightCycler assay.
Collapse
|
25
|
Bacterial population genomics and infectious disease diagnostics. Trends Biotechnol 2010; 28:611-8. [PMID: 20961641 DOI: 10.1016/j.tibtech.2010.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 01/14/2023]
Abstract
New sequencing technologies have made the production of bacterial genome sequences increasingly easy, and it can be confidently forecasted that vast genomic databases will be generated in the next few years. Here, we detail how collections of bacterial genomes from a particular species (population genomics libraries) have already been used to improve the design of several diagnostic assays for bacterial pathogens. Genome sequencing itself is also becoming more commonly used for epidemiological, forensic and clinical investigations. There is an opportunity for the further development of bioinformatic tools to bring even further value to bacterial diagnostic genomics.
Collapse
|
26
|
Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses. J Virol 2010; 84:9557-74. [PMID: 20610710 DOI: 10.1128/jvi.00771-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world.
Collapse
|
27
|
Development and evaluation of oligonucleotide chip based on the 16S-23S rRNA gene spacer region for detection of pathogenic microorganisms associated with sepsis. J Clin Microbiol 2010; 48:1578-83. [PMID: 20237100 DOI: 10.1128/jcm.01130-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligonucleotide chips targeting the bacterial internal transcribed spacer region (ITS) of the 16S-23S rRNA gene, which contains genus- and species-specific regions, were developed and evaluated. Forty-three sequences were designed consisting of 1 universal, 3 Gram stain-specific, 9 genus-specific, and 30 species-specific probes. The specificity of the probes was confirmed using bacterial type strains including 54 of 52 species belonging to 18 genera. The performance of the probes was evaluated using 825 consecutive samples that were positive by blood culture in broth medium. Among the 825 clinical specimens, 708 (85.8%) were identified correctly by the oligonucleotide chip. Most (536 isolates, or 75.7%) were identified as staphylococci, Escherichia coli, or Klebsiella pneumoniae. Thirty-seven isolates (4.5%) did not bind to the corresponding specific probes. Most of these also were staphylococci, E. coli, or K. pneumoniae and accounted for 6.3% of total number of the species. Sixty-two specimens (7.5%) did not bind the genus- or species-specific probes because of lack of corresponding specific probes. Among them, Acinetobacter baumannii was the single most frequent isolate (26/62). The oligonucleotide chip was highly specific and sensitive in detecting the causative agents of bacteremia directly from positive blood cultures.
Collapse
|
28
|
Chakravorty S, Aladegbami B, Burday M, Levi M, Marras SAE, Shah D, El-Hajj HH, Kramer FR, Alland D. Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique. J Clin Microbiol 2010; 48:258-67. [PMID: 19923485 PMCID: PMC2812257 DOI: 10.1128/jcm.01725-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/25/2009] [Accepted: 11/07/2009] [Indexed: 11/20/2022] Open
Abstract
A real-time PCR assay with the ability to rapidly identify all pathogenic bacteria would have widespread medical utility. Current real-time PCR technologies cannot accomplish this task due to severe limitations in multiplexing ability. To this end, we developed a new assay system which supports very high degrees of multiplexing. We developed a new class of mismatch-tolerant "sloppy" molecular beacons, modified them to provide an extended hybridization range, and developed a multiprobe, multimelting temperature (T(m)) signature approach to bacterial species identification. Sloppy molecular beacons were exceptionally versatile, and they were able to generate specific T(m) values for DNA sequences that differed by as little as one nucleotide to as many as 23 polymorphisms. Combining the T(m) values generated by several probe-target hybrids resulted in T(m) signatures that served as highly accurate sequence identifiers. Using this method, PCR assays with as few as six sloppy molecular beacons targeting bacterial 16S rRNA gene segments could reproducibly classify 119 different sequence types of pathogenic and commensal bacteria, representing 64 genera, into 111 T(m) signature types. Blinded studies using the assay to identify the bacteria present in 270 patient-derived clinical cultures including 106 patient blood cultures showed a 95 to 97% concordance with conventional methods. Importantly, no bacteria were misidentified; rather, the few species that could not be identified were classified as "indeterminate," resulting in an assay specificity of 100%. This approach enables highly multiplexed target detection using a simple PCR format that can transform infectious disease diagnostics and improve patient outcomes.
Collapse
Affiliation(s)
- Soumitesh Chakravorty
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Bola Aladegbami
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Michele Burday
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Michael Levi
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Salvatore A. E. Marras
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Darshini Shah
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Hiyam H. El-Hajj
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Fred Russell Kramer
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - David Alland
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Reemerging Pathogens, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, Department of Pathology, Montefiore Medical Center, Bronx, New York, Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|