1
|
Wang X, Qiao X, Sui L, Zhao H, Li F, Tang YD, Shi W, Guo Y, Jiang Y, Wang L, Zhou H, Tang L, Xu Y, Li Y. Establishment of stable Vero cell lines expressing TMPRSS2 and MSPL: A useful tool for propagating porcine epidemic diarrhea virus in the absence of exogenous trypsin. Virulence 2021; 11:669-685. [PMID: 32471322 PMCID: PMC7550007 DOI: 10.1080/21505594.2020.1770491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, causing substantial economic losses to the swine industry worldwide. However, the development of PEDV vaccine is hampered by its low propagation titer in vitro, due to difficulty in adapting to the cells and complex culture conditions, even in the presence of trypsin. Furthermore, the frequent variation, recombination, and evolution of PEDV resulted in reemergence and vaccination failure. In this study, we established the Vero/TMPRSS2 and Vero/MSPL cell lines, constitutively expressing type II transmembrane serine protease TMPRSS2 and MSPL, in order to increase the stability and titer of PEDV culture and isolation in vitro. Our study revealed that the Vero/TMPRSS2, especially Vero/MSPL cell lines, can effectively facilitate the titer and multicycle replication of cell-adapted PEDV in the absence of exogenous trypsin, by cleaving and activating PEDV S protein. Furthermore, our results also highlighted that Vero/TMPRSS2 and Vero/MSPL cells can significantly enhance the isolation of PEDV from the clinical tissue samples as well as promote viral infection and replication by cell-cell fusion. The successful construction of the Vero/TMPRSS2 and Vero/MSPL cell lines provides a useful approach for the isolation and propagation of PEDV, simplification of virus culture, and large-scale production of industrial vaccine, and the cell lines are also an important system to research PEDV S protein cleaved by host protease.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Haiyuan Zhao
- Department of Swine Breeding, Jiangsu Hanswine Food Co., Ltd , Ma'anshan, Anhui Province, China
| | - Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University , Harbin, P.R. China
| | - Yuyao Guo
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University , Harbin, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development , Harbin, P.R. China
| |
Collapse
|
2
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|