1
|
Siqueira JAM, Teixeira DM, da Piedade GJL, Souza CDO, Moura TCF, Bahia MDNM, Brasiliense DM, Santos DSADS, Morais LLCDS, da Silva DDFL, Carneiro BS, Pinheiro KDC, Junior ECS, Catete CP, Souza E Guimarães RJDP, Ferreira JL, Chagas Junior WDD, Machado RS, Tavares FN, Resque HR, Dos Santos Lobo P, Guerra SDFDS, Soares LS, da Silva LD, Gabbay YB. Environmental health of water bodies from a Brazilian Amazon Metropolis based on a conventional and metagenomic approach. J Appl Microbiol 2024; 135:lxae101. [PMID: 38627246 DOI: 10.1093/jambio/lxae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
AIMS The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide.
Collapse
Affiliation(s)
| | - Dielle Monteiro Teixeira
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - Cintya de Oliveira Souza
- Laboratório de Enteroinfecções Bacterianas II, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Tuane Carolina Ferreira Moura
- Laboratório de Enteroinfecções Bacterianas II, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Marcia de Nazaré Miranda Bahia
- Laboratório de Enteroinfecções Bacterianas II, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Danielle Murici Brasiliense
- Laboratório de Patógenos Especiais, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | | | | | - Bruno Santana Carneiro
- Laboratório de Indicadores Físico-Químicos de Qualidade da Água, Seção de Meio Ambiente, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Kenny da Costa Pinheiro
- Laboratório de Bioinformática, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Edivaldo Costa Sousa Junior
- Laboratório de Epidemiologia em Leishmanioses, Seção de Parasitologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Clístenes Pamplona Catete
- Laboratório de Geoprocessamento, Seção de Epidemiologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - James Lima Ferreira
- Laboratório de Enterovírus, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - Raiana Scerni Machado
- Laboratório de Enterovírus, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Fernando Neto Tavares
- Laboratório de Enterovírus, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Hugo Reis Resque
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Patrícia Dos Santos Lobo
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - Luana Silva Soares
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Luciana Damascena da Silva
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Yvone Benchimol Gabbay
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| |
Collapse
|
2
|
Huang Y, Wang C, Ma F, Guo Q, Yao L, Chen A, Luo X, Zheng L. Human adenoviruses in paediatric patients with respiratory tract infections in Beijing, China. Virol J 2021; 18:191. [PMID: 34556127 PMCID: PMC8460180 DOI: 10.1186/s12985-021-01661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Background Human adenoviruse (HAdV) is a major pathogen of paediatric respiratory tract infections (RTIs). Mutation or recombination of HAdV genes may cause changes in its pathogenicity and transmission. We described the epidemiology and genotypic diversity of HAdV in hospitalized children with RTIs in Beijing, China. Methods Nasopharyngeal aspirates were collected from hospitalized children with RTIs from April 2018 to March 2019. HAdVs were detected by a quantitative real-time PCR, and the hexon gene was used for phylogenetic analysis. Results Among 1572 samples, 90 (5.72%) were HAdV-positive. The HAdV detection rate was highest in November and July. Among HAdV-positive children, 61.11% (55/90) were co-infected with other respiratory viruses, the most common of which were human respiratory syncytial virus and human rhinovirus. The main diagnosis was bronchopneumonia, most patient have cough and fever. Children with a high viral load were more likely to have a high fever (P = 0.041) and elevated WBC count (P = 0.000). Of 55 HAdV-positive specimens, HAdV-B (63.64%), HAdV-C (27.27%), and HAdV-E (9.09%) were main epidemic species. Phylogenetic analysis indicated that hexon sequences of three samples were on the same branch with the recombinant HAdV strain (CBJ113), which was circulating in Beijing since 2016. Conclusion The HAdV-B3 and HAdV-B7 are the main epidemic strains in Beijing, and the recombinant HAdV-C strain CBJ113 has formed an epidemic trend. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01661-6.
Collapse
Affiliation(s)
- Yiman Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Chao Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Fenlian Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Qiong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Lihong Yao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Aijun Chen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Xiaoyi Luo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Lishu Zheng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
A multiplex TaqMan real-time PCR for detection and differentiation of four antigenic types of canine parvovirus in China. Mol Cell Probes 2018; 38:7-12. [PMID: 29499233 PMCID: PMC7126752 DOI: 10.1016/j.mcp.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022]
Abstract
Canine parvovirus (CPV) is an important pathogen in domestic dogs, and the original antigenic types CPV-2 and its variants, CPV-2a, 2b and 2c, are prevalent worldwide. A multiplex TaqMan real-time PCR method was developed for the detection and differentiation of four antigenic types of CPV. A set of primers and probes, CPV-305F/CPV-305R and CPV-2-305P (for CPV-2)/CPV-2a-305P (for CPV-2a, 2b and 2c), was able to differentiate CPV-2 and its variants (CPV-2a, 2b and 2c). Another set of primers and probes, CPV-426F/CPV-426R and CPV-2-426P (for CPV-2 and 2a)/CPV-2b-426P (for CPV-2b)/CPV-2c-426P (for CPV-2c), was able to differentiate CPV-2a (2), CPV-2b, and CPV-2c. With these primers and probes, the multiplex TaqMan real-time PCR assay detected effectively and differentiated CPV-2, 2a, 2b and 2c by two separate real-time PCRs. No cross reactivity was observed with canine distemper virus, canine adenovirus, and canine coronavirus. The detection limit of the assay is 101 genome copies/μL for CPV-2, CPV-2a, CPV-2b, and 102 copies/μL for CPV-2c. The multiplex real-time PCR has 100% agreement with DNA sequencing. We provide a sensitive assay that simultaneously detects and differentiate four antigenic types of CPV and the method was also used for quantification of CPVs viral genome. The Multiplex TaqMan real-time PCR can simultaneously detect and differentiate four antigenic types of CPV. The method is suit for using in detection of CPVs in China. The method showed a high specificity and sensitivity. The method was also used for quantification of CPVs viral genome.
Collapse
|