1
|
Vimercati A, Tannorella P, Guzzetti S, Calzari L, Gentilini D, Manfredini E, Gori G, Gaudino R, Antona V, Piccione M, Daolio C, Auricchio R, Sirchia F, Minelli A, Rossi E, Bellini M, Biasucci G, Raucci AR, Pozzobon G, Patti G, Napoli F, Larizza L, Maghnie M, Russo S. Distinguishing Genetic Alterations Versus (Epi)Mutations in Silver-Russell Syndrome and Focus on the IGF1R Gene. J Clin Endocrinol Metab 2025; 110:e932-e944. [PMID: 39412159 PMCID: PMC11913091 DOI: 10.1210/clinem/dgae730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 01/03/2025]
Abstract
CONTEXT Silver-Russell Syndrome (SRS) is a growth retardation disorder characterized by pre- and postnatal growth failure, relative macrocephaly at birth, prominent forehead, body asymmetry, and feeding difficulties. The main molecular mechanisms are imprinting alterations at multiple loci, though a small number of pathogenic variants have been reported in the SRS genes IGF2-PLAG1-HMGA2 and CDKN1C. However, around 40% of clinically suspected SRS cases do not achieve a molecular diagnosis, highlighting the necessity to uncover the underlying mechanism in unsolved cases. OBJECTIVE Evaluate the frequency of genetic variants in undiagnosed SRS patients [Netchine-Harbison Clinical Scoring System (NH-CSS) ≥ 4], and investigate whether (epi)genetic patients may be distinguished from genetic patients. METHODS One hundred thirty-two clinically SRS patients without (epi)genetic deregulations were investigated by whole-exome (n = 15) and targeted (n = 117) Sequencing. Clinical data from our cohort and from an extensive revision of the literature were compared. RESULTS Pathogenic variants were identified in 9.1% of this cohort: 3% in IGF2, PLAG1, and HMGA2 genes and 3% in the IGF1R gene, associated with IGF-1 resistance (IGF1RES), an SRS differential diagnosis. Overall, IGF2-PLAG1-HMGA2 and IGF1R account for 3.6% of SRS with NH-CSS score ≥ 4. A clinical cross-comparison of (epi)genetic vs genetic SRS underlined (epi)genotype-phenotype correlation highlighted the prevalence of body asymmetry and relative macrocephaly in mosaic (epi)genetic SRS and recurrence of genetic familial cases. Furthermore, overlapping features were evidenced in (epi)genetic SRS and IGF1RES patients. CONCLUSION Our study explores the frequency of genetic SRS, underscores body asymmetry as a distinctive phenotype in (epi)genetic SRS and suggests IGF1R sequencing in a SRS diagnostic flowchart.
Collapse
Affiliation(s)
- Alessandro Vimercati
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Pierpaola Tannorella
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Sara Guzzetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomic Unit, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Emanuela Manfredini
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Giulia Gori
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Rossella Gaudino
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37129 Verona, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro,” University of Palermo, 90127 Palermo, Italy
| | - Maria Piccione
- Medical Genetics Unit Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Cecilia Daolio
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, University Federico II, 80131 Naples, Italy
| | - Fabio Sirchia
- Medical Genetic Unit, Department of Diagnostic Medicine, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonella Minelli
- Medical Genetic Unit, Department of Diagnostic Medicine, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Elena Rossi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Melissa Bellini
- Pediatrics and Neonatology Unit, Gugliemo da Saliceto Hospital, 29121 Piacenza, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Gugliemo da Saliceto Hospital, 29121 Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Annalisa Russo Raucci
- Division of Genetics and Cell Biology and Laboratory of Clinical Molecular Biology and Cytogenetics, Unit of Genomics for Human Disease Diagnosis, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Giuseppa Patti
- Paediatric Endocrinology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
| | - Flavia Napoli
- Paediatric Endocrinology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Mohamad Maghnie
- Paediatric Endocrinology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
| | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| |
Collapse
|
2
|
Patti G, Malerba F, Calevo MG, Schiavone M, Scaglione M, Casalini E, Russo S, Fava D, Bassi M, Napoli F, Allegri AEM, D’Annunzio G, Gastaldi R, Maghnie M, Di Iorgi N. Pubertal timing in children with Silver Russell syndrome compared to those born small for gestational age. Front Endocrinol (Lausanne) 2022; 13:975511. [PMID: 36093089 PMCID: PMC9451521 DOI: 10.3389/fendo.2022.975511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Data on pubertal timing in Silver Russell syndrome (SRS) are limited. DESIGN AND METHODS Retrospective observational study including twenty-three SRS patients [11p15 loss of methylation, (11p15 LOM, n=10) and maternal uniparental disomy of chromosome 7 (mUPD7, n=13)] and 21 small for gestational age (SGA). Clinical (thelarche in females; testis volume ≥ 4 ml in males; pubarche), BMI SD trend from the age of 5 to 9 years to the time of puberty, biochemical parameters of puberty onset [Luteinizing hormone (LH), 17-β-estradiol, testosterone], and bone age progression were evaluated. RESULTS Pubertal onset and pubarche occurred significantly earlier in children with SRS than in SGA (p 0.03 and p 0.001, respectively) and clinical signs of puberty onset occurred earlier in mUPD7 than in 11p15LOM group (p 0.003). Five SRS children experienced central precocious puberty and LH, 17-β-estradiol, testosterone were detected earlier in SRS than in SGA (p 0.01; p 0.0001). Bone age delay in SRS children was followed by rapid advancement; the delta between bone age and chronological age in SRS group became significantly higher than in SGA group at the age of 9-11 years (p 0.007). 11p15LOM patients were underweight at the age of 5 years and showed a progressive normalization of BMI that was significantly higher than in mUPD7 (p 0.04) and SGA groups (p 0.03) at puberty onset. CONCLUSION Timing of puberty is affected in SRS and occurred earlier in mUPD7 compared to 11p15LOM. The impact of early puberty on adult height and metabolic status deserves long-term evaluation.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
- *Correspondence: Giuseppa Patti, ; Mohamad Maghnie, ;
| | - Federica Malerba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
| | - Maria Grazia Calevo
- Epidemiology and Biostatistics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Marco Scaglione
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
| | - Silvia Russo
- Cytogenetic and Molecular Genetics Laboratory, IRCCS, Istituto Auxologico Italiano, Milano, Italy
| | - Daniela Fava
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
| | - Marta Bassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Roberto Gastaldi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
- *Correspondence: Giuseppa Patti, ; Mohamad Maghnie, ;
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health - University of Genova, Genova, Italy
| |
Collapse
|
3
|
Pham A, Sobrier ML, Giabicani E, Le Jules Fernandes M, Mitanchez D, Brioude F, Netchine I. Screening of patients born small for gestational age with the Silver-Russell syndrome phenotype for DLK1 variants. Eur J Hum Genet 2021; 29:1756-1761. [PMID: 34276055 DOI: 10.1038/s41431-021-00927-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell syndrome (SRS) is a rare imprinting disorder associated with prenatal and postnatal growth retardation. Loss of methylation (LOM) on chromosome 11p15 is observed in 40 to 60% of patients and maternal uniparental disomy (mUPD) for chromosome 7 (upd(7)mat) in ~5 to 10%. Patients with LOM or mUPD 14q32 can present clinically as SRS. Delta like non-canonical Notch ligand 1 (DLK1) is one of the imprinted genes expressed from chromosome 14q32. Dlk1-null mice display fetal growth restriction (FGR) but no genetic defects of DLK1 have been described in human patients born small for gestational age (SGA). We screened a cohort of SGA patients with a SRS phenotype for DLK1 variants using a next-generation sequencing (NGS) approach to search for new molecular defects responsible for SRS. Patients born SGA with a clinical suspicion of SRS and normal methylation by molecular testing at the 11p15 or 14q32 loci and upd(7)mat were screened for DLK1 variants using targeted NGS. Among 132 patients, only two rare variants of DLK1 were identified (NM_003836.6:c.103 G > C (p.(Gly35Arg) and NM_003836.6: c.194 A > G p.(His65Arg)). Both variants were inherited from the mother of the patients, which does not favor a role in pathogenicity, as the mono-allelic expression of DLK1 is from the paternal-inherited allele. We did not identify any pathogenic variants in DLK1 in a large cohort of SGA patients with a SRS phenotype. DLK1 variants are not a common cause of SGA.
Collapse
Affiliation(s)
- Aurélie Pham
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, AP-HP, Hôpital Armand Trousseau, service de néonatologie, Paris, France
| | - Marie-Laure Sobrier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris, France
| | - Eloïse Giabicani
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | | | - Delphine Mitanchez
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, Paris, France
| | - Fréderic Brioude
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Irène Netchine
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France.
| |
Collapse
|
4
|
Meyer R, Begemann M, Hübner CT, Dey D, Kuechler A, Elgizouli M, Schara U, Ambrozaityte L, Burnyte B, Schröder C, Kenawy A, Kroisel P, Demuth S, Fekete G, Opladen T, Elbracht M, Eggermann T. One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver-Russell syndrome. Orphanet J Rare Dis 2021; 16:42. [PMID: 33482836 PMCID: PMC7821667 DOI: 10.1186/s13023-021-01683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Silver-Russell syndrome (SRS) is an imprinting disorder which is characterised by severe primordial growth retardation, relative macrocephaly and a typical facial gestalt. The clinical heterogeneity of SRS is reflected by a broad spectrum of molecular changes with hypomethylation in 11p15 and maternal uniparental disomy of chromosome 7 (upd(7)mat) as the most frequent findings. Monogenetic causes are rare, but a clinical overlap with numerous other disorders has been reported. However, a comprehensive overview on the contribution of mutations in differential diagnostic genes to phenotypes reminiscent to SRS is missing due to the lack of appropriate tests. With the implementation of next generation sequencing (NGS) tools this limitation can now be circumvented. Main body We analysed 75 patients referred for molecular testing for SRS by a NGS-based multigene panel, whole exome sequencing (WES), and trio-based WES. In 21/75 patients a disease-causing variant could be identified among them variants in known SRS genes (IGF2, PLAG1, HMGA2). Several patients carried variants in genes which have not yet been considered as differential diagnoses of SRS. Conclusions WES approaches significantly increase the diagnostic yield in patients referred for SRS testing. Several of the identified monogenetic disorders have a major impact on clinical management and genetic counseling.
Collapse
Affiliation(s)
- Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Thomas Hübner
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Daniela Dey
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Magdeldin Elgizouli
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrike Schara
- Department of Neuropediatrics, University Children's Hospital, University Duisburg-Essen, Essen, Germany
| | - Laima Ambrozaityte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Carmen Schröder
- Zentrum Für Kinder- Und Jugendmedizin, Abt. Allgemeine Pädiatrie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Asmaa Kenawy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Gyorgy Fekete
- II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Thomas Opladen
- Division for Child Neurology and Metabolic Medicine, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Mammals have two complete sets of chromosomes, one from each parent with equal autosomal gene expression. Less than one percentage of human genes are imprinted or show expression from only one parent without changing gene structure, usually by DNA methylation, but reversible in gametogenesis. Many imprinted genes affect fetal growth and development accounting for several human disorders reviewed in this report. RECENT FINDINGS Disorders include Prader-Willi and Angelman syndromes, the first examples of imprinting errors in humans, chromosome 15q11.2-q13.3 duplication, Silver-Russell syndrome, Beckwith-Weidemann syndrome, GNAS gene-related inactivation disorders (e.g. Albright hereditary osteodystrophy), uniparental chromosome 14 disomy, chromosome 6q24-related transient neonatal diabetes mellitus, parent of origin effects in 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome and 15q11-q13 single gene imprinted disorders. SUMMARY Periconceptional and intrauterine life can be influenced by environmental factors and nutrition impacting DNA methylation. This process not only alters development of the fetus, but pregnancy complications may result from large fetal size. Epigenetic processes control imprinted gene functions and regulation with susceptibility to diseases as described. A better understanding of these processes will impact on care and treatment of affected individuals.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
6
|
Inoue T, Nakamura A, Iwahashi-Odano M, Tanase-Nakao K, Matsubara K, Nishioka J, Maruo Y, Hasegawa Y, Suzumura H, Sato S, Kobayashi Y, Murakami N, Nakabayashi K, Yamazawa K, Fuke T, Narumi S, Oka A, Ogata T, Fukami M, Kagami M. Contribution of gene mutations to Silver-Russell syndrome phenotype: multigene sequencing analysis in 92 etiology-unknown patients. Clin Epigenetics 2020; 12:86. [PMID: 32546215 PMCID: PMC7298762 DOI: 10.1186/s13148-020-00865-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is characterized by growth failure and dysmorphic features. Major (epi)genetic causes of SRS are loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). However, IGF2, CDKN1C, HMGA2, and PLAG1 mutations infrequently cause SRS. In addition, other imprinting disturbances, pathogenic copy number variations (PCNVs), and monogenic disorders sometimes lead to SRS phenotype. This study aimed to clarify the frequency and clinical features of the patients with gene mutations among etiology-unknown patients with SRS phenotype. RESULTS Multigene sequencing was performed in 92 out of 336 patients referred to us for genetic testing for SRS. The clinical features of the patients were evaluated based on the Netchine-Harbison clinical scoring system. None of the patients showed 11p15 LOM, upd(7)mat, abnormal methylation levels for six differentially methylated regions (DMRs), namely, PLAGL1:alt-TSS-DMR on chromosome 6, KCNQ1OT1:TSS-DMR on chromosome 11, MEG3/DLK1:IG-DMR on chromosome 14, MEG3:TSS-DMR on chromosome 14, SNURF:TSS-DMR on chromosome 15, and GNAS A/B:TSS-DMR on chromosome 20, PCNVs, or maternal uniparental disomy of chromosome 16. Using next-generation sequencing and Sanger sequencing, we screened four SRS-causative genes and 406 genes related to growth failure and/or skeletal dysplasia. We identified four pathogenic or likely pathogenic variants in responsible genes for SRS (4.3%: IGF2 in two patients, CDKN1C, and PLAG1), and five pathogenic variants in causative genes for known genetic syndromes presenting with growth failure (5.4%: IGF1R abnormality (IGF1R), SHORT syndrome (PIK3R1), Floating-Harbor syndrome (SRCAP), Pitt-Hopkins syndrome (TCF4), and Noonan syndrome (PTPN11)). Functional analysis indicated the pathogenicity of the CDKN1C variant. The variants we detected in CDKN1C and PLAG1 were the second and third variants leading to SRS, respectively. Our patients with CDKN1C and PLAG1 variants showed similar phenotypes to previously reported patients. Furthermore, our data confirmed IGF1R abnormality, SHORT syndrome, and Floating-Harbor syndrome are differential diagnoses of SRS because of the shared phenotypes among these syndromes and SRS. On the other hand, the patients with pathogenic variants in causative genes for Pitt-Hopkins syndrome and Noonan syndrome were atypical of these syndromes and showed partial clinical features of SRS. CONCLUSIONS We identified nine patients (9.8%) with pathogenic or likely pathogenic variants out of 92 etiology-unknown patients with SRS phenotype. This study expands the molecular spectrum of SRS phenotype.
Collapse
Affiliation(s)
- Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
- Department of Pediatrics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Kita15, Nishi7, Kita-Ku, Sapporo, 060-8648 Japan
| | - Megumi Iwahashi-Odano
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Kanako Tanase-Nakao
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Junko Nishioka
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011 Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192 Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561 Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University, 880 Kitakobayashi, Mibu, 321-0293 Japan
| | - Seiji Sato
- Department of Pediatrics, Saitama City Hospital, 2460, Mimuro, Midori-ku, Saitama, 336-8522 Japan
| | - Yoshiyuki Kobayashi
- Department of Pediatrics, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Nobuyuki Murakami
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, 2-1-50, Minamikoshigaya, Koshigaya, 343-8555 Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Kazuki Yamazawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902 Japan
| | - Tomoko Fuke
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Akira Oka
- Department of Pediatrics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192 Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535 Japan
| |
Collapse
|
7
|
Patti G, De Mori L, Tortora D, Severino M, Calevo M, Russo S, Napoli F, Confalonieri L, Schiavone M, Thiabat HF, Casalini E, Morana G, Rossi A, Ramenghi LA, Maghnie M, Di Iorgi N. Cognitive Profiles and Brain Volume Are Affected in Patients with Silver-Russell Syndrome. J Clin Endocrinol Metab 2020; 105:5609177. [PMID: 31665337 DOI: 10.1210/clinem/dgz151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/26/2019] [Indexed: 02/05/2023]
Abstract
CONTEXT There is little information on cognitive function in Silver-Russell syndrome (SRS), and no neuroimaging studies are available so far. OBJECTIVE To assess cognitive function and brain volumes in patients with SRS. DESIGN/SETTING Wechsler Intelligence Scale and brain magnetic resonance on a 3-Tesla scanner with Voxel-based morphometry analysis were performed between 2016 and 2018 in a single tertiary university center. PARTECIPANTS 38 white subjects with clinical diagnosis of SRS confirmed by molecular analysis: 30 of these patients (mean age 12.6 ± 10 years) were enrolled for cognitive assessment; 23 of the 30 performed neuroimaging sequences. A control group of 33 school-aged children performed cognitive assessment while 65 age and sex-matched volunteers were included for the neuroradiological assessment. MAIN OUTCOMES Intelligence quotient, Verbal Comprehension Index (VCI), Perceptual Reasoning Index (PRI), Working Memory Index (WMI), Processing Speed Index, and brain volume. RESULTS The mean overall IQ score was 87.2 ± 17, and it was significantly lower in the maternal uniparental disomy of chromosome 7 (mUPD7) group at the age of 6 to 16 years compared to loss of methylation on chromosome 11p15 (11p15 LOM) group and to controls. VCI, PRI, and WMI were significantly higher in 11p15 LOM group and in control group than in mUPD7 group at the age of 6 to 16 years. There were no significant differences in cognitive scores between 11p15 LOM school-aged patients and the control group. SRS patients showed lower brain volume compared to controls at the frontal/temporal poles and globi pallidi. CONCLUSIONS Patients with mUPD7 had an impaired cognitive profile. The brain volume at the frontal/temporal lobes and at the globi pallidi was reduced in patients with SRS.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Letizia De Mori
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Mariagrazia Calevo
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Silvia Russo
- Cytogenetic and Molecular Genetics Laboratory, Istituto Auxologico Italiano, Milano, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Laura Confalonieri
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Maurizio Schiavone
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Hanan F Thiabat
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Giovanni Morana
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Rossi
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luca Antonio Ramenghi
- Department of Mother and Child, Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
8
|
Hjortshøj TD, Sørensen AR, Yusibova M, Hansen BM, Dunø M, Balslev-Harder M, Grønskov K, van Hagen JM, Polstra AM, Eggermann T, Finken MJJ, Tümer Z. upd(20)mat is a rare cause of the Silver-Russell-syndrome-like phenotype: Two unrelated cases and screening of large cohorts. Clin Genet 2020; 97:902-907. [PMID: 32087029 DOI: 10.1111/cge.13727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022]
Abstract
Silver-Russell syndrome (SRS) is an imprinting disorder characterized by prenatal and postnatal growth retardation, relative macrocephaly, feeding difficulties and body asymmetry. Recently, upd(20)mat has been identified in few patients with SRS-like features, suggestive of a new imprinting disorder characterized by prenatal and postnatal growth failure. Here, we describe two male patients with upd(20) and feeding difficulties, prenatal and postnatal growth retardation and normal cognitive development. During pregnancy, confined placental mosaicism for trisomy 20 was detected in one of the patients but was not investigated further until identification of upd(20)mat in the neonatal period. To evaluate whether upd(20)mat should be part of the first trier genetic diagnostic in patients with growth retardation, we screened a large cohort of patients (n = 673) referred to our laboratories for SRS-testing without detecting any upd(20). Our results, along with the existing evidence, indicate that upd(20)mat is a very rare cause of growth retardation, but should be followed up when confined placental mosaicism for trisomy 20 mosaicism is observed during pregnancy.
Collapse
Affiliation(s)
- Tina D Hjortshøj
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anna R Sørensen
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Melodi Yusibova
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Bo M Hansen
- Department of Pediatrics, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marie Balslev-Harder
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Johanna M van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Abeltje M Polstra
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas Eggermann
- Institute of Human Genetics, Technical University of Aachen, Aachen, Germany
| | - Martijn J J Finken
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Identifying pathogenic variation underlying pediatric developmental disease is critical for medical management, therapeutic development, and family planning. This review summarizes current genetic testing options along with their potential benefits and limitations. We also describe results from large-scale genomic sequencing projects in pediatric and neonatal populations with a focus on clinical utility. RECENT FINDINGS Recent advances in DNA sequencing technology have made genomic sequencing a feasible and effective testing option in a variety of clinical settings. These cutting-edge tests offer much promise to both medical providers and patients as it has been demonstrated to detect causal genetic variation in ∼25% or more of previously unresolved cases. Efforts aimed at promoting data sharing across clinical genetics laboratories and systematic reanalysis of existing genomic sequencing data have further improved diagnostic rates and reduced the number of unsolved cases. SUMMARY Genomic sequencing is a powerful and increasingly cost-effective alternative to current genetic tests and will continue to grow in clinical utility as more of the genome is understood and as analytical methods are improved. The evolution of genomic sequencing is changing the landscape of clinical testing and requires medical professionals who are adept at understanding and returning genomic results to patients.
Collapse
Affiliation(s)
- Matthew B. Neu
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- University of Alabama at Birmingham Medical Scientist Training Program, Birmingham, AL, USA
| | | | | |
Collapse
|
10
|
Wesseler K, Kraft F, Eggermann T. Molecular and Clinical Opposite Findings in 11p15.5 Associated Imprinting Disorders: Characterization of Basic Mechanisms to Improve Clinical Management. Int J Mol Sci 2019; 20:ijms20174219. [PMID: 31466347 PMCID: PMC6747273 DOI: 10.3390/ijms20174219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell and Beckwith-Wiedemann syndromes (SRS, BWS) are rare congenital human disorders characterized by opposite growth disturbances. With the increasing knowledge on the molecular basis of SRS and BWS, it has become obvious that the disorders mirror opposite alterations at the same genomic loci in 11p15.5. In fact, these changes directly or indirectly affect the expression of IGF2 and CDKN1C and their associated pathways, and thereby, cause growth disturbances as key features of both diseases. The increase of knowledge has become possible with the development and implementation of new and comprehensive assays. Whereas, in the beginning molecular testing was restricted to single chromosomal loci, many tests now address numerous loci in the same run, and the diagnostic implementation of (epi)genome wide assays is only a question of time. These high-throughput approaches will be complemented by the analysis of other omic datasets (e.g., transcriptome, metabolome, proteome), and it can be expected that the integration of these data will massively improve the understanding of the pathobiology of imprinting disorders and their diagnostics. Especially long-read sequencing methods, e.g., nanopore sequencing, allowing direct detection of native DNA modification, will strongly contribute to a better understanding of genomic imprinting in the near future. Thereby, new genomic loci and types of pathogenic variants will be identified, resulting in more precise discrimination into different molecular subgroups. These subgroups serve as the basis for (epi)genotype-phenotype correlations, allowing a more directed prognosis, counseling, and therapy. By deciphering the pathophysiological consequences of SRS and BWS and their molecular disturbances, future therapies will be available targeting the basic cause of the disease and respective pathomechanisms and will complement conventional therapeutic strategies.
Collapse
Affiliation(s)
- Katharina Wesseler
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany.
| |
Collapse
|