1
|
Li H, Zhu Y, Wan C, Wang Z, Liu L, Tan M, Zhang F, Zeng Y, Huang J, Wu C, Huang Y, Kang Z, Guo X. Rapid detection of goose astrovirus genotypes 2 using real-time reverse transcription recombinase polymerase amplification. BMC Vet Res 2023; 19:232. [PMID: 37936127 PMCID: PMC10629041 DOI: 10.1186/s12917-023-03790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/μL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi AgriculturalUniversity, Nanchang, China
| | - Yujun Zhu
- Guangdong laboratory animals monitoring instituteand Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Zhangzhang Wang
- Xingguo County Agricultural Technology Extension Center, Ganzhou, 341000, Jiangxi, China
| | - Lei Liu
- XinyuYushui District Center for Agricultural Sciences, Xinyu, 338000, Jiangxi, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Chengcheng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China.
| | - Xiaoqiao Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi AgriculturalUniversity, Nanchang, China.
| |
Collapse
|
2
|
Wei Z, Wang X, Feng H, Ji F, Bai D, Dong X, Huang W. Isothermal nucleic acid amplification technology for rapid detection of virus. Crit Rev Biotechnol 2023; 43:415-432. [PMID: 35156471 DOI: 10.1080/07388551.2022.2030295] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/31/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.
Collapse
Affiliation(s)
- Zhenting Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Xiaowen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- North Sichuan Medical College, Nanchong, China
| | - Huhu Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Fanpu Ji
- Department of Infectious Diseases, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The 2nd Hospital of Xi'an Jiaotong University, Nanchong, China
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Nanchong, China
| | - Dan Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
| | - Xiaoping Dong
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Nanchong, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Nanchong, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Xi'an Key Laboratory of Special Medicine and Health Engineering, Northwestern Polytechnical University, Xi'an, China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Nanchong, China
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanchong, China
| |
Collapse
|
3
|
Liang L, Zhu M, He R, Shi D, Luo R, Ji J, Cheng L, Lu X, Lu W, Liu F, Wu Z, Wu N, Chen H, Chen Z, Yao H. Development of a multi-recombinase polymerase amplification assay for rapid identification of COVID-19, influenza A and B. J Med Virol 2022; 95:e28139. [PMID: 36089764 PMCID: PMC9538624 DOI: 10.1002/jmv.28139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 01/11/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused extensive loss of life worldwide. Further, the COVID-19 and influenza mix-infection had caused great distress to the diagnosis of the disease. To control illness progression and limit viral spread within the population, a real-time reverse-transcription PCR (RT-PCR) assay for early diagnosis of COVID-19 was developed, but detection was time-consuming (4-6 h). To improve the diagnosis of COVID-19 and influenza, we herein developed a recombinase polymerase amplification (RPA) method for simple and rapid amplification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19 and Influenza A (H1N1, H3N2) and B (influenza B). Genes encoding the matrix protein (M) for H1N1, and the hemagglutinin (HA) for H3N2, and the polymerase A (PA) for Influenza B, and the nucleocapsid protein (N), the RNA-dependent-RNA polymerase (RdRP) in the open reading frame 1ab (ORF1ab) region, and the envelope protein (E) for SARS-CoV-2 were selected, and specific primers were designed. We validated our method using SARS-CoV-2, H1N1, H3N2 and influenza B plasmid standards and RNA samples extracted from COVID-19 and Influenza A/B (RT-PCR-verified) positive patients. The method could detect SARS-CoV-2 plasmid standard DNA quantitatively between 102 and 105 copies/ml with a log linearity of 0.99 in 22 min. And this method also be very effective in simultaneous detection of H1N1, H3N2 and influenza B. Clinical validation of 100 cases revealed a sensitivity of 100% for differentiating COVID-19 patients from healthy controls when the specificity was set at 90%. These results demonstrate that this nucleic acid testing method is advantageous compared with traditional PCR and other isothermal nucleic acid amplification methods in terms of time and portability. This method could potentially be used for detection of SARS-CoV-2, H1N1, H3N2 and influenza B, and adapted for point-of-care (POC) detection of a broad range of infectious pathogens in resource-limited settings.
Collapse
Affiliation(s)
- Li‐Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Center for Clinical LaboratoryThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Miao‐jin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui He
- Zhejiang Center for Medical Device EvaluationHangzhouZhejiangChina
| | - Dan‐Rong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jia Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lin‐Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiang‐Yun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Lu
- Center for Clinical LaboratoryThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Fu‐Ming Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhi‐Gang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Nan‐Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hang Chen
- The Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Zhe Chen
- Center for Clinical LaboratoryThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hang‐Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina,National Clinical Research Center for Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
4
|
Gong L, Wang X, Li Z, Huang G, Zhang W, Nie J, Wu C, Liu D. Integrated Trinity Test With RPA-CRISPR/Cas12a-Fluorescence for Real-Time Detection of Respiratory Syncytial Virus A or B. Front Microbiol 2022; 13:819931. [PMID: 35432263 PMCID: PMC9008541 DOI: 10.3389/fmicb.2022.819931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common virus that causes respiratory infection, especially severe respiratory infection in infants and young children, the elderly people over 65 years old, and people with weak immunity. Currently, RSV infection has no effective vaccine and antiviral treatment. The number of deaths due to RSV infection increases every year. Moreover, RSV A infection occurs in a large number and has severe clinical symptoms and complications than RSV B infection. Therefore, the development of a simple, rapid, and inexpensive detection method with high amplification efficiency, high sensitivity, and specificity is very important for the diagnosis of RSV A or RSV B infection, which can help in the early clinical medication and prevent the progress of the disease. Therefore, we developed an integrated trinity test with an RPA-CRISPR/Cas12a-fluorescence (termed IT-RAISE) assay system to detect RSV A or RSV B. The characteristic of the IT-RAISE system is that after target recognition, the reporter single-stranded DNA (ssDNA) is cleaved by Cas12a that is activated by different crRNAs to detect the generated fluorescent signal. This method is simple and helps in adding all reagents rapidly. It is a high-sensitive method that can detect 1.38 × 101 copies/μl of the target sequences, and it can distinguish RSV A or RSV B infection within 37 min. In addition, clinical specimens were detected for IT-RAISE system. It was found that the sensitivity and specificity of RSV A were 73.08 and 90%, respectively, and those of RSV B were 42.86 and 93.33%, respectively. The cost of ONE specimen for IT-RAISE system was approximately $ 2.6 (excluding rapid RNA extraction and reverse transcription costs). IT-RAISE system has good clinical application prospects for detecting RSV A or RSV B infection; it is a simple, rapid, and inexpensive method with high amplification efficiency, high sensitivity, and high specificity. The IT-RAISE system might also detect other viral or bacterial infections.
Collapse
Affiliation(s)
- Ling Gong
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Xiaowen Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Zhu Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Guichuan Huang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Wei Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Jin Nie
- Department of Respiratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chunyan Wu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Daishun Liu
- Department of Basic Medicine, Zunyi Medical University, Zunyi, China
- *Correspondence: Daishun Liu, , orcid.org/0000-0002-8889-2909
| |
Collapse
|
5
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
6
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Chen Z, Wang J, Lu X, Si J, Sun Y, Li T, Chen Y, Zhang S, Ge S, Zhang J, Xia N. A novel point-of-care test of respiratory syncytial viral RNA based on cellulose-based purification and convective PCR. Clin Chim Acta 2020; 511:154-159. [PMID: 33058836 DOI: 10.1016/j.cca.2020.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is a global public-health problem. Timely diagnostics are needed for high-risk patients. Several methods have been used for RSV detection but not suitable for on-site detection due to the requirement of specialized laboratories and expensive equipment. METHODS We developed a convenient, rapid and low-cost method of nucleic acids (NA) extraction based on cellulose paper, which could extract NA from nasopharyngeal swabs (NPSs) within 1 min. This extraction method was integrated with fluorescence convection polymerase chain reaction (CPCR), which easily affordable and easy-to-use NA detection of the RSV in 33 min. RESULTS The developed cellulose-based NA purification combine with CPCR (CP-CPCR) reliably detected as little as 0.01 TCID50/mL of RSV cultures. CP-CPCR performance was tested further using NPSs: it showed sensitivity of 100% and a specificity of 100% compared with traditional extraction and amplification methods. CONCLUSIONS Our evaluation confirmed high specificity, sensitivity and efficient of the CP-CPCR, which can be used widely for RSV testing in resource-limited settings.
Collapse
Affiliation(s)
- Ya Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Yinhui Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zhongfu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Jin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Xuedong Lu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junyu Si
- School of Life Sciences, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Yongpeng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiang'an Campus of Xiamen University, South Xiang'an Rd, Xiamen, China
| |
Collapse
|
8
|
Development and evaluation of a rapid detection assay for severe fever with thrombocytopenia syndrome virus based on reverse-transcription recombinase polymerase amplification. Mol Cell Probes 2020; 52:101580. [PMID: 32330556 PMCID: PMC7172814 DOI: 10.1016/j.mcp.2020.101580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 12/03/2022]
Abstract
Rapid detection of severe fever with thrombocytopenia syndrome virus (SFTSV) is crucial for its control and surveillance. In this study, a rapid isothermal real-time reverse-transcription recombinase polymerase amplification (RT-RPA) assay was developed for the detection of SFTSV. The detection limit at 95% probability was 241 copies per reaction. A test of 120 serum samples of suspected severe fever with thrombocytopenia syndrome (SFTS) patients revealed that the sensitivity and specificity of the RT-RPA assay was approximately 96.00% (95%CI: 80.46%–99.79%) and 98.95% (95% CI: 94.28%–99.95%), respectively; the kappa value was 0.9495 (P<0.001). The Bland-Altman analysis showed that 87.50% of the different data points were located within the 95% limits of agreement, indicating a good correlation between the results from RT-RPA assays and those of RT-qPCR assays. In conclusion, the rapid and efficient RT-RPA assay can be a promising candidate for point-of-care detection method of SFTSV. A RT-RPA assay was developed to detect SFTSV RNA isothermally. The assay can rapidly produce a result in 15 min at 39 °C. The detection limit of the assay is 241 RNA sequences. The results of RT-RPA compare well with RT-qPCR. The RT-RPA assay may be used for field detection of SFTSV in resource-limited settings.
Collapse
|
9
|
Utilization of recombinase polymerase amplification method combined with lateral flow dipstick for visual detection of respiratory syncytial virus. Mol Cell Probes 2020; 49:101473. [DOI: 10.1016/j.mcp.2019.101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022]
|
10
|
Bramhachari PV. Advanced Immunotechnological Methods for Detection and Diagnosis of Viral Infections: Current Applications and Future Challenges. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121190 DOI: 10.1007/978-981-15-1045-8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diagnosis and identification of viruses is an important component of diagnostic virology laboratory. Although various modes of diagnostic methods are now available at disposal, a vast majority of the diseases across the globe remain undiagnosed. This is largely due to the overlapping undifferentiated set of symptoms across myriad set of RNA and DNA viral diseases. As such, it becomes critical to take into consideration several factors for viral diagnosis ranging from the type and quality of specimen collected, time of specimen collection, mode of transport, accuracy, specificity, sensitivity, and the type of diagnostic method used. This chapter broadly emphasizes various methods on diagnostic virology ranging from the classical methods of diagnosis to the most recently developed molecular methods of detection of virus.
Collapse
|