1
|
Kanapiya A, Amanbayeva U, Tulegenova Z, Abash A, Zhangazin S, Dyussembayev K, Mukiyanova G. Recent advances and challenges in plant viral diagnostics. FRONTIERS IN PLANT SCIENCE 2024; 15:1451790. [PMID: 39193213 PMCID: PMC11347306 DOI: 10.3389/fpls.2024.1451790] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Accurate and timely diagnosis of plant viral infections plays a key role in effective disease control and maintaining agricultural productivity. Recent advances in the diagnosis of plant viruses have significantly expanded our ability to detect and monitor viral pathogens in agricultural crops. This review discusses the latest advances in diagnostic technologies, including both traditional methods and the latest innovations. Conventional methods such as enzyme-linked immunosorbent assay and DNA amplification-based assays remain widely used due to their reliability and accuracy. However, diagnostics such as next-generation sequencing and CRISPR-based detection offer faster, more sensitive and specific virus detection. The review highlights the main advantages and limitations of detection systems used in plant viral diagnostics including conventional methods, biosensor technologies and advanced sequence-based techniques. In addition, it also discusses the effectiveness of commercially available diagnostic tools and challenges facing modern diagnostic techniques as well as future directions for improving informed disease management strategies. Understanding the main features of available diagnostic methodologies would enable stakeholders to choose optimal management strategies against viral threats and ensure global food security.
Collapse
Affiliation(s)
- Aizada Kanapiya
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Ulbike Amanbayeva
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanar Tulegenova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Altyngul Abash
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Sayan Zhangazin
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Kazbek Dyussembayev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
| | - Gulzhamal Mukiyanova
- Laboratory of Biodiversity and Genetic Resources, National Center for Biotechnology, Astana, Kazakhstan
- Scientific Center "Agrotechnopark", Shakarim University, Semey, Kazakhstan
| |
Collapse
|
2
|
Shahrajabian MH, Sun W. The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases. Curr Pharm Des 2024; 30:169-179. [PMID: 38243947 DOI: 10.2174/0113816128276560231218090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
Digital PCR (dPCR) is the latest technique that has become commercially accessible for various types of research. This method uses Taq polymerase in a standard polymerase chain reaction (PCR) to amplify a target DNA fragment from a complex sample, like quantitative PCR (qPCR) and droplet digital PCR (dd- PCR). ddPCR may facilitate microRNA (miRNA) measurement, particularly in liquid biopsy, because it has been proven to be more effective and sensitive, and in this method, ddPCR can provide an unprecedented chance for deoxyribonucleic acid (DNA) methylation research because of its capability to increase sensitivity and precision over conventional PCR-based methods. qPCR has also been found to be a valuable standard technique to measure both copy DNA (cDNA) and genomic DNA (gDNA) levels, although the finding data can be significantly variable and non-reproducible without relevant validation and verification of both primers and samples. The SYBR green quantitative real-time PCR (qPCR) method has been reported as an appropriate technique for quantitative detection and species discrimination, and has been applied profitably in different experiments to determine, quantify, and discriminate species. Although both TaqMan qRT-PCR and SYBR green qRT-PCR are sensitive and rapid, the SYBR green qRT-PCR assay is easy and the TaqMan qRT-PCR assay is specific but expensive due to the probe required. This review aimed to introduce dPCR, qPCR, SYBR green PCR kit, and digital PCR, compare them, and also introduce their advantages in the detection of different diseases.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| |
Collapse
|
3
|
Xue H, Liu Q, Yang Z. Pathogenicity, Mycotoxin Production, and Control of Potato Dry Rot Caused by Fusarium spp.: A Review. J Fungi (Basel) 2023; 9:843. [PMID: 37623614 PMCID: PMC10455408 DOI: 10.3390/jof9080843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium dry rot is one of the major potato diseases during storage after harvest, which not only results in quality degradation but also causes great economic losses. The disease can be elicited by some species of Fusarium, and the pathogenic fungi of Fusarium causing potato dry rot are considerably diverse in various countries and regions. The disease caused by Fusarium spp. is associated with mycotoxins accumulation, which has phytotoxic and mycotoxic effects on humans and animals. Chemical synthetic fungicide is considered the main control measure for the Fusarium dry rot of potato; nevertheless, it is unfortunate that persistent application inevitably results in the emergency of a resistant strain and environmental contamination. A comprehensive disease control strategy includes potato cultivar selection, appropriate cultural practices (crop rotation, cultivate pattern, fertilization, and irrigation), harvesting processes and postharvest treatments (harvesting, classification, packaging, wound healing), and storage conditions (environmental disinfection, temperature, humidity and gas composition) along with the application of fungicide pre-harvest or post-harvest. Recently, emerging studies have indicated that eco-friendly strategies include physical control, chemical methods (such as the application of generally-recognised-as-safe (GRAS) compounds or chemical (elicitors) and biological control have been introduced to combat the Fusarium dry rot of potato.
Collapse
Affiliation(s)
- Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhimin Yang
- Lanzhou Institutes for Food and Drug Control, Lanzhou 730070, China;
| |
Collapse
|
4
|
Luo T, Li L, Wang S, Cheng N. Research Progress of Nucleic Acid Detection Technology for Genetically Modified Maize. Int J Mol Sci 2023; 24:12247. [PMID: 37569623 PMCID: PMC10418336 DOI: 10.3390/ijms241512247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Genetically modified (GM) maize is one of the earliest GM crops to have achieved large-scale commercial cultivation globally, and it is of great significance to excel in the development and implementation of safety policy regarding GM, and in its technical oversight. This article describes the general situation regarding genetically modified maize, including its varieties, applications, relevant laws and regulations, and so on. From a technical point of view, we summarize and critically analyze the existing methods for detecting nucleic acid levels in genetically modified maize. The nucleic acid extraction technology used for maize is explained, and the introduction of traditional detection techniques, which cover variable-temperature and isothermal amplification detection technology and gene chip technology, applications in maize are described. Moreover, new technologies are proposed, with special attention paid to nucleic acid detection methods using sensors. Finally, we review the current limitations and challenges of GM maize nucleic acid testing and share our vision for the future direction of this field.
Collapse
Affiliation(s)
- Tongyun Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Lujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Shirui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
| | - Nan Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.L.); (S.W.)
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Nie X, Singh M, Chen D, Gilchrist C, Soqrat Y, Shukla M, Creelman A, Dickison V, Nie B, Lavoie J, Bisht V. Development of High-Resolution DNA Melting Analysis for Simultaneous Detection of Potato Mop-Top Virus and Its Vector, Spongospora subterranea, in Soil. PLANT DISEASE 2021; 105:948-957. [PMID: 32915119 DOI: 10.1094/pdis-06-20-1321-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a set of duplex reverse transcription PCR (RT-PCR)-mediated high-resolution DNA melting (HRM) analyses for simultaneous detection of potato mop-virus (PMTV) and its protist vector, Spongospora subterranea f. sp. subterranea (Sss), was developed. The infestation of soil by PMTV was detected with a tobacco-based baiting system. Total RNA extracted from the soil led to successful RT-PCR gel electrophoresis detection of both PMTV and Sss. To facilitate more efficient detection, newly designed primer pairs for PMTV RNA species (i.e., RNA-Rep, RNA-CP, and RNA-TGB) were analyzed together with the existing Sss primers via real-time RT-PCR. The resulting amplicons exhibited melting profiles that could be readily differentiated. Under duplex RT-PCR format, all PMTV and Sss primer combinations led to successful detection of respective PMTV RNA species and Sss in the samples by HRM analyses. When the duplex HRM assay was applied to soil samples collected from six fields at four different sites in New Brunswick, Canada, positive detection of PMTV or Sss was found in 63 to 100% samples collected from fields in which PMTV-infected tubers had been observed. In contrast, the samples from fields where neither PMTV- nor Sss-infected tubers had been observed resulted in negative detection by the assay. Bait tobacco bioassay for PMTV and Sss produced similar results. Of the soil samples collected from PMTV-infested fields, 63 to 83% and 100% led to PMTV and Sss infections in the bait tobacco plants, respectively, whereas no PMTV- or Sss-infected plants were obtained from soil samples collected from PMTV- and Sss-free fields.
Collapse
Affiliation(s)
- Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Mathuresh Singh
- Agricultural Certification Services, Fredericton, NB E3B 8B7, Canada
| | - Dahu Chen
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Cassandra Gilchrist
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Yasmine Soqrat
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
- Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Manisha Shukla
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Alexa Creelman
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Virginia Dickison
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
| | - Bihua Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jacques Lavoie
- New Brunswick Department of Agriculture, Aquaculture and Fisheries, Potato Development Centre, Wicklow, NB E7L 3S4, Canada
| | - Vikram Bisht
- Manitoba Agriculture, Carman, MB R0G 0J0, Canada
| |
Collapse
|