1
|
Catania AM, Stella MC, Cimino F, Zoppi S, Grego E. Sulfonamide resistance evaluation in five animal species and first report of sul4 in companion animals. Vet Microbiol 2024; 296:110170. [PMID: 39029236 DOI: 10.1016/j.vetmic.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 06/29/2024] [Indexed: 07/21/2024]
Abstract
Sulfonamides are one of the oldest groups of antibacterial agents with a broad-spectrum, used as first line treatment in bacterial infections. Their widespread use produced a selective pressure on bacteria, as observed by the high incidence of sulfonamides resistance mainly in Gram negative bacteria isolated from animals. In this research, the presence of sulfonamide resistance genes (sul1, sul2, sul3, and sul4) in phenotypically resistant Escherichia coli isolates has been studied. These genes were amplified in isolates recovered from five animal species, with different interactions to humans: cattle, swine, poultry as livestock, and dogs and cats as companion animals. Isolates were collected according to their phenotypic resistance, and the magnetic bead-based Luminex technology was applied to simultaneously detect sul target genes. The frequency of sul genes was highest in swine, among livestock isolates. The sul1 and sul2 were the most frequently sulfonamide resistance genes detected in all phenotypically resistant isolates. Notably, in companion animals, with a closest interaction with human, sul4 gene was detected. To our knowledge, this is the first report of the presence of sul4 gene in E. coli collected from animals, whereas previously the presence of this gene was reported in environmental, municipal wastewater and human clinical isolates. These results highlighted the importance of continuous antimicrobial resistant genes monitoring in animal species, with a special care to companion animals.
Collapse
Affiliation(s)
- Angela Maria Catania
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Torino, Grugliasco 10095, Italy
| | - Maria Cristina Stella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Torino, Grugliasco 10095, Italy
| | - Francesca Cimino
- Istituto Zooprofilattico Sperimentale di Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale di Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, Torino 10154, Italy
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, Torino, Grugliasco 10095, Italy.
| |
Collapse
|
2
|
Lozano-Villegas KJ, Rondón-Barragán IS. Virulence and Antimicrobial-Resistant Gene Profiles of Salmonella spp. Isolates from Chicken Carcasses Markets in Ibague City, Colombia. Int J Microbiol 2024; 2024:4674138. [PMID: 39220438 PMCID: PMC11364481 DOI: 10.1155/2024/4674138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella spp. is one of the leading causes of foodborne bacterial infections, with major impacts on public health and healthcare system. Salmonella is commonly transmitted via the fecal-to-oral route, and food contaminated with the bacteria (e.g., poultry products) is considered a common source of infection, being a potential risk for public health. The study aims to characterize the antimicrobial resistance- and virulence-associated genes in Salmonella isolates recovered from chicken marketed carcasses (n = 20). The presence of 14 antimicrobial and 23 virulence genes was evaluated using end-point PCR. The antimicrobial genes were detected in the following proportion among the isolates: bla TEM 100%, dfrA1 and bla CMY2 90% (n = 18), aadA1 75% (n = 15), sul1 and sul2 50% (n = 10), floR 45% (n = 9), qnrD 20% (n = 4), and aadA2 15% (n = 3). catA, sul3, qnrS, and aac(6')-Ib genes were absent in all isolates. Regarding virulence-associated genes, all Salmonella strains contain invA, fimA, avrA, msgA, sopB, and sopE. The cdtB gene was present in 95% (n = 19) of isolates, whereas spvC and spvB were present in 55% (n = 11). Other virulence genes such as spiC, lpfC, lpfA, and csgA were present in 90% (n = 18) of strains. The presence of antimicrobial and virulence genes in several Salmonella strains in chicken meat suggests the potential pathogenicity of the strains, which is relevant given the possibility of cross-contamination which represents a significant threat to public health.
Collapse
Affiliation(s)
- Kelly Johanna Lozano-Villegas
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Immunobiology and Pathogenesis Research GroupFaculty of Veterinary Medicine and ZootechnicsUniversity of Tolima, Altos the Santa Helena, A.A 546, Ibagué 730006299, Tolima, Colombia
- Poultry Research GroupLaboratory of Immunology and Molecular BiologyFaculty of Veterinary Medicine and ZootechnicsUniversidad del Tolima, Santa Helena Highs, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
3
|
García-Díez J, Moura D, Grispoldi L, Cenci-Goga B, Saraiva S, Silva F, Saraiva C, Ausina J. Salmonella spp. in Domestic Ruminants, Evaluation of Antimicrobial Resistance Based on the One Health Approach-A Systematic Review and Meta-Analysis. Vet Sci 2024; 11:315. [PMID: 39057999 PMCID: PMC11281391 DOI: 10.3390/vetsci11070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella spp. pose a global threat as a leading cause of foodborne illnesses, particularly prevalent in the European Union (EU), where it remains the second cause of foodborne outbreaks. The emergence of antimicrobial resistance (AMR) in Salmonella spp. has become a critical concern, complicating treatment strategies and escalating the risk of severe infections. The study focuses on large and small ruminants, identifying a prevalence of Salmonella spp. in slaughterhouses and revealing varied AMR rates across antimicrobial families throughout a meta-analysis. Also, comparison with AMR in human medicine was carried out by a systematic review. The results of the present meta-analysis displayed a prevalence of Salmonella spp. in large and small ruminants at slaughterhouses of 8.01% (8.31%, cattle; 7.04%, goats; 6.12%, sheep). According to the AMR of Salmonella spp., 20, 14, and 13 out of 62 antimicrobials studied were classified as low (<5%), high (>5% but <10%), and very high (>10%), respectively. Salmonella spp. did not display AMR against aztreonam, mezlocillin, ertapenem, meropenem, cefoxitin, ceftazidime, levofloxacin, tilmicosin, linezolid, fosfomycin, furazolidone, quinupristin, trimethoprim and spectinomycin. In contrast, a prevalence of 100% of AMR has been described against ofloxacin, lincomycin, and cloxacillin. In the context of the main antibiotics used in the treatment of human salmonellosis, azithromycin was shown to have the highest resistance among Salmonella spp. isolates from humans. Regarding cephalosporins, which are also used for the treatment of salmonellosis in humans, the prevalence of Salmonella spp. resistance to this class of antibiotics was similar in both human and animal samples. Concerning quinolones, despite a heightened resistance profile in Salmonella spp. isolates from ruminant samples, there appears to be no discernible compromise to the efficacy of salmonellosis treatment in humans since lower prevalences of AMR in Salmonella spp. isolated from human specimens were observed. Although the resistance of Salmonella spp. indicates some degree of concern, most antibiotics are not used in veterinary medicine. Thus, the contribution of cattle, sheep and goats to the rise of antibiotic resistance of Salmonella spp. and its potential impact on public health appears to be relatively insignificant, due to their low prevalence in carcasses and organs. Nevertheless, the observed low prevalence of Salmonella spp. in ruminants at slaughterhouse and the correspondingly low AMR rates of Salmonella spp. to key antibiotics employed in human medicine do not indicate that ruminant livestock poses a substantial public health risk concerning the transmission of AMR. Thus, the results observed in both the meta-analysis and systematic review suggests that AMR is not solely attributed to veterinary antibiotic use but is also influenced by factors such as animal health management (i.e., biosecurity measures, prophylactic schemes) and human medicine.
Collapse
Affiliation(s)
- Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Dina Moura
- Divisão de Intervenção de Alimentação e Veterinária de Vila Real e Douro Sul, Direção de Serviços de Alimentação e Veterinária da Região Norte, Direção Geral de Alimentação e Veterinária, Lugar de Codessais, 5000 Vila Real, Portugal;
| | - Luca Grispoldi
- Dipartamento di Medicina Veterinaria, Universitá degli Studi di Perugia, 06126 Perugia, Italy; (L.G.); (B.C.-G.)
| | - Beniamino Cenci-Goga
- Dipartamento di Medicina Veterinaria, Universitá degli Studi di Perugia, 06126 Perugia, Italy; (L.G.); (B.C.-G.)
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - Sónia Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Filipe Silva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Cristina Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (S.S.); (F.S.); (C.S.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Ausina
- Social Psychology and Methodology Department, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
4
|
Chin JJ, Lee HM, Lee SY, Lee YY, Chew CH. High Carriage of tetA, sul1, sul2 and bla TEM Resistance Genes among the Multidrug-resistant Uropathogenic Escherichia coli (UPEC) Strains from Malaysian Patients. Trop Life Sci Res 2024; 35:211-225. [PMID: 39234470 PMCID: PMC11371398 DOI: 10.21315/tlsr2024.35.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/17/2024] [Indexed: 09/06/2024] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) strains pose a critical challenge in urinary tract infection (UTI) treatments. However, little work elucidated the resistance mechanisms of the MDR UPEC clinical strains in Malaysia. Therefore, this study aimed to determine the antimicrobial susceptibility profiles and the prevalence of antimicrobial resistance genes among the UPEC strains. Polymerase chain reactions were conducted to detect the presence of 6 antimicrobial resistance genes among 60 UPEC strains. Meanwhile, the antimicrobial resistance profiles against 9 antimicrobials were examined through the Kirby-Bauer disk diffusion method. In this study, the MDR isolates accounted for 40.0% (24/60), with the highest prevalence of resistance towards ampicillin (43/60; 71.7%), followed by tetracycline (31/60; 51.7%), nalidixic acid (30/60; 50.0%), co-trimoxazole (20/60, 33.3%), ciprofloxacin (19/60, 31.7%), levofloxacin (16/60, 21.6%) and chloramphenicol (10/60, 16.7%). In contrast, low resistance rates were observed among minocycline (1/60; 1.7%) and imipenem (0/60; 0.0%). bla TEM was the most prevalent gene (36/60; 60.0%), followed by tetA (27/60; 45.0%), sul2 (25/60; 41.7%), sul1 (13/60; 21.7%) and tetB (8/60; 13.3%). Surprisingly, bla SHV was not detected among the UPEC isolates. The MDR, ampicillin and tetracycline-resistant isolates were significantly associated with a higher prevalence of tetA, sul1, sul2 and bla TEM. In contrast, tetB displayed no significant relationship with any of the antimicrobials tested. The patient's age and gender were not the risk factors for the carriage of the resistance genes. Our findings identified the common resistance genes carried by the antimicrobial resistant UPEC isolates and provide valuable insights into developing the best antibiotic prescription regime to treat UTIs in our local scene.
Collapse
Affiliation(s)
- Jia-Jin Chin
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Hui-Mei Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Shuet-Yi Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Yin-Ying Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), 31900 Kampar, Perak, Malaysia
| |
Collapse
|
5
|
Sfragano PS, Reynoso EC, Rojas-Ruíz NE, Laschi S, Rossi G, Buchinger M, Torres E, Palchetti I. A microfluidic card-based electrochemical assay for the detection of sulfonamide resistance genes. Talanta 2024; 271:125718. [PMID: 38301374 DOI: 10.1016/j.talanta.2024.125718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Most electroanalytical detection schemes for DNA markers require considerable time and effort from expert personnel to thoroughly follow the analysis and obtain reliable outcomes. This work aims to present an electrochemical assay performed inside a small card-based platform powered by microfluidic manipulation, requiring minimal human intervention and consumables. The assay couples a sample/signal dual amplification and DNA-modified magnetic particles for the detection of DNA amplification products. Particularly, the sul1 and sul4 genes involved in the resistance against sulfonamide antibiotics were analyzed. As recognized by the World Health Organization, antimicrobial resistance threatens global public health by hampering medication efficacy against infections. Consequently, analytical methods for the determination of such genes in environmental and clinical matrices are imperative. Herein, the resistance genes were extracted from E. coli cells and amplified using an enzyme-assisted isothermal amplification at 37 °C. The amplification products were analyzed in an easily-produced, low-cost, card-based set-up implementing a microfluidic system, demanding limited manual work and small sample volumes. The target amplicon was thus captured and isolated using versatile DNA-modified magnetic beads injected into the microchannel and exposed to the various reagents in a continuously controlled microfluidic flow. After the optimization of the efficiency of each phase of the assay, the platform achieved limits of detections of 44.2 pmol L-1 for sul1 and 48.5 pmol L-1 for sul4, and was able to detect down to ≥500-fold diluted amplification products of sul1 extracted from E. coli living cells in around 1 h, thus enabling numerous end-point analyses with a single amplification reaction.
Collapse
Affiliation(s)
| | - Eduardo Canek Reynoso
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico
| | - Norma Elena Rojas-Ruíz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72000, Mexico
| | - Serena Laschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Giulia Rossi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Martin Buchinger
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
6
|
Fukuda A, Tsunashima R, Usui M. Antimicrobial Resistant Bacteria Monitoring in Raw Seafood Retailed: a Pilot Study Focused on Vibrio and Aeromonas. Food Saf (Tokyo) 2023; 11:65-77. [PMID: 38144894 PMCID: PMC10739313 DOI: 10.14252/foodsafetyfscj.d-23-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 12/26/2023] Open
Abstract
In aquaculture, bacterial infections in sea animals are treated using antimicrobials. As seafood is frequently consumed in its raw form, seafood contaminated with water-borne antimicrobial-resistant bacteria presents a potential transmission route to humans and can influence food safety. In this study, we aimed to determine the abundance of water-borne bacteria in retail raw seafood and to characterize their antimicrobial resistance profiles. In total, 85 retail raw seafood samples (32 fish, 26 shellfish, 25 mollusks, and two crustaceans) were purchased from supermarkets in Japan, and water-borne bacteria were isolated. The isolated bacterial species predominantly included Vibrio spp. (54.1%) and Aeromonas spp. (34.1%). Vibrio or Aeromonas spp. were isolated from more than 70% of the seafood samples. Tetracycline-, sulfamethoxazole-, and/or trimethoprim/sulfamethoxazole-resistant Vibrio or Aeromonas spp. isolates were detected in seven (21.9%) fish samples (two wild-caught and five farm-raised) harboring tet, sul, and/or dfr genes. Sulfamethoxazole- and trimethoprim/sulfamethoxazole-resistant isolates were only detected in farm-raised fish. Tetracycline and sulfamethoxazole are commonly used in aquaculture. These results suggest that water-borne bacteria like Vibrio and Aeromonas spp. should be the primary focus of antimicrobial-resistant bacteria monitoring to effectively elucidate their spread of bacteria via seafood.
Collapse
Affiliation(s)
- Akira Fukuda
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Ryu Tsunashima
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety Unit, Division of Preventive Veterinary
Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai
Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
7
|
Serotypes, Antibiotic Resistance Genes, and Salmonella Pathogenicity Island Genes of Salmonella from Patients in a Hospital in Weifang, China. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Salmonella is an important foodborne pathogen that causes diarrhea in humans worldwide. Objectives: This study aimed to determine the serotype distribution, antibiotic-resistant genes, and Salmonella pathogenicity island (SPI) genes of clinical isolates of Salmonella in Weifang. Methods: A total of 111 Salmonella strains were collected from Weifang People’s Hospital between 2018 and 2020 and subjected to serotyping using the Kauffmann-White antigen table. Meanwhile, the polymerase chain reaction detected eleven SPI1-6 genes and six antibiotic resistance genes. Results: Among the 111 Salmonella strains, 17 serotypes were identified, with S. Typhimurium, S. Typhi, and S. Enteritidis being the most prevalent. The hilA, ssaB, sseC, marT, siiE, pipB, sopB, and pagN SPI1-6 genes were all found during analysis. The InvA, misL, and siiD genes were detected at 98.2, 97.30, and 97.30% rates, respectively. Also, sul2 and blaTEM were the most prevalent antibiotic resistance genes in this investigation, accounting for 68.47 and 21.62% of the total, respectively. Conclusions: Salmonella isolated from the clinical samples was found to have a diversity of serotypes and possessed various SPI and antibiotic resistance genes.
Collapse
|
8
|
Sulfonamides differing in the alkylamino substituent length – Synthesis, electrochemical characteristic, acid-base profile and complexation properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Pavelquesi SLS, de Oliveira Ferreira ACA, Rodrigues ARM, de Souza Silva CM, Orsi DC, da Silva ICR. Presence of Tetracycline and Sulfonamide Resistance Genes in Salmonella spp.: Literature Review. Antibiotics (Basel) 2021; 10:antibiotics10111314. [PMID: 34827252 PMCID: PMC8615168 DOI: 10.3390/antibiotics10111314] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tetracyclines and sulfonamides are broad-spectrum antibacterial agents which have been used to treat bacterial infections for over half a century. The widespread use of tetracyclines and sulfonamides led to the emergence of resistance in a diverse group of bacteria. This resistance can be studied by searching for resistance genes present in the bacteria responsible for different resistance mechanisms. Salmonella is one of the leading bacteria causing foodborne diseases worldwide, and its resistance to tetracyclines and sulfonamides has been widely reported. The literature review searched the Virtual Health Library for articles with specific data in the studied samples: the resistance genes found, the primers used in PCR, and the thermocycler conditions. The results revealed that Salmonella presented high rates of resistance to tetracycline and sulfonamide, and the most frequent samples used to isolate Salmonella were poultry and pork. The tetracycline resistance genes most frequently detected from Salmonella spp. were tetA followed by tetB. The gene sul1 followed by sul2 were the most frequently sulfonamide resistance genes present in Salmonella. These genes are associated with plasmids, transposons, or both, and are often conjugative, highlighting the transference potential of these genes to other bacteria, environments, animals, and humans.
Collapse
|