1
|
Liu S, Gao M, Zhang X, Wei J, Cui H. FOXP2 overexpression upregulates LAMA4 expression and thereby alleviates preeclampsia by regulating trophoblast behavior. Commun Biol 2024; 7:1427. [PMID: 39487340 PMCID: PMC11530449 DOI: 10.1038/s42003-024-07149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Preeclampsia (PE) is a common pregnancy disorder characterized by hypertension and proteinuria. Trophoblast behavior severely affect PE progression. Transcription factor Forkhead box protein P2 (FOXP2) was involved in cell migration and invasion, but its role in PE progression remains unknown. Laminin subunit alpha 4 (LAMA4) was predicted as a downstream gene of FOXP2 and related to PE. Thus, we supposed that FOXP2 might regulate PE by regulating LAMA4. We found the decreased FOXP2 expression in patients with PE compared with healthy pregnant women. The rat model of PE was induced by L-NAME oral gavage. FOXP2 overexpression lowered systolic and diastolic blood pressure and restored pathological changes of rats with PE. Trophoblasts under the hypoxia/reoxygenation (H/R) treatment were used to mimic PE in vitro. The results revealed that FOXP2 overexpression inhibited apoptosis but promoted migration, invasion, and angiogenesis of H/R-treated trophoblasts. Dual luciferase and chromatin immunoprecipitation-polymerase chain reaction assays confirmed that FOXP2 transcriptionally upregulated the LAMA4 expression in trophoblasts. LAMA4 knockdown reversed the migration and invasion-promoting role of FOXP2 overexpression in trophoblasts with H/R treatment. Collectively, our findings suggest that the FOXP2/LAMA4 axis regulates PE by suppressing trophoblast apoptosis and promoting its migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Sishi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Man Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Xue Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
2
|
Haybar H, Sarbazjoda E, Purrahman D, Mahmoudian-Sani MR, Saki N. The prognostic potential of long noncoding RNA XIST in cardiovascular diseases: a review. Per Med 2024; 21:257-269. [PMID: 38889283 DOI: 10.1080/17410541.2024.2360380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
There is a significant mortality rate associated with cardiovascular disease despite advances in treatment. long Non-coding RNAs (lncRNAs) play a critical role in many biological processes and their dysregulation is associated with a wide range of diseases in which their downstream pathways are disrupted. A lncRNA X-inactive specific transcript (XIST) is well known as a factor that regulates the physiological process of chromosome dosage compensation for females. According to recent studies, lncRNA XIST is involved in a variety of cellular processes, including apoptosis, proliferation, invasion, metastasis, oxidative stress and inflammation, through molecular networks with microRNAs and their downstream targets in neoplastic and non-neoplastic diseases. Because these cellular processes play a role in the pathogenesis of cardiovascular diseases, we aim to investigate the role that lncRNA XIST plays in this process. Additionally, we wish to determine whether it is a prognostic factor or a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Sarbazjoda
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| |
Collapse
|
3
|
Wang HQ, Ma YR, Zhang YX, Wei FH, Zheng Y, Ji ZH, Guo HX, Wang T, Zhang JB, Yuan B. GnRH-driven FTO-mediated RNA m 6A modification promotes gonadotropin synthesis and secretion. BMC Biol 2024; 22:104. [PMID: 38702712 PMCID: PMC11069278 DOI: 10.1186/s12915-024-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.
Collapse
Affiliation(s)
- Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Hai-Xiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
4
|
Wang H, Li Y, Jiang S, Liu N, Zhou Q, Li Q, Chen Z, Lin Y, Chen C, Deng Y. LncRNA xist regulates sepsis associated neuroinflammation in the periventricular white matter of CLP rats by miR-122-5p/PKCη Axis. Front Immunol 2023; 14:1225482. [PMID: 38115999 PMCID: PMC10728298 DOI: 10.3389/fimmu.2023.1225482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
Background Neuroinflammation is a common feature of many neurological diseases, and remains crucial for disease progression and prognosis. Activation of microglia and astrocytes can lead to neuroinflammation. However, little is known about the role of lncRNA xist and miR-122-5p in the pathogenesis of sepsis-associated neuroinflammation (SAN). This study aims to investigate the role of lncRNA xist and miR-122-5p in the pathogenesis of SAN. Methods Levels of miR-122-5p and proinflammatory mediators were detected in the cerebrospinal fluid (CSF) of patients with intracranial infection (ICI) by ELISA and qRT-PCR. miRNA expression in the periventricular white matter (PWM) in rats was analyzed by high-throughput sequencing. Levels of lncRNA xist, miR-122-5p and proinflammatory mediators in the PWM were measured using qRT-PCR and western blot. Bioinformatics analysis was used to predict the upstream and downstream of miR-122-5p. The interaction between miR-122-5p and its target protein was validated using luciferase reporter assay. BV2 and astrocytes were used to detect the expression of lncRNA xist, miR-122-5p. Results The level of miR-122-5p was significantly decreased in the CSF of ICI patients, while the expression of IL-1β and TNF-α were significantly upregulated. Furthermore, it was found that the expression of IL-1β and TNF-α were negatively correlated with the level of miR-122-5p. A high-throughput sequencing analysis showed that miR-122-5p expression was downregulated with 1.5-fold changes in the PWM of CLP rats compared with sham group. Bioinformatics analysis found that lncRNA xist and PKCη were the upstream and downstream target genes of miR-122-5p, respectively. The identified lncRNA xist and PKCη were significantly increased in the PWM of CLP rats. Overexpression of miR-122-5p or knockdown of lncRNA xist could significantly downregulate the level of PKCη and proinflammatory mediators from activated microglia and astrocytes. Meanwhile, in vitro investigation showed that silencing lncRNA xist or PKCη or enhancing the expression of miR-122-5p could obviously inhibit the release of proinflammatory mediators in activated BV2 cells and astrocytes. Conclusion LncRNA xist could regulate microglia and astrocytes activation in the PWM of CLP rats via miR-122-5p/PKCη axis, further mediating sepsis associated neuroinflammation.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yichen Li
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuqi Jiang
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Nan Liu
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, School of Medicine South China University of Technology, Guangzhou, China
| | - Qiuping Zhou
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian Li
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhuo Chen
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, School of Medicine South China University of Technology, Guangzhou, China
| | - Yiyan Lin
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunbo Chen
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yiyu Deng
- Department of Intensive Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhao H, Duan R, Wang Q, Hu X, Zhao Q, Wu W, Jiang R, Gong S, Wang L, Liu J, Deng J, Liang H, Miao Y, Yuan P. MiR-122-5p as a potential regulator of pulmonary vascular wall cell in idiopathic pulmonary arterial hypertension. Heliyon 2023; 9:e22922. [PMID: 38144299 PMCID: PMC10746431 DOI: 10.1016/j.heliyon.2023.e22922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
MicroRNAs (miRNAs) are versatile regulators of pulmonary arterial remodeling in idiopathic pulmonary arterial hypertension (IPAH). We herein aimed to characterize miRNAs in peripheral blood mononuclear cell (PBMC) and plasma exosomes, and investigate specific miRNA expression in pulmonary artery cells and lung tissues in IPAH. A co-dysregulated miRNA was identified from the miRNA expression profiles of PBMC and plasma exosomes in IPAH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the potential function of differentially expressed miRNAs. Real-time quantitative reverse transcription polymerase chain reaction was used to validate the expression of specific miRNAs in hypoxia-induced pulmonary microvascular endothelial cells (PMECs), pulmonary artery smooth muscle cells (PASMCs), pericyte cells (PCs), and lung tissues of patients with IPAH and rats. Finally, the miRNA-mRNA mechanisms of miR-122-5p were predicted. MiR-122-5p was the only co-upregulated miRNA in PBMC and plasma exosomes in patients with IPAH. Functional analysis of differentially expressed miRNAs revealed associations with the GO terms "transcription, DNA-templated," "cytoplasm," and "metal ion binding" in both PBMC and plasma exosomes, KEGG pathway MAPK signaling in PBMC, and KEGG-pathway human papillomavirus infection in plasma exosomes. Hypoxic PMECs and PCs, lung tissue of patients with IPAH, and rats showed increased expression of miR-122-5p, but hypoxic PASMCs showed decreased expression. And miR-122-5p mimics and inhibitor affected cell proliferation. Finally, miR-122-5p was found to potentially target DLAT (in lung tissue) and RIMS1 (in PMECs) in IPAH. According to the dual-luciferase assay, miR-122-5p bound to DLAT or RIMS1. In studies, DLAT imbalance was associated with cell proliferation and migration, RIMS1 is differentially expressed in cancer and correlated with cancer prognosis. Our findings suggest that the miR-122-5p is involved in various biological functions in the adjacent vascular wall cells in IPAH.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qian Wang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jie Deng
- Southern Medical University, Guangzhou, 510000, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, 215125, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
6
|
Yu N, Tian W, Liu C, Zhang P, Zhao Y, Nan C, Jin Q, Li X, Liu Y. miR-122-5p Promotes Peripheral and Central Nervous System Inflammation in a Mouse Model of Intracerebral Hemorrhage via Disruption of the MLLT1/PI3K/AKT Signaling. Neurochem Res 2023; 48:3665-3682. [PMID: 37594575 DOI: 10.1007/s11064-023-04014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Intracerebral hemorrhage (ICH) is a recognized central nervous system inflammation complication. Several microRNAs (miRNAs or miRs) have been documented to be vital modulators in peripheral and central nervous system inflammation. Based on whole transcriptome sequencing and bioinformatics analysis, this study aims to reveal the possible molecular mechanisms by which miR-122-5p affects the inflammatory response in the peripheral and central nervous system in a mouse model of ICH. Differentially expressed ICH-related miRNAs were screened. Adeno-associated viral vectors were used to knock down miR-122-5p in mice to evaluate the effect of miR-122-5p on peripheral and central nervous system inflammation. The downstream target gene of miR-122-5p was analyzed. Neurons were isolated from mice and treated with hemin to construct an in vitro model of ICH, followed by transduction with miR-122-5p mimic or combined with oe-MLLT1. The neurons were then co-cultured with microglia BV2 to assess their activation. It was found that miR-122-5p was highly expressed in ICH, and MLLT1 was lowly expressed. In vivo experiments showed that miR-122-5p knockdown decreased neurological deficits, BBB permeability, and inflammation in the peripheral and central nervous system in ICH mice. It involved its binding to MLLT1 and downregulation of the activity of the PI3K/AKT pathway. In vitro data exhibited that miR-122-5p stimulated the generation of inflammatory factors and microglia activation by targeting MLLT1 and inhibiting the PI3K/AKT pathway. Collectively, our work reveals a novel miR-122-5p/MLLT1-mediated regulatory network in ICH that may be a viable target for neuroinflammation alleviation.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Wenbin Tian
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Yinlong Zhao
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chengrui Nan
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Qianxu Jin
- Department of Neurosurgery, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Xiaopeng Li
- Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, P.R. China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China.
| |
Collapse
|
7
|
Zhang J, Fu L, Zhang J, Zhou B, Tang Y, Zhang Z, Gu T. Inhibition of MicroRNA-122-5p Relieves Myocardial Ischemia-Reperfusion Injury via SOCS1. Hamostaseologie 2023; 43:271-280. [PMID: 36882114 DOI: 10.1055/a-2013-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE Evidence has shown that microRNA (miR)-122-5p is a diagnostic biomarker of acute myocardial infarction. Here, we aimed to uncover the functions of miR-122-5p in the pathological process of myocardial ischemia-reperfusion injury (MI/RI). METHODS An MI/RI model was established by left anterior descending coronary artery ligation in mice. The levels of miR-122-5p, suppressor of cytokine signaling-1 (SOCS1), phosphorylation of Janus kinase 2 (p-JAK2), and signal transducers and activators of transcription (p-STAT3) in the myocardial tissues of mice were measured. Downregulated miR-122-5p or upregulated SOCS1 recombinant adenovirus vectors were injected into mice before MI/RI modeling. The cardiac function, inflammatory response, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in the myocardial tissues of mice were evaluated. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) injury and cardiomyocyte biological function was tested upon transfection of miR-122-5p inhibitor. The target relation between miR-122-5p and SOCS1 was evaluated. RESULTS miR-122-5p expression and p-JAK2 and p-STAT3 expression were high, and SOCS1 expression was low in the myocardial tissues of MI/RI mice. Decreasing miR-122-5p or increasing SOCS1 expression inactivated the JAK2/STAT3 pathway to alleviate MI/RI by improving cardiac function and reducing inflammatory reaction, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in mice. Silencing of SOCS1 reversed depleted miR-122-5p-induced cardioprotection for MI/RI mice. In vitro experiments revealed that the downregulation of miR-122-5p induced proliferative, migratory, and invasive capabilities of H/R cardiomyocytes while inhibiting apoptosis. Mechanically, SOCS1 was a target gene of miR-122-5p. CONCLUSION Our study summarizes that inhibition of miR-122-5p induces SOCS1 expression, thereby relieving MI/RI in mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Li Fu
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jing Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Bo Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yanrong Tang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Zhenzhen Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Tongqing Gu
- School of Foreign Languages, Chengdu University of Information Technology, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutr 2023; 64:5852-5877. [PMID: 36591787 DOI: 10.1080/10408398.2022.2159317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) is a global health issue in the twenty-first century, and there are numerous challenges in preventing and alleviating its chronic complications. The herb Epimedium has beneficial therapeutic effects on various human diseases, including DM. Its major flavonoid component, icariin, has significant anti-DM activity and may help improve pancreatic β-cell dysfunction and insulin resistance. Furthermore, preclinical evidence has shown that icariin and its in vivo bioactive form, icariside II, have preventive and therapeutic effects on several diabetic complications, including diabetic cardiomyopathy, diabetic vascular endothelial disorder, diabetic nephropathy, and diabetic erectile dysfunction. In this review, we present the general and toxicological information concerning icariin and icariside II and review the anti-DM effects of icariin from a molecular perspective. Additionally, we discuss the potential benefits of icariin and icariside II on the important pathological mechanisms of various diabetic complications. Despite positive preclinical evidence, additional investigations are needed before relevant clinical studies can be conducted. Therefore, we conclude with suggestions for future research. Hopefully, this review will provide a comprehensive molecular perspective for future research and product development related to icariin and icariside II in treating DM and diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Integrated Bioinformatics and Validation of lncRNA-Mediated ceRNA Network in Myocardial Ischemia/Reperfusion Injury. J Immunol Res 2022; 2022:7260801. [PMID: 36189147 PMCID: PMC9519285 DOI: 10.1155/2022/7260801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Myocardial ischemia/reperfusion (MI/R) injury is a common pathology in ischemia heart disease. Long noncoding RNAs (lncRNAs) are significant regulators related to many ischemia/reperfusion conditions. This study is aimed at exploring the molecule mechanism of lncRNA-mediated competing endogenous RNA (ceRNA) network in MI/R. Methods The dataset profiles of MI/R and normal tissues (GSE130217 and GSE124176) were obtained from the GEO database. Integrated bioinformatics were performed to screen out differentially expressed genes (DEGs). Thereafter, an lncRNA-mediated ceRNA network was constructed by the starBase database. The GO annotations and KEGG pathway analysis were conducted to study action mechanism and related pathways of DEGs in MI/R. A model of hypoxia/reoxygenation- (H/R-) treated HL-1 cell was performed to verify the expression of lncRNAs through qRT-PCR. Results 2406 differentially expressed- (DE-) mRNAs, 70 DE-lncRNAs, and 156 DE-miRNAs were acquired. These DEGs were conducted to construct an lncRNA-mediated ceRNA network, and a subnetwork including lncRNA Xist/miRNA-133c/mRNA (Slc30a9) was screen out. The functional enrichment analyses revealed that the lncRNAs involved in the ceRNA network might functions in oxidative stress and calcium signaling pathway. The lncRNA Xist expression is reduced under H/R conditions, followed by the increased level of miRNA-133c, thus downregulating the expression of Slc30a9. Conclusion In sum, the identified ceRNA network which included the lncRNA Xist/miR-133c/Slc30a9 axis might contribute a better understanding to the pathogenesis and development of MI/R injury and offer a novel targeted therapy way.
Collapse
|
10
|
Jiang Y, Shen X, Dong C, Zhi F, Gao Y, Shi C, Chao Y, Xu J, Shang D, Xu J, Yang B, Li X, Bai Y. The whole transcriptome analysis and the circRNA-lncRNA network construction in arsenic trioxide-treated mice myocardium. Biomed Pharmacother 2022; 151:113183. [PMID: 35676786 DOI: 10.1016/j.biopha.2022.113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/AIMS Arsenic trioxide (ATO) is an effective anti-cancer drug. Nonetheless, it possesses cardiotoxic effects which limit its clinical application. The present study aims to elucidate the molecular basis of ATO-induced cardiotoxicity through using whole transcriptome analysis. METHODS The whole transcriptome in ATO-treated mice myocardium was analyzed using RNA sequencing technique. These results were confirmed by real-time PCR. The lncRNA-mRNA and circRNA-mRNA co-expression networks were constructed. Finally, a circRNA-lncRNA co-regulated competing endogenous RNA (ceRNA) network was constructed. GO and KEGG pathway analyses were performed. The expression levels of Txnip and Spp1 in ATO-treated neonatal mouse cardiomyocytes were validated by real-time PCR. RESULTS A total of 113 mRNAs, 159 lncRNAs, 35 miRNAs, and 94 circRNAs were differentially expressed in ATO-treated mice myocardium. A lncRNA-circRNA co-regulation network was constructed. Function annotation revealed that aberrantly expressed genes may be enriched in the 'Wnt signaling pathway', 'Hippo signaling pathway', 'Notch signaling pathway', etc. Finally, the expression levels of Txnip and Spp1 were validated in ATO-treated cardiomyocytes, which was in accordance with the RNA-sequencing results. CONCLUSION ATO altered coding and noncoding RNA profiles in myocardium of mice. The ATO-related lncRNA-circRNA co-regulation network was constructed. Genes in the co-regulation network are likely to play important roles in the cardiotoxicity of ATO. This study provides new insights into the prevention and treatment of ATO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Chunpeng Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yuqiu Chao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jincheng Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Desi Shang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
11
|
Zheng PF, Chen LZ, Liu P, Pan HW. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA XIST as a biomarker for acute myocardial infarction. Aging (Albany NY) 2022; 14:4085-4106. [PMID: 35537778 PMCID: PMC9134965 DOI: 10.18632/aging.204075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/16/2022] [Indexed: 11/25/2022]
Abstract
Despite the well-established role of long non-coding RNAs (lncRNAs) across various biological processes, their mechanisms in acute myocardial infarction (AMI) are not fully elucidated. The GSE34198 dataset from the Gene Expression Omnibus (GEO) database, which comprised 49 specimens from individuals with AMI and 47 specimens from controls, was extracted and analysed using the weighted gene co-expression network analysis (WGCNA) package. Twenty-seven key genes were identified through a combination of the degree and gene significance (GS) values, and the CDC42 (degree = 64), JAK2 (degree = 41), and CHUK (degree = 30) genes were identified as having the top three-degree values among the 27 genes. Potential interactions between lncRNA, miRNAs and mRNAs were predicted using the starBase V3.0 database, and a lncRNA-miRNA-mRNA triple network containing the lncRNA XIST, twenty-one miRNAs and three hub genes (CDC42, JAK2 and CHUK) was identified. RT-qPCR validation showed that the expression of the JAK2 and CDC42 genes and the lncRNA XIST was noticeably increased in samples from patients with AMI compared to normal samples. Pearson's correlation analysis also proved that JAK2 and CDC42 expression levels correlated positively with lncRNA XIST expression levels. The area under ROC curve (AUC) of lncRNA XIST was 0.886, and the diagnostic efficacy of the lncRNA XIST was significantly better than that of JAK2 and CDC42. The results suggested that the lncRNA XIST appears to be a risk factor for AMI likely through its ability to regulate JAK2 and CDC42 gene expressions, and it is expected to be a novel and reliable biomarker for the diagnosis of AMI.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, Furong District, Changsha 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China
| | - Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, Daxiang District, Shaoyang 422000, Hunan, China
| | - Peng Liu
- Department of Cardiology, The Central Hospital of ShaoYang, Daxiang District, Shaoyang 422000, Hunan, China
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, Furong District, Changsha 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, Furong District, Changsha 410000, Hunan, China
| |
Collapse
|
12
|
Chen J, Qin J, Liu J. Elucidation of the mechanism of miR‑122‑5p in mediating FOXO3 injury and apoptosis of mouse cochlear hair cells induced by hydrogen peroxide. Exp Ther Med 2022; 23:435. [PMID: 35607378 PMCID: PMC9121211 DOI: 10.3892/etm.2022.11362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Unveiling the mechanism of miR-122-5p in the mediation of forkhead box O3 (FOXO3) in regards to cochlear hair cell damage provides an effective solution for the treatment of ear hearing disorders. An oxidative stress model using a mouse cochlear hair cell line (HEI-OC1) was established via hydrogen peroxide (H2O2). Then HEI-OC1 cells were transfected with miR-122-5p mimic, miR-122-5p inhibitor, and lentiviral vector FOXO3-WT/MUT. Cell viability and apoptosis rate were determined by MTT assay and flow cytometry. Reactive oxygen species (ROS) were observed by confocal laser scanning microscopy. Bcl-2, Bax, capase-3 and c-caspase-9 levels were quantified by western blot analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was used to detect superoxide dismutase (SOD) and malondialdehyde (MDA) levels, and flow cytometry was performed to measure the mitochondrial membrane potential levels. In the HEI-OC1 oxidative stress model after transfection, the miR-122-5p level was decreased, whereas the FOXO3 level was increased, Moreover, the increased FOXO3 level diminished the cell viability, but promoted cell apoptosis. Apart from this, the Bcl-2 level was downregulated, while levels of Bax, c-caspase-3, c-caspase-9, ROS and MDA were upregulated. Meanwhile, the mitochondrial membrane potential level was also elevated. Overexpression of miR-122-5p was able to partially offset the effects of FOXO3 in the H2O2-treated HEI-OC1 cells. Collectively, miR-122-5p restrained the decrease in HEI-OC1 cell viability and apoptosis induced by treatment with H2O2.
Collapse
Affiliation(s)
- Jiajun Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jixin Qin
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Jin Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
13
|
Zang L, Gao F, Huang A, Zhang Y, Luo Y, Chen L, Mao N. Icariin inhibits epithelial mesenchymal transition of renal tubular epithelial cells via regulating the miR-122-5p/FOXP2 axis in diabetic nephropathy rats. J Pharmacol Sci 2022; 148:204-213. [PMID: 35063135 DOI: 10.1016/j.jphs.2021.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs) dominates the pathology of diabetic nephropathy (DN). microRNAs (miRNAs) can influence the fate of DN via regulation of EMT. This study aimed to analyze the role of Icariin (ICA) in EMT of RTECs, hoping to provide theoretical basis for DN management. The DN rat model was established using streptozocin, followed by ICA treatment, histopathological observation, and detection of creatinine and blood urea nitrogen. In vitro cell models were established using high glucose (HG), followed by assessment of cell proliferation, apoptosis, and migration, and E-cadherin, α-SMA, miR-122-5p, and FOXP2 expressions. Cells were transfected with miR-122-5p mimics or si-FOXP2 for joint experiments with ICA. The targeting relationship between miR-122-5p and FOXP2 was verified. ICA repaired renal dysfunctions and glomerular structure abnormities of DN rats in a dose-dependent manner. In vitro, ICA improved proliferation while suppressed migration, apoptosis, and EMT of RTECs. miR-122-5p was up-regulated in DN rats and suppressed by ICA, and miR-122-5p targeted FOXP2. miR-122-5p up-regulation or FOXP2 down-regulation reversed the protective effects of ICA on HG-induced RTECs. Overall, our finding ascertained that ICA inhibited miR-122-5p to promote FOXP2 transcription, thereby attenuating EMT of RTECs and renal injury in DN rats.
Collapse
Affiliation(s)
- Li Zang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Fang Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Aijing Huang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yalan Zhang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Yangyan Luo
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Lijia Chen
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City, 610500, Sichuan province, China.
| |
Collapse
|
14
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
15
|
Ke W, Chen Y, Zheng L, Zhang Y, Wu Y, Li L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered 2022; 13:319-330. [PMID: 34969354 PMCID: PMC8805916 DOI: 10.1080/21655979.2021.2001219] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a prevalent and risky pregnant complication which warrants targeted therapy for restriction the inflammation and apoptosis of trophoblast cells. This study sought to analyze the aberrant expression and regulatory mechanism of microRNA (miR)-134-5p in GDM. The miR-134-5p expression in the serum of GDM patients and normal participants was detected via qRT-PCR, followed by receiver operating characteristic (ROC) curve analysis. In vitro GDM cell model was established in the HTR-8/SVneo cells using 25 mmol/L glucose, followed by transfection with miR-134-5p inhibitor and si-Forkhead box p2(FOXP2). The miR-134-5p and FOXP2 expressions, TNF-α, IL-1β, and IL-10 levels, cell proliferation, migration, and apoptosis were determined by a combination of qRT-PCR, western blot, ELISA, and cell counting Kit-8, Transwell assay, and flow cytometry. The binding relationship between miR-134-5p and FOXP2 was predicted and verified. Our results revealed that miR-134-5p was increased in the serum of GDM patients and could serve as a critical diagnostic marker for GDM. Moreover, miR-134-5p was upregulated in the high glucose (HG)-induced HTR-8/SVneo cells. The miR-134-5p inhibition suppressed the inflammation and apoptosis of HG-induced HTR-8/SVneo cells. miR-134-5p inhibited FOXP2 expression. FOXP2 expression was decreased in GDM. FOXP2 inhibition attenuated the function of miR-134-5p in HG-induced HTR-8/SVneo cells. Overall, miR-134-5p inhibited the FOXP2 expression to facilitate the inflammation and apoptosis of trophoblast cells, thereby exacerbating GDM.
Collapse
Affiliation(s)
- Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yixiang Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lijing Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuting Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yudan Wu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Li Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, No.57 Changping Road, Shantou, Guangdong Province, China
| |
Collapse
|
16
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
17
|
Yan B, Liu T, Yao C, Liu X, Du Q, Pan L. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. J Transl Med 2021; 101:1427-1438. [PMID: 34389797 DOI: 10.1038/s41374-021-00635-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023] Open
Abstract
The mechanisms underlying atrial fibrillation (AF), a type of heart arrhythmia, have not been fully identified. Long noncoding RNAs (lncRNAs) have been implicated in the progression of AF. The current study aimed to ascertain the means by which X-inactive specific transcript (XIST), a lncRNA, contributes to the pathogenesis of AF in an animal model or in atrial myocytes. Extracellular vesicles (EVs) derived from mouse adipose tissue-derived mesenchymal stem cells (AMSCs) were isolated, transfected with XIST, and either injected into AF mouse models or incubated with atrial myocytes. The in vitro and in vivo effects of EV-derived XIST on myocardial pyroptosis were determined by Western blot analysis of pyroptosis-related protein and an ELISA for inflammatory factors. Bioinformatics analysis revealed a relationship between XIST, microRNA (miR)-214-3p, and Arl2, which was subsequently verified by a dual luciferase assay and RNA immunoprecipitation. Functional experiments were performed to elucidate whether changes in miR-214-3p or Arl2 regulated the effect of XIST on myocardial pyroptosis. Overexpressed XIST from AMSC-EVs were found to decrease myocardial pyroptosis while alleviating inflammation, which was demonstrated by reduced expression of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cleared-caspase-1/caspase-1 and gasdermin D (GSDMD), as well as the amount of interleukin (IL)-1β and IL-18 in both the cardiomyocytes and AF mouse tissues. Mechanistically, XIST is a competing endogenous RNA (ceRNA) of miR-214-3p, triggering upregulation of its target gene Arl2. Silencing of Arl2 or overexpression miR-214-3p reversed the effects of XIST on inflammation and pyroptosis. Taken together, the key findings of our study suggest that XIST may blunt myocardial pyroptosis by absorbing miR-214-3p to promote Arl2 expression, providing encouraging insight into XIST-based targeted therapy for AF.
Collapse
Affiliation(s)
- Boyu Yan
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Ting Liu
- Department of Pharmacy, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Chang Yao
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Xinglong Liu
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Qian Du
- Department of Cardiology, Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Lihua Pan
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
18
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Wang P, Zhou X, Li G, Ma H, Liu R, Zhao Y. Altered expression of microRNAs in the rat diaphragm in a model of ventilator-induced diaphragm dysfunction after controlled mechanical ventilation. BMC Genomics 2021; 22:671. [PMID: 34537009 PMCID: PMC8449218 DOI: 10.1186/s12864-021-07970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/02/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Ventilator-induced diaphragm dysfunction (VIDD) is a common complication of life support by mechanical ventilation observed in critical patients in clinical practice and may predispose patients to severe complications such as ventilator-associated pneumonia or ventilator discontinuation failure. To date, the alterations in microRNA (miRNA) expression in the rat diaphragm in a VIDD model have not been elucidated. This study was designed to identify these alterations in expression. RESULTS Adult male Wistar rats received conventional controlled mechanical ventilation (CMV) or breathed spontaneously for 12 h. Then, their diaphragm tissues were collected for RNA extraction. The miRNA expression alterations in diaphragm tissue were investigated by high-throughput microRNA-sequencing (miRNA-seq). For targeted mRNA functional analysis, gene ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were subsequently conducted. qRT-PCR validation and luciferase reporter assays were performed. We successfully constructed a model of ventilator-induced diaphragm dysfunction and identified 38 significantly differentially expressed (DE) miRNAs, among which 22 miRNAs were upregulated and 16 were downregulated. GO analyses identified functional genes, and KEGG pathway analyses revealed the signaling pathways that were most highly correlated, which were the MAPK pathway, FoxO pathway and Autophagy-animal. Luciferase reporter assays showed that STAT3 was a direct target of both miR-92a-1-5p and miR-874-3p and that Trim63 was a direct target of miR-3571. CONCLUSIONS The current research supplied novel perspectives on miRNAs in the diaphragm, which may not only be implicated in diaphragm dysfunction pathogenesis but could also be considered as therapeutic targets in diaphragm dysfunction.
Collapse
Affiliation(s)
- Pengcheng Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Xianlong Zhou
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Gang Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. .,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
20
|
Xiao X, He Z, Tong S, Dai L, Xiao Q, Qin Z, Lin T. lncRNA XIST knockdown suppresses hypoxia/reoxygenation (H/R)-induced apoptosis of H9C2 cells by regulating miR-545-3p/G3BP2. IUBMB Life 2021; 73:1103-1114. [PMID: 34060227 DOI: 10.1002/iub.2512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
This study was aimed at determining the roles and functions of lncRNA XIST/miR-545-3p/G3BP2 axis during hypoxia/reoxygenation (H/R)-induced H9C2 cell apoptosis. H9C2 cells were distributed into two groups, the H/R injury and control groups. High-throughput lncRNA sequencing was applied in the determination of differentially expressed lncRNAs between H/R-induced H9C2 cells and normal H9C2 cells. Real-time polymerase chain reactions (RT-PCR) were used to confirm the expression levels of lncRNA XIST in H/R-induced H9C2 cells. H9C2 cells were then transfected with lncRNA XIST recombinant plasmid (lncRNA XIST), sh-LINC XIST, agomiR-545-3p, antagomiR-545-3p, pcDNA-G3BP2, sh-G3BP2, and a corresponding negative control (NC). Bioinformatic analyses revealed that MiR-545-3p was a target for lncRNA XIST. This finding was confirmed by dual-luciferase reporter assay. The degree of cell apoptosis was evaluated by a flow cytometer. RT-PCR and western blot were performed to assess the apoptotic-related proteins in each group. A total of 859 differentially expressed lncRNAs (up-regulated = 502, down-regulated = 357) were identified. LncRNA XIST was found to be down-regulated in H/R-induced H9C2 cells while miR-545-3p was distinctly up-regulated. miR-545-3p was established to be a direct target for LncRNA XIST. LncRNA XIST significantly enhanced the apoptotic rate, while its inhibition suppressed the apoptotic rate. AgomiR-545-3p partially blocked the lncRNA XIST and enhanced the apoptosis of H/R-induced H9C2 cells. Moreover, miR-545-3p was shown to be a direct target for G3BP2. The overexpression of G3BP2 partially reversed the apoptotic effects of miR-545-3p on H/R-induced H9C2 cells. lncRNA XIST/miR-545-3p/GBP2 was found to be an apoptotic regulator in H/R-induced H9C2 cells.
Collapse
Affiliation(s)
- Xiaohong Xiao
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhenzhen He
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Suiyang Tong
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Lixia Dai
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiuling Xiao
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhongxin Qin
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Tao Lin
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| |
Collapse
|
21
|
Yifan C, Jianfeng S, Jun P. Development and Validation of a Random Forest Diagnostic Model of Acute Myocardial Infarction Based on Ferroptosis-Related Genes in Circulating Endothelial Cells. Front Cardiovasc Med 2021; 8:663509. [PMID: 34262953 PMCID: PMC8274450 DOI: 10.3389/fcvm.2021.663509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The high incidence and mortality of acute myocardial infarction (MI) drastically threaten human life and health. In the past few decades, the rise of reperfusion therapy has significantly reduced the mortality rate, but the MI diagnosis is still by means of the identification of myocardial injury markers without highly specific biomarkers of microcirculation disorders. Ferroptosis is a novel reported type of programmed cell death, which plays an important role in cancer development. Maintaining iron homeostasis in cells is essential for heart function, and its role in the pathological process of ischemic organ damages remains unclear. Being quickly detected through blood tests, circulating endothelial cells (CECs) have the potential for early judgment of early microcirculation disorders. In order to explore the role of ferroptosis-related genes in the early diagnosis of acute MI, we relied on two data sets from the GEO database to first detect eight ferroptosis-related genes differentially expressed in CECs between the MI and healthy groups in this study. After comparing different supervised learning algorithms, we constructed a random forest diagnosis model for acute MI based on these ferroptosis-related genes with a compelling diagnostic performance in both the validation (AUC = 0.8550) and test set (AUC = 0.7308), respectively. These results suggest that the ferroptosis-related genes might play an important role in the early stage of MI and have the potential as specific diagnostic biomarkers for MI.
Collapse
|
22
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
23
|
Song W, Zhang T, Yang N, Zhang T, Wen R, Liu C. Inhibition of micro RNA miR-122-5p prevents lipopolysaccharide-induced myocardial injury by inhibiting oxidative stress, inflammation and apoptosis via targeting GIT1. Bioengineered 2021; 12:1902-1915. [PMID: 34002676 PMCID: PMC8806731 DOI: 10.1080/21655979.2021.1926201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myocardial injury resulting from sepsis is the leading cause of death worldwide. Micro RNA miR-122-5p is involved in various physiological and pathological processes and is highly expressed in the heart of septic rats. However, its function in sepsis-caused myocardial injury remains elusive. Herein, a rat model of septic myocardial injury was established by intraperitoneal injection of lipopolysaccharide (LPS), and cardiomyocyte H9c2 was exposed to LPS to induce sepsis-related inflammatory injury in vitro. Inhibition of miR-122-5p suppressed LPS-triggered myocardial injury evidenced by decreased heart weight index (HWI), reduced inflammatory cell infiltration and cell rupture, and reduced cardiac marker enzymes cTnI and LDH. MiR-122-5p inhibition inhibited ROS production and enhanced the activities of antioxidant enzymes CAT, SOD and GSH-px in LPS-treated rats and H9c2 cells. MiR-122-5p inhibition reduced the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β, and inhibited cell apoptosis along with decreased cleaved-caspase 3 induced by LPS. Moreover, increased GIT1 expression was found following miR-122-5p inhibition. We further verified GIT1 as a target of miR-122-5p, and silencing GIT1 partially reversed the benefits of miR-122-5p loss in LPS-injured H9c2 cells. The HO-1 and NQO-1 expression and Nrf-2 activation were enhanced by miR-122-5p inhibition, which was reversed by GIT1 depletion, indicating the involvement of Nrf-2/HO-1 signaling in regulating miR-122-5p/GIT1-mediated cardioprotection. Taken together, our data suggest that inhibition of miR-122-5p may mitigate sepsis-triggered myocardial injury through inhibiting inflammation, oxidative stress and apoptosis via targeting GIT1, which provides a possible therapeutic target for sepsis.
Collapse
Affiliation(s)
- Wenliang Song
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tiening Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tao Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunfeng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
24
|
Li Y, Song B, Liu J, Li Y, Wang J, Liu N, Cui W. The interplay between HIF-1α and long noncoding GAS5 regulates the JAK1/STAT3 signalling pathway in hypoxia-induced injury in myocardial cells. Cardiovasc Diagn Ther 2021; 11:422-434. [PMID: 33968620 DOI: 10.21037/cdt-20-773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Long non-coding RNA (lncRNA) GAS5 is associated with hypoxia-induced diseases whereas hypoxia-inducible factor-1α (HIF-1α) plays an important role in hypoxic injury of cells. The current study explores the regulatory functions of GAS5/HIF-1α which co-play in anoxic injury among rat cardiomyocytes H9C2 cells. Methods Hypoxia in vitro model was established through anoxic incubation while normal culture of H9C2 cells was considered as control. The expression levels of GAS5 and HIF-1α were quantified through RT-qPCR. CCK-8 was applied to determine cell viability. Cell apoptosis rate was calculated using flow cytometry whereas inflammatory cytokines were detected using ELISA method. The impact of downregulating GAS5 or HIF-1α or both upon hypoxic cells was assessed on the basis of changes in cell viability, apoptosis, and inflammatory response. The activity of JAK1/STAT3 signaling was evaluated through RT-qPCR for mRNA expression. AG490 was introduced to inactivate JAK1/STAT3 pathway and to unveil the impact of JAK1/STAT3 signaling on GAS5/HIF-1α and cell viability, apoptosis and inflammation in hypoxic cells. Results The results infer that hypoxia suppressed cell viability, promoted inflammation and apoptosis among H9C2 cells. GAS5 or HIF-1α recorded higher expression in hypoxia-induced cells whereas the cell viability got restored with reduction in inflammation and apoptosis. The downregulation of HIF-1α enhanced the protective effect of knocking down GAS5 in hypoxia H9C2 cells. JAK1/STAT3 signaling pathway got activated in hypoxic cells and was regulated by GAS5 and HIF-1α. The inhibition of signaling pathway increased the cell viability but it decreased both inflammation and apoptosis. Conclusions GAS5 and HIF-1α could regulate hypoxic injury in H9C2 cells through JAK1/STAT3 signaling pathway. This scenario suggests that the inhibitors of GAS5 and HIF-1α may synergize with AG-490 to protect myocardial cells from hypoxic injury.
Collapse
Affiliation(s)
- Yanwei Li
- Management Center of Chronic Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bing Song
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jinlei Liu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuqiang Li
- Biobank Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiebing Wang
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Na Liu
- Endocrinology Department, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Wei Cui
- Liaoning Jinzhou Inspection and Testing Certification Center, Jinzhou, China
| |
Collapse
|
25
|
Shen J, Xiong J, Shao X, Cheng H, Fang X, Sun Y, Di G, Mao J, Jiang X. Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p. J Cancer 2020; 11:4550-4559. [PMID: 32489472 PMCID: PMC7255366 DOI: 10.7150/jca.45676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Gliomas are the most prevalent primary malignant tumors of the central nervous system. Our previous study showed that miR-204-5p is a tumor suppressor gene in glioma. Bioinformatic analyses suggest that long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is a potential target gene of miR-204-5p. Methods: We analyzed the expression of XIST and miR-204-5p in glioma tissues and the correlation with glioma grade. A series of in vitro experiments were carried out to elucidate the role of XIST in glioma progression. A mouse xenograft model was established to detect whether knockdown of XIST can inhibit glioma growth. A luciferase assay was performed to determine whether XIST can bind to miR-204-5p and the binding specificity. Cells stably expressing shXIST or shNC were transfected with anti-miR-204-5p or anti-miR-204-5p-NC to evaluate whether XIST mediates the tumor-suppressive effects of miR-204-5p. Results: XIST was upregulated in glioma tissues compared with normal brain tissues (NBTs), while miR-204-5p expression was significantly decreased in glioma tissues compared with NBTs. Both XIST and miR-204-5p expression levels were clearly related to glioma grade, and the expression of XIST was obviously negatively correlated with miR-204-5p expression. Knockdown of XIST inhibited glioma cell proliferation, migration, and invasion, promoted apoptosis of glioma cells, inhibited tumor growth and increased the survival time in nude mice. miR-204-5p could directly bind to XIST and negatively regulate XIST expression. XIST mediated glioma progression by targeting miR-204-5p in glioma cells. XIST crosstalk with miR-204-5p regulated Bcl-2 expression to promote apoptosis. Conclusion: Our results provide evidence that XIST, miR-204-5p and Bcl-2 form a regulatory axis that controls glioma progression and can serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Hao Cheng
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Xinyun Fang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Yongkang Sun
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Guangfu Di
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, P.R. China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
26
|
lncRNA-XIST protects the hypoxia-induced cardiomyocyte injury through regulating the miR-125b-hexokianse 2 axis. In Vitro Cell Dev Biol Anim 2020; 56:349-357. [PMID: 32415544 DOI: 10.1007/s11626-020-00459-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Ischemic injury in the heart is associated with low oxygen, leading to the damage of cardiomyocytes. The lncRNA-XIST is known to involve in post-ischemia myocardial remodeling. However, the roles and mechanism of XIST in the hypoxia-induced cardiomyocyte are still under investigation. Moreover, studies that elucidated the impaired glucose metabolism present new hallmark of ischemic cardiovascular injury. The objective of this study is to investigate the effects of lncRNA-XIST on cardiomyocyte injury under hypoxia. Here, we demonstrate that the XIST expressions of cardiomyocyte line, H9c2 were apparently suppressed by long-time hypoxia exposure under low glucose supply. On the contrary, miRNA-125b showed reverse expression pattern to XIST. We identified that XIST functioned as a ceRNA of miR-125b to downregulate its expression in both cell line and rat primary cardiomyocyte. Under low glucose supply, H9c2 cells exhibited increased susceptibility to hypoxia. We observed overexpression of XIST significantly elevated glycose metabolism rate under hypoxia, but overexpression of miR-125b inhibited glycose metabolism rate of cardiomyocyte under hypoxia. The glycolysis enzyme, hexokinase 2 (HK2) was validated as a direct target of miR-125b, which binds to the 3'-UTR region of HK2 mRNA in cardiomyocytes. Moreover, inhibition of miR-125b significantly protected the hypoxia-induced cardiomyocyte injury through restoration of glucose metabolism. Finally, we demonstrated that transfection of miR-125b in lncRNA-XIST overexpressed H9c2 cells effectively abolished the XIST-activated glucose metabolism and cardiomyocyte protection under hypoxia. The present study illustrates roles of the XIST-miR-125b-HK2 axis in the hypoxia-induced cardiomyocyte injury and proposes that maintaining glucose metabolism might be an effective approach for protection of cardiomyocyte injury.
Collapse
|