1
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
2
|
Zeng Y, Lin D, Gao M, Du G, Cai Y. Systematic evaluation of the prognostic and immunological role of PDLIM2 across 33 cancer types. Sci Rep 2022; 12:1933. [PMID: 35121770 PMCID: PMC8817018 DOI: 10.1038/s41598-022-05987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
The protein PDLIM2 regulates the stability of various transcription factors and is required for polarized cell migration. However, the clinical relevance and immune infiltration of PDLIM2 in cancer are not well-understood. We utilized The Cancer Genome Atlas and Genotype-Tissue Expression database to characterize alterations in PDLIM2 in pan-cancer. TIMER was used to explore PDLIM2 expression and immune infiltration levels. We assessed the correlation between PDLIM2 expression and immune-associated gene expression, immune score, tumor mutation burden, and DNA microsatellite instability. PDLIM2 significantly affected the prognosis of various cancers. Increased expression of PDLIM2 was significantly correlated with the tumor grade in seven types of tumors. The expression level of PDLIM2 was positively correlated with immune infiltrates, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages, and dendritic cells in bladder urothelial, kidney renal papillary cell, and colon adenocarcinoma. High expression levels of PDLIM2 tended to be associated with higher immune and stromal scores. PDLIM2 expression was associated with the tumor mutation burden in 12 cancer types and microsatellite instability in 5 cancer types. PDLIM2 levels were strongly correlated with diverse immune-related genes. PDLIM2 can act as a prognostic-related therapeutic target and is correlated with immune infiltrates in pan-cancer.
Collapse
Affiliation(s)
- Yudan Zeng
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongtao Lin
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengqian Gao
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoxia Du
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Cai
- Guangdong Pharmaceutical University, Guangzhou, China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Provincial TCM Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangzhou, China.
| |
Collapse
|
3
|
Wang S, Zha X, Ruan S, Yao S, Zhang X. Kruppel like factor 10 up-regulates PDZ and LIM domain containing protein 2 via nuclear factor kappa-B pathway to inhibit proliferation and inflammatory of fibroblastoid synovial cell in rheumatoid arthritis. Bioengineered 2021; 13:1779-1790. [PMID: 34713769 PMCID: PMC8805881 DOI: 10.1080/21655979.2021.1995992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease caused by synovitis. Two genes, KLF10 (Kruppel like factor 10) and PDZ and LIM domain containing protein 2 (PDLIM2), play key roles in cell inflammation and proliferation. However, the specific roles of the two on inflammation and proliferation of RA-fibroblastoid synovial cell (RA-FLS) have not been reported so far. RT-qPCR and Western blot detected the expressions of PDLIM2 and KLF10 in Human Rheumatoid arthritis FLSs (HFLSs-RA). Cell transfection techniques overexpressed PDLIM2 and KLF10 or inhibited the expression of KLF10. JAPAR database predicted the binding sites of PDLIM2 and KLF10, and the binding between the two was detected and verified using luciferase reporter genes and ChIP. Subsequently, CCK-8 technology, TUNEL staining, Western blot, wound healing and ELISA detected proliferation-related indicators, migration-related indications and inflammation-related indicators. Finally, western blot was used to detect the expression of NF-κB pathway-related proteins to further explore the mechanism.The expression of PDLIM2 was decreased in HFLSs-RA. Overexpression of PDLIM2 inhibited proliferation, migration and inflammation in HFLSs-RA. KLF10 can transcriptionally activate PDLIM2. Interfering with KLF10 reversed the inhibition effects of PDLIM2 overexpression on the proliferation, migration and inflammation, which was possibly through the NF-κB pathway. Overall, KLF10 can up-regulate PDLIM2 by regulating the NF-κB pathway to inhibit inflammation and proliferation of HFLSs-RA.
Collapse
Affiliation(s)
- Shan Wang
- Rheumatology and immunology department, The First people's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University. Hefei, 230061, Anhui, China
| | - Xuwen Zha
- Rheumatology and immunology department, The First people's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University. Hefei, 230061, Anhui, China
| | - Shengting Ruan
- Rheumatology and immunology department, The First people's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University. Hefei, 230061, Anhui, China
| | - Shoulin Yao
- Rheumatology and immunology department, The First people's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University. Hefei, 230061, Anhui, China
| | - Xiaoyu Zhang
- Rheumatology and immunology department, The First people's Hospital of Hefei, The Third Affiliated Hospital of Anhui Medical University. Hefei, 230061, Anhui, China
| |
Collapse
|
4
|
Guo ZS, Qu Z. PDLIM2: Signaling pathways and functions in cancer suppression and host immunity. Biochim Biophys Acta Rev Cancer 2021; 1876:188630. [PMID: 34571051 DOI: 10.1016/j.bbcan.2021.188630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
PDZ and LIM domains-containing proteins play pivotal functions in cell cytoskeleton organization, cell polarization and differentiation. As a key member of the family, PDLIM2 regulates stability and activity of transcription factors such as NF-κB, STATs and β-catenin, and thus exert it functions in inflammation, immunity, and cancer. PDLIM2 functions as a tumor suppressor in multiple tissues and it is often genetically mutated or epigenetically silenced in human cancers derived from lung, breast, ovarian and other histologies. However, in certain types of cancers, PDLIM2 may promote cancer cell proliferation and metastases. Therefore, PDLIM2 is added to a long list of genes that can function as tumor suppressor or oncogenic protein. During tumorigenesis induced by oncogenic viruses, PDLIM2 is a key target. Through promotion of NF-κB/RelA and STAT3 degradation, PDLIM2 enhances expression of proteins involved in antigen presentation and promotes T-cell activation while repressing multidrug resistance genes, thereby rendering mutated cells susceptible to immune surveillance and cytotoxicity mediated by immune cells and chemotherapeutic drugs. Intriguingly, PDLIM2 in alveolar macrophages (AMs) plays key roles in monitoring lung tumorigenesis, as its selective genetic deletion leads to constitutive activation of STAT3, driving monocyte differentiation to AMs with pro-tumorigenic polarization and activation. PDLIM2 has also been explored as a therapeutic target for cancer therapy. At the end of this review, we provide perspectives on this important molecule and discuss the future directions of both basic and translational studies.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Yuk HD, Lee KH, Lee HS, Jeong SH, Kho Y, Jeong CW, Kim HH, Ku JH, Kwak C. PDLIM2 Suppression Inhibit Proliferation and Metastasis in Kidney Cancer. Cancers (Basel) 2021; 13:2991. [PMID: 34203785 PMCID: PMC8232651 DOI: 10.3390/cancers13122991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
We evaluated the expression of PDLIM2 in human kidney cancer cell lines from primary or metastatic origins and found that PDLIM2 expression was highly elevated in metastatic kidney cancers. We evaluated the effect of PDLIM2 inhibition by RNA interference method. PDLIM2 knockdown showed the decreased proliferation and metastatic character in human metastatic kidney cancer cells. By repeated round of orthotopic injection of RenCa mouse kidney cancer cell line, we obtained metastatic prone mouse kidney cancer cell lines. PDLIM2 expression was highly expressed in these metastatic prone cells comparing parental cells. In addition, we evaluated the in vivo efficacy of PDLIM2 knockout on the tumor formation and metastasis of kidney cancer cells using a PDLIM2 knockout mice. The experimental metastasis model with tail vein injection and orthotopic metastasis model injected into kidney all showed reduced lung metastasis cancer formation in PDLIM2 knockout mice comparing control Balb/c mice. Overall, our findings indicate that PDLIM2 is required for cancer formation and metastasis in metastatic kidney cancer, indicating that PDLIM2 may be a new therapeutic target for metastatic kidney cancer.
Collapse
Affiliation(s)
- Hyeong-Dong Yuk
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyoung-Hwa Lee
- Songdo Bio-Engineering, Incheon Jaeneung University, Incheon, 111-15 Songdo-gyoyuk-ro, Yeonsu-gu, Incheon 21987, Korea;
| | - Hye-Sun Lee
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
| | - Yongseok Kho
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
| | - Chang-Wook Jeong
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyeon-Hoe Kim
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ja-Hyeon Ku
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (H.-D.Y.); (H.-S.L.); (S.-H.J.); (Y.K.); (C.-W.J.); (H.-H.K.); (J.-H.K.)
- Department of Urology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|