1
|
Oats MF, Coronel-Aguilera CP, Applegate BM, Csonka LN, Bhunia AK, Gehring AG, Paoli GC. Determination of the Infection Dynamics of Escherichia coli O157:H7 by Bacteriophage ΦV10. Foods 2025; 14:617. [PMID: 40002061 PMCID: PMC11854483 DOI: 10.3390/foods14040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
ΦV10 is an Escherichia coli O157:H7-specific bacteriophage that has been used to develop luminescent reporter assays for the detection of this important foodborne pathogen. Previous work demonstrated the specificity of ΦV10 for infection of E.coli O157:H7 through interaction with the O157 antigen. In addition, modification of the lipopolysaccharide (LPS) via O-acetylation prevents ΦV10 infection in an E. coli O157:H7 expressing a phage-encoded O-acetylase gene. Through assays for phage binding, plaque formation, and lysogeny using non-O157:H7 and O157: non-H7 strains, as well as complementation of an O157:H- strain, it is demonstrated in this study that both the somatic O157 antigen and flagellar H7 antigen are required for productive infection of E. coli O157:H7 by ΦV10. Together, the results indicate that the O157 antigen is required for phage binding and that the H7 antigen is necessary to complete the infection process.
Collapse
Affiliation(s)
- Michael F. Oats
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
| | | | - Bruce M. Applegate
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew G. Gehring
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - George C. Paoli
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| |
Collapse
|
2
|
Patel A, Wolfram A, Desin TS. Advancements in Detection Methods for Salmonella in Food: A Comprehensive Review. Pathogens 2024; 13:1075. [PMID: 39770335 PMCID: PMC11728791 DOI: 10.3390/pathogens13121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Non-typhoidal Salmonella species are one of the leading causes of gastrointestinal disease in North America, leading to a significant burden on the healthcare system resulting in a huge economic impact. Consequently, early detection of Salmonella species in the food supply, in accordance with food safety regulations, is crucial for protecting public health, preventing outbreaks, and avoiding serious economic losses. A variety of techniques have been employed to detect the presence of this pathogen in the food supply, including culture-based, immunological, and molecular methods. The present review summarizes these methods and highlights recent updates on promising emerging technologies, including aptasensors, Surface Plasmon Resonance (SPR), and Surface Enhanced Raman Spectroscopy (SERS).
Collapse
Affiliation(s)
- Aayushi Patel
- Trinity School of Medicine, Trinity Medical Sciences University, Roswell, GA 30075, USA; (A.P.); (A.W.)
| | - Andrew Wolfram
- Trinity School of Medicine, Trinity Medical Sciences University, Roswell, GA 30075, USA; (A.P.); (A.W.)
| | - Taseen S. Desin
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
3
|
Wang Y, Cao J, Du P, Wang W, Hu P, Liu Y, Ma Y, Wang X, Abd El-Aty AM. Portable detection of Salmonella in food of animal origin via Cas12a-RAA combined with an LFS/PGM dual-signaling readout biosensor. Mikrochim Acta 2024; 191:631. [PMID: 39340568 DOI: 10.1007/s00604-024-06708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
A highly specific and sensitive rapid two-signal assay was developed for the detection of Salmonella typhimurium in foods of animal origin. The invA gene of Salmonella was used as the biorecognition element and recombinase-assisted amplification (RAA) technology for signal amplification. By utilizing the specific recognition and efficient trans-cleavage activity of CRISPR/Cas12a, point-of-care testing (POCT) for S. typhimurium was achieved via lateral flow strips (LFS) and personal glucometer (PGM) biosensors as dual signal readout systems, with sensitivities of 33 CFU/mL and 20 CFU/mL, respectively. Users can select the appropriate test system on the basis of specific application requirements: LFSs are ideal for rapid onsite screening, whereas glucometer biosensors offer precise quantitative determination. This approach simplifies the use of large instruments and overcomes site constraints, demonstrating good accuracy and applicability in animal-derived samples, with significant potential for the detection of other pathogens and for use in restricted environments.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianfang Cao
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
4
|
Zhang X, Wu X, Feng K, Wang Q, Xie Q. A New Dual Fluorescence Method for Rapid Detection of Infectious Bronchitis Virus at Constant Temperature. Microorganisms 2024; 12:1315. [PMID: 39065085 PMCID: PMC11279307 DOI: 10.3390/microorganisms12071315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Infectious bronchitis virus (IBV) causes infectious bronchitis in chicken, an acute, highly contagious respiratory infection. Because of genetic mutations and recombination, IBV forms many subtypes, which makes it difficult to treat the disease and apply commercial vaccines. Therefore, to detect IBV in time and stop the virus from spreading, a novel and convenient IBV detection technology based on reverse transcription recombinase-aided amplification (RT-RAA) was established in this study. According to the S1 gene of IBV CH I-V and Mass genotypes and S1 gene of IBV CH VI genotype, a set of optimal primers were designed and selected to establish a real-time dual fluorescence RT-RAA method. The lowest detection line was 10 copies/μL of RNA molecules and the method exhibited no cross-reactivity with avian reticuloendotheliosis virus (REV), infectious bursal disease virus (IBDV), avian leukosis virus (ALV), Newcastle disease virus (NDV), chicken infectious anemia virus (CIAV), infectious laryngotracheitis virus (ILTV), Marek's disease virus (MDV), and H9N2 avian influenza virus (H9N2), demonstrating high specificity. When compared to qPCR detection results, our method achieved a sensitivity of 96.67%, a specificity of 90%, and a Kappa value of 0.87 for the IBV CH I-V and Mass genotypes, and achieved a sensitivity of 100%, a specificity of 97.73%, and a Kappa value of 0.91 for the IBV CH VI genotype.
Collapse
Affiliation(s)
- Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.W.); (K.F.); (Q.W.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiuhong Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.W.); (K.F.); (Q.W.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.W.); (K.F.); (Q.W.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.W.); (K.F.); (Q.W.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.W.); (K.F.); (Q.W.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Ndraha N, Lin HY, Wang CY, Hsiao HI, Lin HJ. Rapid detection methods for foodborne pathogens based on nucleic acid amplification: Recent advances, remaining challenges, and possible opportunities. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 7:100183. [PMID: 37767229 PMCID: PMC10520789 DOI: 10.1016/j.fochms.2023.100183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
This article presents a review of recent advancements in the utilization of NAA-based techniques for detecting foodborne pathogens in food products, focusing on studies conducted within the past five years. This review revealed that recent research efforts have primarily aimed at enhancing sensitivity and specificity by improving sample pre-treatment/preparation, DNA isolation, and readout methods. Isothermal-based amplification methods, such as LAMP, RPA, RAA, and RCA, have emerged as promising approaches, providing rapid results within one h and often demonstrating comparable or superior sensitivity to conventional or qPCR methods. However, the attention paid to specific pathogens varies, with Salmonella spp., Listeria spp., E. coli, and V. parahaemolyticus receiving more focus than norovirus and other similar pathogens. NAA-based methods have the potential to significantly contribute to food safety and public health protection. However, further advancements are necessary to fully realize their benefits.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, 202301 Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
6
|
Li Y, Shang J, Wang Y, Luo J, Jiang W, Yin X, Zhang F, Deng C, Yu X, Liu H. Establishment of two assays based on reverse transcription recombinase-aided amplification technology for rapid detection of H5 subtype avian influenza virus. Microbiol Spectr 2023; 11:e0218623. [PMID: 37811963 PMCID: PMC10715165 DOI: 10.1128/spectrum.02186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Avian influenza virus (AIV) subtype H5 is a highly contagious zoonotic disease and a serious threat to the farming industry and public health. Traditional detection methods, including virus isolation and real-time PCR, require tertiary biological laboratories and are time-consuming and complex to perform, making it difficult to rapidly diagnose H5 subtype avian influenza viruses. In this study, we successfully developed two methods, namely, RF-RT-RAA and RT-RAA-LFD, for rapid detection of H5-AIV. The assays are characterized by their high specificity, sensitivity, and user-friendliness. Moreover, the results of the reaction can be visually assessed, which are suitable for both laboratory testing and grassroots farm screening for H5-AIV.
Collapse
Affiliation(s)
- Yang Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jiajing Shang
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Shandong, China
| | - Juan Luo
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Wenming Jiang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xin Yin
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Chunran Deng
- China Animal Health and Epidemiology Center, Qingdao, China
- School of Life Science and Food Engineering, Hebei University of Engineering, Hebei, China
| | - Xiaohui Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - HuaLei Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| |
Collapse
|
7
|
Cao Y, Fang T, Shen J, Zhang G, Guo D, Zhao L, Jiang Y, Zhi S, Zheng L, Lv X, Yao Z, Yu D. Development of Recombinase Aided Amplification (RAA)-Exo-Probe Assay for the Rapid Detection of Shiga Toxin-Producing Escherichia coli. J AOAC Int 2023; 106:1246-1253. [PMID: 37252814 DOI: 10.1093/jaoacint/qsad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a significant cause of foodborne illness causing various gastrointestinal diseases including hemolytic uremic syndrome (HUS), the most severe form, which can lead to kidney failure or even death. OBJECTIVE Here, we report the development of recombinase aided amplification (RAA)-exo-probe assays targeting the stx1 and stx2 genes for the rapid detection of STEC in food samples. METHODS Primers and exo-probes were designed and optimized for the detection of stx1 and stx2 using RAA technology. The optimal STEC RAA-exo-probe assays were then tested for specificity and sensitivity, and validated in both spiked and real food samples. RESULTS These assays were found to be 100% specific to STEC strains and were also highly sensitive with a detection limit of 1.6 × 103 CFU/mL or 32 copies/reaction. Importantly, the assays were able to successfully detect STEC in spiked and real food samples (beef, mutton, and pork), with a detection limit as low as 0.35 CFU/25g in beef samples after an overnight enrichment step. CONCLUSIONS Overall, the RAA assay reactions completed within ∼20 min and were less dependent on expensive equipment, suggesting they can be easily adopted for in-field testing requiring only a fluorescent reader. HIGHLIGHTS As such, we have developed two rapid, sensitive, and specific assays that can be used for the routine monitoring of STEC contamination in food samples, particularly in the field or in poorly equipped labs.
Collapse
Affiliation(s)
- Yuhao Cao
- Ningbo University, Health Science Center, 818 Fenghua Road, Jiangbei District, Ningbo 315211, China
| | - Taisong Fang
- Zhejiang University, College of Biosystems Engineering and Food Science, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jinling Shen
- Shanghai Customs, Technology Center for Animal Plant and Food Inspection and Quarantine, 299 Mianbei Road, Pudong New District, Shanghai 201210, China
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740, USA
| | - Dehua Guo
- Shanghai Customs, Technology Center for Animal Plant and Food Inspection and Quarantine, 299 Mianbei Road, Pudong New District, Shanghai 201210, China
| | - Lina Zhao
- Shanghai Customs, Technology Center for Animal Plant and Food Inspection and Quarantine, 299 Mianbei Road, Pudong New District, Shanghai 201210, China
| | - Yuan Jiang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, 1 Weigang, Nanjing 210095, China
| | - Shuai Zhi
- Ningbo University, Health Science Center, 818 Fenghua Road, Jiangbei District, Ningbo 315211, China
| | - Lin Zheng
- Ningbo University, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo 315211, China
| | - Xiaofei Lv
- China Jiliang University, Department of Environmental Engineering, 258 Xueyuan Street, Qiantang District, Hangzhou 310018, China
| | - Zhiyuan Yao
- Ningbo University, School of Civil and Environmental Engineering, 818 Fenghua Road, Jiangbei District, Ningbo 315211, China
| | - Daniel Yu
- University of Alberta, School of Public Health, 116 Street and 85 Avenue, Edmonton, AB, Canada
| |
Collapse
|
8
|
Ding N, Qi W, Wu Z, Zhang Y, Xu R, Lin Q, Zhu J, Zhang H. Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18. J Microbiol Biotechnol 2023; 33:1091-1100. [PMID: 37635316 PMCID: PMC10468672 DOI: 10.4014/jmb.2304.04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 08/29/2023]
Abstract
Human papillomavirus (HPV) types 16 and 18 are the major causes of cervical lesions and are associated with 71% of cervical cancer cases globally. However, public health infrastructures to support cervical cancer screening may be unavailable to women in low-resource areas. Therefore, sensitive, convenient, and cost-efficient diagnostic methods are required for the detection of HPV16/18. Here, we designed two novel methods, real-time ERA and ERA-LFD, based on enzymatic recombinase amplification (ERA) for quick point-of-care identification of the HPV E6/E7 genes. The entire detection process could be completed within 25 min at a constant low temperature (35-43°C), and the results of the combined methods could be present as the amplification curves or the bands presented on dipsticks and directly interpreted with the naked eye. The ERA assays evaluated using standard plasmids carrying the E6/E7 genes and clinical samples exhibited excellent specificity, as no cross-reaction with other common HPV types was observed. The detection limits of our ERA assays were 100 and 101 copies/μl for HPV16 and 18 respectively, which were comparable to those of the real-time PCR assay. Assessment of the clinical performance of the ERA assays using 114 cervical tissue samples demonstrated that they are highly consistent with real-time PCR, the gold standard for HPV detection. This study demonstrated that ERA-based assays possess excellent sensitivity, specificity, and repeatability for HPV16 and HPV18 detection with great potential to become robust diagnostic tools in local hospitals and field studies.
Collapse
Affiliation(s)
- Ning Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| | - Wanwan Qi
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| | - Zihan Wu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
| | - Yaqin Zhang
- Department of Infectious Disease, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ruowei Xu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
- Nanjing Normal University, Nanjing 210023, P.R. China
| | - Qiannan Lin
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, P.R. China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| |
Collapse
|
9
|
Liu Y, Ren W, Xue Z, Miao Y, Wang W, Zhang X, Yao C, Shang Y, Li S, Mi F, Pang Y. Real-time recombinase-aided amplification assay for rapid amplification of the IS1081 gene of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis 2023:10.1007/s10096-023-04626-5. [PMID: 37256455 DOI: 10.1007/s10096-023-04626-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis (TB), is the leading cause of death due to a single infectious agent worldwide. Rapid and accurate diagnosis of MTB is critical for controlling TB especially in resource-limited countries, since any diagnosis delay increases the chances of transmission. Here, a real-time recombinase-aided amplification (RAA) assay targeting conserved positions in IS1081 gene of MTB, is successfully established to detect MTB. The intact workflow was completed within 30 min at 42 °C with no cross-reactivity observed for non-tuberculous mycobacteria and other clinical bacteria, and the detection limit for recombinant plasmid of MTB IS1081 was 163 copies/reaction at 95% probability, which was approximately 1.5-fold increase in analytical sensitivity for the detection of MTB, compared to conventional quantitative real-time PCR (qPCR; 244 copies/reaction). Furthermore, the result of clinical performance evaluation revealed an increased sensitivity of RAA assay relative to qPCR was majorly noted in the specimens with low bacteria loads. Our results demonstrate that the developed real-time RAA assay is a convenient, sensitive, and low-cost diagnostic tool for the rapid detection of MTB.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuedong Miao
- Department of Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fengling Mi
- Department of Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
10
|
Fang T, Shen J, Xue J, Jiang Y, Guo D, Yang J, Kong X, Xu X, Wang X. Sensitive and Rapid Detection of Escherichia coli O157:H7 From Beef Samples Based on Recombinase Aided Amplification Assisted CRISPR/Cas12a System. J AOAC Int 2022; 106:156-164. [PMID: 36005831 DOI: 10.1093/jaoacint/qsac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Escherichia coli O157:H7, being the cause of hemorrhagic colitis in humans, is recognized as one of the most dangerous and widespread foodborne pathogens. A highly specific, sensitive, and rapid E. coli O157:H7 detection method needs to be developed since the traditional detection methods are complex, costly, and time-consuming. OBJECTIVE In this study, a recombinase aided amplification (RAA) assisted CRISPR/Cas12a (RAA-CRISPR/Cas12a) fluorescence platform for specific, sensitive, and rapid nucleic acid detection of E. coli O157:H7 was introduced. METHODS First, the feasibility (components of CRISPR/Cas12a system) of the developed method was evaluated. Then a total of 34 bacterial strains were used for the specificity test, and gradient dilutions of extracted DNA and bacterial solutions of E. coli O157:H7 were prepared for the sensitivity test. Third, a real-time PCR assay for detection of the specific wzy gene of E. coli O157:H7 (FDA's Bacteriological Analytical Manual) was used for sensitivity comparison. Finally, analysis of RAA-CRISPR/Cas12a detection in spiked and 93 real ground beef samples was carried out. RESULTS The developed RAA-CRISPR/Cas12a method showed high specificity, and the detection could be completed within 30 min (after 4 h enrichment in spiked ground beef samples). The limit of detection (LOD) of bacterial concentrations and genomic DNA was 5.4 × 102 CFU/mL and 7.5 × 10-4 ng/μL, respectively, which exhibited higher sensitivity than the RAA-gel electrophoresis and RT-PCR methods. Furthermore, it was shown that E. coli O157:H7 in ground beef samples could be positively detected after 4 h enrichment when the initial bacterial inoculum was 9.0 CFU/25 g. The detection results of the RAA-CRISPR/Cas12a method were 100% consistent with those of the RT-PCR and traditional culture-based methods while screening the E. coli O157:H7 from 93 local collected ground beef samples. CONCLUSIONS The developed RAA-CRISPR/Cas12a method showed high specificity, high sensitivity, and rapid positive detection of E. coli O157:H7 from ground beef samples. HIGHLIGHTS The RAA-CRISPR/Cas12a system proposed in this study provided an alternative molecular tool for quick, specific, sensitive, and accurate detection of E. coli O157:H7 in foods.
Collapse
Affiliation(s)
- Taisong Fang
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Jinling Shen
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Junxin Xue
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Yuan Jiang
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Dehua Guo
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Jielin Yang
- Technology Center for Animal Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Xiangxiang Kong
- Shanghai University, School of Life Sciences, Shanghai 200444, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xiang Wang
- University of Shanghai for Science and Technology, School of Health Science and Engineering, Shanghai 400715, China
| |
Collapse
|
11
|
Development of a Real-Time Recombinase-Aided Amplification Method to Rapidly Detect Methicillin-Resistant Staphylococcus aureus. Microorganisms 2022; 10:microorganisms10122351. [PMID: 36557604 PMCID: PMC9784193 DOI: 10.3390/microorganisms10122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant staphylococcus aureus (MRSA) is a major pathogen responsible for human hospital and community-onset diseases and severe invasive livestock infections. Rapid detection of MRSA is essential to control the spread of MRSA. Conventional identification methods and antibacterial susceptibility tests of MRSA are time-consuming. The commonly used qPCR assay also has the disadvantages of being complicated and expensive, restricting its application in resource-limited clinical laboratories. Here, a real-time fluorescent recombinase-assisted amplification (RAA) assay targeting the most conserved regions within the mecA gene of MRSA was developed and evaluated to detect MRSA. The detection limit of this assay was determined to be 10 copies/reaction of positive plasmids. The established RAA assay showed high specificity for MRSA detection without cross-reactivities with other clinically relevant bacteria. The diagnostic performance of real-time RAA was evaluated using 67 clinical S. aureus isolates from dairy farms, which were detected in parallel using the TaqMan probe qPCR assay. The results showed that 56 and 54 samples tested positive for MRSA by RAA and qPCR, respectively. The overall agreement between both assays was 97.01% (65/67), with a kappa value of 0.9517 (p < 0.001). Further linear regression analysis demonstrated that the detection results between the two assays were significantly correlated (R2 = 0.9012, p < 0.0001), indicating that this RAA assay possesses similar detection performance to the qPCR assay. In conclusion, our newly established RAA assay is a time-saving and convenient diagnostic tool suitable for MRSA detection and screening.
Collapse
|
12
|
Fu H, Gan L, Tian Z, Han J, Du B, Xue G, Feng Y, Zhao H, Cui J, Yan C, Feng J, Fan Z, Fu T, Xu Z, Zhang R, Cui X, Du S, Zhou Y, Zhang Q, Cao L, Yuan J. Rapid detection of Burkholderia cepacia complex carrying the 16S rRNA gene in clinical specimens by recombinase-aided amplification. Front Cell Infect Microbiol 2022; 12:984140. [PMID: 36132989 PMCID: PMC9483118 DOI: 10.3389/fcimb.2022.984140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The Burkholderia cepacia complex (BCC) is a group of opportunistic pathogens, including Burkholderia cepacia, Burkholderia multivorans, Burkholderia vietnamiensis and Burkholderia ambifaria, which can cause severe respiratory tract infections and lead to high mortality rates among humans. The early diagnosis and effective treatment of BCC infection are therefore crucial. In this study, a novel and rapid recombinase-aided amplification (RAA) assay targeting the 16S rRNA gene was developed for BCC detection. The protocol for this RAA assay could be completed in 10 min at 39°C, with a sensitivity of 10 copies per reaction and no cross-reactivity with other pathogens. To characterize the effectiveness of the RAA assay, we further collected 269 clinical samples from patients with bacterial pneumonia. The sensitivity and specificity of the RAA assay were 100% and 98.5%, respectively. Seven BCC-infected patients were detected using the RAA assay, and three BCC strains were isolated from the 269 clinical samples. Our data showed that the prevalence of BCC infection was 2.60%, which is higher than the 1.40% reported in previous studies, suggesting that high sensitivity is vital to BCC detection. We also screened a patient with B. vietnamiensis infection using the RAA assay in clinic, allowing for appropriate treatment to be initiated rapidly. Together, these data indicate that the RAA assay targeting the 16S rRNA gene can be applied for the early and rapid detection of BCC pathogens in patients with an uncharacterized infection who are immunocompromised or have underlying diseases, thereby providing guidance for effective treatment.
Collapse
Affiliation(s)
- Hanyu Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- Department of Pulmonology, The Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Juqiang Han
- Institute of Hepatology, Chinese People Liberation Army General Hospital, Beijing, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Xiaohu Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuheng Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Yao Zhou
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Ling Cao
- Department of Pulmonology, The Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Jing Yuan, ; Ling Cao,
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Jing Yuan, ; Ling Cao,
| |
Collapse
|
13
|
Wu S, Duan H, Zhang Y, Wang S, Zheng L, Cai G, Lin J, Yue X. A Salmonella Microfluidic Chip Combining Non-Contact Eddy Heater and 3D Fan-Shaped Mixer with Recombinase Aided Amplification. BIOSENSORS 2022; 12:bios12090726. [PMID: 36140111 PMCID: PMC9496460 DOI: 10.3390/bios12090726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Foodborne pathogenic bacteria have become a worldwide threat to human health, and rapid and sensitive bacterial detection methods are urgently needed. In this study, a facile microfluidic chip was developed and combined with recombinase-aided amplification (RAA) for rapid and sensitive detection of Salmonella typhimurium using a non-contact eddy heater for dynamic lysis of bacterial cells and a 3D-printed fan-shaped active mixer for continuous-flow mixing. First, the bacterial sample was injected into the chip to flow through the spiral channel coiling around an iron rod under an alternating electromagnetic field, resulting in the dynamic lysis of bacterial cells by this non-contact eddy heater to release their nucleic acids. After cooling to ~75 °C, these nucleic acids were continuous-flow mixed with magnetic silica beads using the fan-shaped mixer and captured in the separation chamber using a magnet. Finally, the captured nucleic acids were eluted by the eluent from the beads to flow into the detection chamber, followed by RAA detection of nucleic acids to determine the bacterial amount. Under the optimal conditions, this microfluidic chip was able to quantitatively detect Salmonella typhimurium from 1.1 × 102 to 1.1 × 105 CFU/mL in 40 min with a detection limit of 89 CFU/mL and might be prospective to offer a simple, low-cost, fast and specific bacterial detection technique for ensuring food safety.
Collapse
Affiliation(s)
- Shangyi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Hong Duan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yingchao Zhang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lingyan Zheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
- Correspondence: (J.L.); (X.Y.)
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (J.L.); (X.Y.)
| |
Collapse
|
14
|
Abstract
INTRODUCTION Recombinase polymerase amplification (RPA) is a promising and emerging technology for rapidly amplifying target nucleic acid from minimally processed samples and through small portable instruments. RPA is suitable for point-of-care testing (POCT) and on-site field testing, and it is compatible with microfluidic devices. Several detection assays have been developed, but limited research has dug deeper into the chemistry of RPA to understand its kinetics and fix its shortcomings. AREAS COVERED This review provides a detailed introduction of RPA molecular mechanism, kits formats, optimization, application, pros, and cons. Moreover, this critical review discusses the nonspecificity issue of RPA, highlights its consequences, and emphasizes the need for more research to resolve it. This review discusses the reaction kinetics of RPA in relation to target length, product quantity, and sensitivity. This critical review also questions the novelty of recombinase-aided amplification (RAA). In short, this review discusses many aspects of RPA technology that have not been discussed previously and provides a deeper insight and new perspectives of the technology. EXPERT OPINION RPA is an excellent choice for pathogen detection, especially in low-resource settings. It has a potential to replace PCR for all purposes, provided its shortcomings are fixed and its reagent accessibility is improved.
Collapse
Affiliation(s)
- Mustafa Ahmad Munawar
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
16
|
Lin H, Zhao S, Liu Y, Shao L, Ye Y, Jiang N, Yang K. Rapid Visual Detection of Plasmodium Using Recombinase-Aided Amplification With Lateral Flow Dipstick Assay. Front Cell Infect Microbiol 2022; 12:922146. [PMID: 35811679 PMCID: PMC9263184 DOI: 10.3389/fcimb.2022.922146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malaria is a global public health problem. China has had no case of indigenous malaria since 2016. However, imported cases of malaria remain an issue among travelers, overseas workers, and foreign traders. Although these cases are always asymptomatic, if they donate blood, there is a great risk of transfusion transmitted-malaria (TTM). Therefore, blood banks need a rapid screening tool to detect Plasmodium species. Methods We designed an assay using recombinase-aided amplification (RAA) and a lateral-flow dipstick (LFD) (RAA-LFD) to detect the 18S ribosomal RNA gene of Plasmodium species. Sensitivity was evaluated using a recombinant plasmid and Plasmodium genomic DNA. Specificity was evaluated using DNA extracted from the blood of patients with malaria or other infectious parasites. For clinical assessment, blood samples from patients with malaria and blood donors were evaluated. Results The RAA-LFD assay was performed in an incubator block at 37°C for 15 min, and the amplicons were visible to the naked eye on the flow dipsticks within 3 min. The sensitivity was 1 copy/μL of recombinant plasmid. For genomic DNA from whole blood of malaria patients infected with P. falciparum, P. vivax, P. ovale, and P. malariae, the sensitivity was 0.1 pg/μL, 10 pg/μL, 10-100 pg/μL, and 100pg/μL, respectively. The sensitivity of this assay was 100pg/μL. No cross-reaction with other transfusion-transmissible parasites was detected. Conclusions The results demonstrated that this RAA-LFD assay was suitable for reliable field detection of Plasmodium species in low-resource settings with limited laboratory capabilities.
Collapse
Affiliation(s)
- Hong Lin
- Jiangsu Province Blood Center, Nanjing, China
- *Correspondence: Hong Lin, ; Kun Yang,
| | - Song Zhao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yanhong Liu
- Jiangsu Qitian Gene Technology Co., Ltd., Wuxi, China
| | - Lei Shao
- Jiangsu Province Blood Center, Nanjing, China
| | - Yuying Ye
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Hong Lin, ; Kun Yang,
| |
Collapse
|
17
|
Bai Z, Xu X, Wang C, Wang T, Sun C, Liu S, Li D. A Comprehensive Review of Detection Methods for Escherichia coli O157:H7. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Mao Y, Qiu J, Zhang P, Fei Z, Bian C, Janani BJ, Fakhri A. A strategy of silver Ferrite/Bismuth ferrite nano-hybrids synthesis for synergetic white-light photocatalysis, antibacterial systems and peroxidase-like activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|