1
|
Saadh MJ, Ahmed HH, Sanghvi G, Bin Awang Isa MZ, Singh P, Kaur K, Kumar MR, Husseen B. Recent advances in the delivery of microRNAs via exosomes derived from MSCs, and their role in regulation of ferroptosis. Pathol Res Pract 2025; 270:155984. [PMID: 40315562 DOI: 10.1016/j.prp.2025.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
Mesenchymal stem cell (MSC) therapy, with its unique properties, has garnered interest in cancer treatment. Exosomes (EXOs)-derived from MSC retain the paracrine components of MSCs and demonstrate increased stability, minimal immunogenicity, and low risk of unintended tumorigenesis. Enhanced endocytosis methods make them versatile delivery vehicles for therapeutic cargo. MSC-EXOs can either promote or inhibit carcinogenesis, mediated by paracrine factors and various RNA molecules, particularly microRNAs (miRNAs). The prospect of using MSC-EXOs as a delivery tool for antitumor miRNAs in solid tumor therapy is promising. Exosomes' intrinsic tumor-targeting abilities and low immunogenicity make them ideal for delivering miRNAs, which have shown potential as cancer therapeutics. miRNAs within MSC-EXOs molecules can stimulate tumor growth or induce non-apoptotic cell death pathways, such as ferroptosis, depending on context. Ferroptosis is a kind of controlled cell death that is associated with the pathophysiology of several illnesses and includes iron metabolism. There is growing evidence that miRNAs carried by exosomes derived from MSCs may control ferroptosis in tumor cells by altering key genes related to antioxidant defense, lipid peroxidation, and iron metabolism. Understanding their complex mechanisms in the tumor microenvironment and optimizing their cargo are critical steps toward harnessing their full therapeutic potential. This review provides a comprehensive overview of MSC-EXOs and their role in cancer treatment. We also discuss the potential of MSC-EXOs as delivery vehicles for miRNAs to enhance therapeutic efficacy, as well as the role of exosomal miRNAs in the induction of ferroptosis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | | | - Priyanka Singh
- NIMS School of Allied Sciences and Technology, NIMS University, Jaipur, Rajasthan 303121, India
| | - Kiranjeet Kaur
- Chandigarh Pharmacy College, Chandigarh Group of colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Canzler S, Schubert K, Rolle-Kampczyk UE, Wang Z, Schreiber S, Seitz H, Mockly S, Kamp H, Haake V, Huisinga M, Bergen MV, Buesen R, Hackermüller J. Evaluating the performance of multi-omics integration: a thyroid toxicity case study. Arch Toxicol 2025; 99:309-332. [PMID: 39441382 PMCID: PMC11742338 DOI: 10.1007/s00204-024-03876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Multi-omics data integration has been repeatedly discussed as the way forward to more comprehensively cover the molecular responses of cells or organisms to chemical exposure in systems toxicology and regulatory risk assessment. In Canzler et al. (Arch Toxicol 94(2):371-388. https://doi.org/10.1007/s00204-020-02656-y ), we reviewed the state of the art in applying multi-omics approaches in toxicological research and chemical risk assessment. We developed best practices for the experimental design of multi-omics studies, omics data acquisition, and subsequent omics data integration. We found that multi-omics data sets for toxicological research questions were generally rare, with no data sets comprising more than two omics layers adhering to these best practices. Due to these limitations, we could not fully assess the benefits of different data integration approaches or quantitatively evaluate the contribution of various omics layers for toxicological research questions. Here, we report on a multi-omics study on thyroid toxicity that we conducted in compliance with these best practices. We induced direct and indirect thyroid toxicity through Propylthiouracil (PTU) and Phenytoin, respectively, in a 28-day plus 14-day recovery oral rat toxicity study. We collected clinical and histopathological data and six omics layers, including the long and short transcriptome, proteome, phosphoproteome, and metabolome from plasma, thyroid, and liver. We demonstrate that the multi-omics approach is superior to single-omics in detecting responses at the regulatory pathway level. We also show how combining omics data with clinical and histopathological parameters facilitates the interpretation of the data. Furthermore, we illustrate how multi-omics integration can hint at the involvement of non-coding RNAs in post-transcriptional regulation. Also, we show that multi-omics facilitates grouping, and we assess how much information individual and combinations of omics layers contribute to this approach.
Collapse
Affiliation(s)
- Sebastian Canzler
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| | - Kristin Schubert
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | | | - Zhipeng Wang
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Stephan Schreiber
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Hervé Seitz
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Sophie Mockly
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Maike Huisinga
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
3
|
Min S, Zhang L, Zhang L, Liu F, Liu M. LncRNA MIR100HG affects the proliferation and metastasis of lung cancer cells through mediating the microRNA-5590-3p/DCBLD2 axis. Immun Inflamm Dis 2024; 12:e1223. [PMID: 38602284 PMCID: PMC11007817 DOI: 10.1002/iid3.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVE The aim of this paper is to investigate the effect of long noncoding RNA (lncRNA) MIR100HG on the proliferation and metastasis of lung cancer cells by mediating the microRNA (miR)-5590-3p/DCBLD2 axis. METHODS RNA levels of MIR100HG, miR-5590-3p, and DCBLD2 in lung cancer tissues and cells were detected by quantitative reverse-transcription polymerase chain reaction, and protein level was assessed by Western blot. Effects of MIR100HG or miR-5590-3p on proliferation, migration, and invasion of lung cancer cells were detected by Cell Counting Kit-8, colony formation, and Transwell assays. Luciferase reporter assay and RNA-immunoprecipitation assay confirmed the target relationship between miR-5590-3p and MIR100HG or DCBLD2. RESULTS MIR100HG and DCBLD2 were highly expressed, while miR-5590-3p was lowly expressed in lung cancer tissues and cells. Silencing MIR100HG or upregulating miR-5590-3p impeded lung cancer cell proliferation, migration, and invasion. MIR100HG could up-regulate DCBLD2 by sponging miR-5590-3p. Downregulation of miR-5590-3p partly overturned the suppressive effect of silencing MIR100HG on lung cancer cell proliferation and metastasis, and overexpression of DCBLD2 also reversed the effect of overexpression of miR-5590-3p on lung cancer cell proliferation and metastasis. CONCLUSION LncRNA MIR100HG promotes lung cancer progression by targeting and negatively regulating DCBLD2 through binding with miR-5590-3p.
Collapse
Affiliation(s)
- Shengping Min
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Linxiang Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Fangfang Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical CollegeAnhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory DiseaseBengbuAnhuiChina
| | - Miao Liu
- Department of Microbiology and Parasitology, School of Basic Medical SciencesAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
4
|
Lui A, Do T, Alzayat O, Yu N, Phyu S, Santuya HJ, Liang B, Kailash V, Liu D, Inslicht SS, Shahlaie K, Liu D. Tumor Suppressor MicroRNAs in Clinical and Preclinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:426. [PMID: 38675388 PMCID: PMC11054060 DOI: 10.3390/ph17040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers and neurological disorders are two major types of diseases in humans. We developed the concept called the "Aberrant Cell Cycle Disease (ACCD)" due to the accumulating evidence that shows that two different diseases share the common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncoprotein activation and tumor suppressor (TS) inactivation, which are associated with both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase/oncogene inhibition and TS elevation) can be leveraged for neurological treatments. MicroRNA (miR/miRNA) provides a new style of drug-target binding. For example, a single tumor suppressor miRNA (TS-miR/miRNA) can bind to and decrease tens of target kinases/oncogenes, producing much more robust efficacy to block cell cycle re-entry than inhibiting a single kinase/oncogene. In this review, we summarize the miRNAs that are altered in both cancers and neurological disorders, with an emphasis on miRNA drugs that have entered into clinical trials for neurological treatment.
Collapse
Affiliation(s)
- Austin Lui
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Timothy Do
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Omar Alzayat
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Nina Yu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Su Phyu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Hillary Joy Santuya
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Benjamin Liang
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Vidur Kailash
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Dewey Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Sabra S. Inslicht
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
- San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
- Mirnova Therapeutics Inc., Davis, CA 95618, USA
| |
Collapse
|
5
|
Beaumont JEJ, Ju J, Barbeau LMO, Demers I, Savelkouls KG, Derks K, Bouwman FG, Wauben MHM, Zonneveld MI, Keulers TGH, Rouschop KMA. GABARAPL1 is essential in extracellular vesicle cargo loading and metastasis development. Radiother Oncol 2024; 190:109968. [PMID: 37898438 DOI: 10.1016/j.radonc.2023.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1+ EV in the metastatic cascade. MATERIALS AND METHODS GABARAPL1 deficient or control MDA-MB-231 cells were injected in murine mammary fat pads. Lungs were dissected and analysed for human cytokeratin 18. EV from control and GABARAPL1 deficient cells exposed to normoxia (21% O2) or hypoxia (O2 < 0.02%) were isolated and analysed by immunoblot, nanoparticle tracking analysis, high resolution flow cytometry, mass spectrometry and next-generation sequencing. Cellular migration and invasion were analysed using scratch assays and transwell-invasion assays, respectively. RESULTS The number of pulmonary metastases derived from GABARAPL1 deficient tumours decreased by 84%. GABARAPL1 deficient cells migrate slower but display a comparable invasive capacity. Both normoxic and hypoxic EV contain proteins and miRNAs associated with metastasis development and, in line, increase cancer cell invasiveness. Although GABARAPL1 deficiency alters EV content, it does not alter the EV-induced increase in cancer cell invasiveness. CONCLUSION GABARAPL1 is essential for metastasis development. This is unrelated to changes in migration and invasion and suggests that GABARAPL1 or GABARAPL1+ EV are essential in other processes related to the metastatic cascade.
Collapse
Affiliation(s)
- Joel E J Beaumont
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jinzhe Ju
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imke Demers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marca H M Wauben
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marijke I Zonneveld
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom G H Keulers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Che Y, Zhang H, Li H, Wu X. CIP2A interacts with AKT1 to promote the malignant biological behaviors of oral squamous cell carcinoma by upregulating the GSK‑3β/β‑catenin pathway. Exp Ther Med 2023; 26:514. [PMID: 37840566 PMCID: PMC10570767 DOI: 10.3892/etm.2023.12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide, which is associated with a poor prognosis. The present study aimed to investigate the role of cancerous inhibitor of protein phosphatase 2A (CIP2A) in OSCC and its regulatory effect on AKT1. Firstly, CIP2A and AKT1 expression in OSCC cells was detected by western blotting. After silencing CIP2A, cell viability and cell proliferation were assessed using the Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining. Cell apoptosis was evaluated by TUNEL staining and the expression of apoptosis-related proteins was assessed using western blotting. Wound healing, Transwell and tube formation assays were performed to evaluate CAL-27 cell migration, invasion and human umbilical vein endothelial cell (HUVEC) tube formation. The interaction between CIP2A and AKT1 was identified by co-immunoprecipitation (co-IP). In addition, AKT1 was overexpressed in CIP2A-silenced CAL-27 cells to perform rescue experiments to analyze the malignant biological functions of CAL-27 cells. Finally, the expression of proteins in the glycogen synthase kinase (GSK)-3β/β-catenin pathway was determined by western blot analysis. Markedly elevated CIP2A and AKT1 expression was observed in OSCC cells. CIP2A knockdown inhibited the viability, proliferation, migration and invasion, and promoted the apoptosis of CAL-27 cells. Concurrently, CIP2A loss-of-function attenuated tube formation. Results of Co-IP confirmed there was an interaction between CIP2A and AKT1. Rescue experiments suggested that AKT1 overexpression alleviated the inhibitory effects of CIP2A knockdown on the viability, proliferation, migration and invasion of CAL-27 cells, as well as tube formation in HUVECs . Additionally, CIP2A silencing significantly downregulated phosphorylated-GSK-3β and β-catenin expression, which was reversed by AKT1 overexpression. In conclusion, CIP2A could interact with AKT1 to promote the malignant biological behaviors of OSCC cells by upregulating the GSK-3β/β-catenin pathway. These findings may provide a targeted therapy for OSCC treatment.
Collapse
Affiliation(s)
- Yilei Che
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Hui Zhang
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Hui Li
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Xiaozhen Wu
- Department of Stomatology, Aerospace Center Hospital, Beijing 100049, P.R. China
| |
Collapse
|
7
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|