1
|
Yeo MJR, Zhang O, Xie X, Nam E, Payne NC, Gosavi PM, Kwok HS, Iram I, Lee C, Li J, Chen NJ, Nguyen K, Jiang H, Wang ZA, Lee K, Mao H, Harry SA, Barakat IA, Takahashi M, Waterbury AL, Barone M, Mattevi A, Carr SA, Udeshi ND, Bar-Peled L, Cole PA, Mazitschek R, Liau BB, Zheng N. UM171 glues asymmetric CRL3-HDAC1/2 assembly to degrade CoREST corepressors. Nature 2025; 639:232-240. [PMID: 39939761 PMCID: PMC11882444 DOI: 10.1038/s41586-024-08532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
UM171 is a potent agonist of ex vivo human haematopoietic stem cell self-renewal1. By co-opting KBTBD4, a substrate receptor of the CUL3-RING E3 ubiquitin ligase (CRL3) complex, UM171 promotes the degradation of the LSD1-CoREST corepressor complex, thereby limiting haematopoietic stem cell attrition2,3. However, the direct target and mechanism of action of UM171 remain unclear. Here we show that UM171 acts as a molecular glue to induce high-affinity interactions between KBTBD4 and HDAC1/2 to promote corepressor degradation. Through proteomics and chemical inhibitor studies, we identify the principal target of UM171 as HDAC1/2. Cryo-electron microscopy analysis of dimeric KBTBD4 bound to UM171 and the LSD1-HDAC1-CoREST complex identifies an asymmetric assembly in which a single UM171 molecule enables a pair of KELCH-repeat propeller domains to recruit the HDAC1 catalytic domain. One KBTBD4 propeller partially masks the rim of the HDAC1 active site, which is exploited by UM171 to extend the E3-neosubstrate interface. The other propeller cooperatively strengthens HDAC1 binding through a distinct interface. The overall CoREST-HDAC1/2-KBTBD4 interaction is further buttressed by the endogenous cofactor inositol hexakisphosphate, which acts as a second molecular glue. The functional relevance of the quaternary complex interaction surfaces is demonstrated by base editor scanning of KBTBD4 and HDAC1. By delineating the direct target of UM171 and its mechanism of action, we reveal how the cooperativity offered by a dimeric CRL3 E3 can be leveraged by a small molecule degrader.
Collapse
Affiliation(s)
- Megan J R Yeo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivia Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaowen Xie
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pallavi M Gosavi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hui Si Kwok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Irtiza Iram
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ceejay Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiaming Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Khanh Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Desai Sethi Urology Institute & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Stefan A Harry
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Idris A Barakat
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda L Waterbury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marco Barone
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ralph Mazitschek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Chamessian A, Payne M, Gordon I, Zhou M, Gereau R. Small molecule-mediated targeted protein degradation of voltage-gated sodium channels involved in pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634079. [PMID: 39896637 PMCID: PMC11785090 DOI: 10.1101/2025.01.21.634079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The voltage-gated sodium channels (VGSC) NaV1.8 and NaV1.7 (NaVs) have emerged as promising and high-value targets for the development of novel, non-addictive analgesics to combat the chronic pain epidemic. In recent years, many small molecule inhibitors against these channels have been developed. The recent successful clinical trial of VX-548, a NaV1.8-selective inhibitor, has spurred much interest in expanding the arsenal of subtype-selective voltage-gated sodium channel therapeutics. Toward that end, we sought to determine whether NaVs are amenable to targeted protein degradation with small molecule degraders, namely proteolysis-targeting chimeras (PROTACs) and molecular glues. Here, we report that degron-tagged NaVs are potently and rapidly degraded by small molecule degraders harnessing the E3 ubiquitin ligases cereblon (CRBN) and Von Hippel Lindau (VHL). Using LC/MS analysis, we demonstrate that PROTAC-mediated proximity between NaV1.8 and CRBN results in ubiquitination on the 2nd intracellular loop, pointing toward a potential mechanism of action and demonstrating the ability of CRBN to recognize a VGSC as a neosubstrate. Our foundational findings are an important first step toward realizing the immense potential of NaV-targeting degrader analgesics to combat chronic pain.
Collapse
|
3
|
Lord S, Johnston H, Samant R, Lai Y. Ubiquitylomics: An Emerging Approach for Profiling Protein Ubiquitylation in Skeletal Muscle. J Cachexia Sarcopenia Muscle 2024; 15:2281-2294. [PMID: 39279720 PMCID: PMC11634490 DOI: 10.1002/jcsm.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle is a highly adaptable tissue, finely tuned by various physiological and pathological factors. Whilst the pivotal role of skeletal muscle in overall health is widely acknowledged, unravelling the underlying molecular mechanisms poses ongoing challenges. Protein ubiquitylation, a crucial post-translational modification, is involved in regulating most biological processes. This widespread impact is achieved through a diverse set of enzymes capable of generating structurally and functionally distinct ubiquitin modifications on proteins. The complexity of protein ubiquitylation has presented significant challenges in not only identifying ubiquitylated proteins but also characterising their functional significance. Mass spectrometry enables in-depth analysis of proteins and their post-translational modification status, offering a powerful tool for studying protein ubiquitylation and its biological diversity: an approach termed ubiquitylomics. Ubiquitylomics has been employed to tackle different perspectives of ubiquitylation, including but not limited to global quantification of substrates and ubiquitin linkages, ubiquitin site recognition and crosstalk with other post-translational modifications. As the field of mass spectrometry continues to evolve, the usage of ubiquitylomics has unravelled novel insights into the regulatory mechanisms of protein ubiquitylation governing biology. However, ubiquitylomics research has predominantly been conducted in cellular models, limiting our understanding of ubiquitin signalling events driving skeletal muscle biology. By integrating the intricate landscape of protein ubiquitylation with dynamic shifts in muscle physiology, ubiquitylomics promises to not only deepen our understanding of skeletal muscle biology but also lay the foundation for developing transformative muscle-related therapeutics. This review aims to articulate how ubiquitylomics can be utilised by researchers to address different aspects of ubiquitylation signalling in skeletal muscle. We explore methods used in ubiquitylomics experiments, highlight relevant literature employing ubiquitylomics in the context of skeletal muscle and outline considerations for experimental design.
Collapse
Affiliation(s)
- Samuel O. Lord
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
| | | | | | - Yu‐Chiang Lai
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Biomedical Research Centre Sarcopenia and MultimorbidityUniversity of BirminghamBirminghamUK
| |
Collapse
|
4
|
Upadhyay A, Joshi V. The Ubiquitin Tale: Current Strategies and Future Challenges. ACS Pharmacol Transl Sci 2024; 7:2573-2587. [PMID: 39296276 PMCID: PMC11406696 DOI: 10.1021/acsptsci.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Ubiquitin (Ub) is often considered a structurally conserved protein. Ubiquitination plays a prominent role in the regulation of physiological pathways. Since the first mention of Ub in protein degradation pathways, a plethora of nonproteolytic functions of this post-translational modification have been identified and investigated in detail. In addition, several other structurally and functionally related proteins have been identified and investigated for their Ub-like structures and functions. Ubiquitination and Ub-like modifications play vital roles in modulating the pathways involved in crucial biological processes and thus affect the global proteome. In this Review, we provide a snapshot of pathways, substrates, diseases, and novel therapeutic targets that are associated with ubiquitination or Ub-like modifications. In the past few years, a large number of proteomic studies have identified pools of ubiquitinated proteins (ubiquitylomes) involved or induced in healthy or stressed conditions. These comprehensive studies involving identification of new ubiquitination substrates and sites contribute enormously to our understanding of ubiquitination in more depth. However, with the current tools, there are certain limitations that need to be addressed. We review recent technological advancements in ubiquitylomic studies and their limitations and challenges. Overall, large-scale ubiquitylomic studies contribute toward understanding global ubiquitination in the contexts of normal and disease conditions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh 491001, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
5
|
P T B, Sahu I. Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 2024; 52:627-637. [PMID: 38572966 DOI: 10.1042/bst20230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
Collapse
Affiliation(s)
- Brindhavanam P T
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Indrajit Sahu
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
6
|
Dieters-Castator DZ, Manzanillo P, Yang HY, Modak RV, Rardin MJ, Gibson BW. Magnetic Bead-Based Workflow for Sensitive and Streamlined Cell Surface Proteomics. J Proteome Res 2024; 23:618-632. [PMID: 38226771 DOI: 10.1021/acs.jproteome.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cell surface proteins represent an important class of molecules for therapeutic targeting and cellular phenotyping. However, their enrichment and detection via mass spectrometry-based proteomics remains challenging due to low abundance, post-translational modifications, hydrophobic regions, and processing requirements. To improve their identification, we optimized a Cell-Surface Capture (CSC) workflow that incorporates magnetic bead-based processing. Using this approach, we evaluated labeling conditions (biotin tags and catalysts), enrichment specificity (streptavidin beads), missed cleavages (lysis buffers), nonenzymatic deamidation (digestion and deglycosylation buffers), and data acquisition methods (DDA, DIA, and TMT). Our findings support the use of alkoxyamine-PEG4-biotin plus 5-methoxy-anthranilic acid, SDS/urea-based lysis buffers, single-pot solid-phased-enhanced sample-preparation (SP3), and streptavidin magnetic beads for maximal surfaceome coverage. Notably, with semiautomated processing, sample handling was simplified and between ∼600 and 900 cell surface N-glycoproteins were identified from only 25-200 μg of HeLa protein. CSC also revealed significant differences between in vitro monolayer cultures and in vivo tumor xenografts of murine CT26 colon adenocarcinoma samples that may aid in target identification for drug development. Overall, the improved efficiency of the magnetic-based CSC workflow identified both previously reported and novel N-glycosites with less material and high reproducibility that should help advance the field of surfaceomics by providing insight in cellular phenotypes not previously documented.
Collapse
Affiliation(s)
| | - Paolo Manzanillo
- Inflammation, Amgen Research, South San Francisco, California 94080, United States
| | - Han-Yin Yang
- Discovery Proteomics, Amgen Research, South San Francisco, California 94080, United States
| | - Rucha V Modak
- Inflammation, Amgen Research, South San Francisco, California 94080, United States
| | - Matthew J Rardin
- Discovery Proteomics, Amgen Research, South San Francisco, California 94080, United States
| | - Bradford W Gibson
- Discovery Proteomics, Amgen Research, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Hua Z. Deciphering the protein ubiquitylation system in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6487-6504. [PMID: 37688404 DOI: 10.1093/jxb/erad354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Protein ubiquitylation is a post-translational modification (PTM) process that covalently modifies a protein substrate with either mono-ubiquitin moieties or poly-ubiquitin chains often at the lysine residues. In Arabidopsis, bioinformatic predictions have suggested that over 5% of its proteome constitutes the protein ubiquitylation system. Despite advancements in functional genomic studies in plants, only a small fraction of this bioinformatically predicted system has been functionally characterized. To expand our understanding about the regulatory function of protein ubiquitylation to that rivalling several other major systems, such as transcription regulation and epigenetics, I describe the status, issues, and new approaches of protein ubiquitylation studies in plant biology. I summarize the methods utilized in defining the ubiquitylation machinery by bioinformatics, identifying ubiquitylation substrates by proteomics, and characterizing the ubiquitin E3 ligase-substrate pathways by functional genomics. Based on the functional and evolutionary analyses of the F-box gene superfamily, I propose a deleterious duplication model for the large expansion of this family in plant genomes. Given this model, I present new perspectives of future functional genomic studies on the plant ubiquitylation system to focus on core and active groups of ubiquitin E3 ligase genes.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
8
|
Chang A, Leutert M, Rodriguez-Mias RA, Villén J. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics. J Proteome Res 2023; 22:1868-1880. [PMID: 37097255 PMCID: PMC10510590 DOI: 10.1021/acs.jproteome.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Phosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY can handle up to 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic, and tyrosine-specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.
Collapse
Affiliation(s)
- Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
9
|
Sahu I, Zhu H, Buhrlage SJ, Marto JA. Proteomic approaches to study ubiquitinomics. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194940. [PMID: 37121501 PMCID: PMC10612121 DOI: 10.1016/j.bbagrm.2023.194940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
As originally described some 40 years ago, protein ubiquitination was thought to serve primarily as a static mark for protein degradation. In the ensuing years, it has become clear that 'ubiquitination' is a structurally diverse and dynamic post-translational modification and is intricately involved in a myriad of signaling pathways in all eukaryote cells. And like other key pathways in the functional proteome, ubiquitin signaling is often disrupted, sometimes severely so, in human pathophysiology. As a result of its central role in normal physiology and human disease, the ubiquitination field is now represented across the full landscape of biomedical research from fundamental structural and biochemical studies to translational and clinical research. In recent years, mass spectrometry has emerged as a powerful technology for the detection and characterization of protein ubiquitination. Herein we detail qualitative and quantitative proteomic methods using a compare/contrast approach to highlight their strengths and weaknesses.
Collapse
Affiliation(s)
- Indrajit Sahu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - He Zhu
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Center for Emergent Drug Targets, USA.
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, USA.
| |
Collapse
|
10
|
Abelin JG, Bergstrom EJ, Rivera KD, Taylor HB, Klaeger S, Xu C, Verzani EK, Jackson White C, Woldemichael HB, Virshup M, Olive ME, Maynard M, Vartany SA, Allen JD, Phulphagar K, Harry Kane M, Rachimi S, Mani DR, Gillette MA, Satpathy S, Clauser KR, Udeshi ND, Carr SA. Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues. Nat Commun 2023; 14:1851. [PMID: 37012232 PMCID: PMC10070353 DOI: 10.1038/s41467-023-37547-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.
Collapse
Affiliation(s)
- Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Keith D Rivera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hannah B Taylor
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Charles Xu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - C Jackson White
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hilina B Woldemichael
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Maya Virshup
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Myranda Maynard
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Stephanie A Vartany
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Kshiti Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
11
|
Kotliar IB. Proteomics Update and Perspectives from the Proteomics in Cell Biology and Disease Mechanisms Conference. Chembiochem 2023; 24:e202200626. [PMID: 36703596 PMCID: PMC10077886 DOI: 10.1002/cbic.202200626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 01/28/2023]
Abstract
Proteomics, or the large-scale study of proteomes, has benefitted from many recent advances in chemical biology, mass spectrometry, and machine learning. The Proteomics in Cell Biology and Disease Mechanisms conference showcased the synergy between these elements and the vast range of biological questions that proteomics can now help us to answer.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA
| |
Collapse
|
12
|
Chang A, Leutert M, Rodriguez-Mias RA, Villén J. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522335. [PMID: 36711935 PMCID: PMC9881991 DOI: 10.1101/2023.01.05.522335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphotyrosine (pY) enrichment is critical for expanding fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY handles 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic and tyrosine specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.
Collapse
Affiliation(s)
- Alexis Chang
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
13
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Burt RA, Alghusen IM, John Ephrame S, Villar MT, Artigues A, Slawson C. Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease. Front Mol Biosci 2022; 9:920727. [PMID: 35664676 PMCID: PMC9161079 DOI: 10.3389/fmolb.2022.920727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
O-GlcNAc is a pleotropic, enigmatic post-translational modification (PTM). This PTM modifies thousands of proteins differentially across tissue types and regulates diverse cellular signaling processes. O-GlcNAc is implicated in numerous diseases, and the advent of O-GlcNAc perturbation as a novel class of therapeutic underscores the importance of identifying and quantifying the O-GlcNAc modified proteome. Here, we review recent advances in mass spectrometry-based proteomics that will be critical in elucidating the role of this unique glycosylation system in health and disease.
Collapse
Affiliation(s)
- Rajan A. Burt
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
| | - Ibtihal M. Alghusen
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Sophiya John Ephrame
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Maria T. Villar
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Antonio Artigues
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| | - Chad Slawson
- University of Kansas Medical Center, Medical Scientist Training Program (MSTP), Kansas, KS, United States
- Department Biochemistry, University of Kansas Medical Center, Kansas, KS, United States
| |
Collapse
|
15
|
Abstract
Cellular processes require tight and coordinated control of protein abundance, localization, and activity. One of the core mechanisms to achieve specific regulation of proteins is protein phosphorylation. Here we present a workflow to monitor protein abundance and phosphorylation in primary cultured neurons using liquid chromatography-coupled mass spectrometry. Our protocol provides a detailed guide on all steps for detection and label-free-quantification of phosphorylated and unmodified proteins of primary cortical neurons, including primary cell culture, phosphoproteomic sample preparation and data-processing, and evaluation. For complete details on the use and execution of this protocol, please refer to Desch et al. (2021).
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M. Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D. Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
- Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| |
Collapse
|