1
|
Sporbeck K, Haas ML, Pastor-Maldonado CJ, Schüssele DS, Hunter C, Takacs Z, Diogo de Oliveira AL, Franz-Wachtel M, Charsou C, Pfisterer SG, Gubas A, Haller PK, Knorr RL, Kaulich M, Macek B, Eskelinen EL, Simonsen A, Proikas-Cezanne T. The ABL-MYC axis controls WIPI1-enhanced autophagy in lifespan extension. Commun Biol 2023; 6:872. [PMID: 37620393 PMCID: PMC10449903 DOI: 10.1038/s42003-023-05236-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Human WIPI β-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.
Collapse
Affiliation(s)
- Katharina Sporbeck
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Zsuzsanna Takacs
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Institute of Molecular Biotechnology, A-1030, Vienna, Austria
| | - Ana L Diogo de Oliveira
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Chara Charsou
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Simon G Pfisterer
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Department of Anatomy, Faculty of Medicine, University of Helsinki, FI-00290, Helsinki, Finland
| | - Andrea Gubas
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Patricia K Haller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Roland L Knorr
- Humboldt University of Berlin, Institute of Biology, D-10115, Berlin, Germany
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Manuel Kaulich
- Institute of Biochemistry II, Frankfurt Cancer Institute, Goethe University Medical School, D-60590, Frankfurt, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Eeva-Liisa Eskelinen
- Department of Biosciences, University of Helsinki, Fl-00790, Helsinki, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Anne Simonsen
- Institute of Basic Medical Sciences, University of Oslo, 0372, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology and Eberhard Karls University Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|
2
|
Skodra C, Michailidis M, Moysiadis T, Stamatakis G, Ganopoulou M, Adamakis IDS, Angelis L, Ganopoulos I, Tanou G, Samiotaki M, Bazakos C, Molassiotis A. Disclosing the molecular basis of salinity priming in olive trees using proteogenomic model discovery. PLANT PHYSIOLOGY 2023; 191:1913-1933. [PMID: 36508356 PMCID: PMC10022641 DOI: 10.1093/plphys/kiac572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 11/11/2022] [Indexed: 05/13/2023]
Abstract
Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.
Collapse
Affiliation(s)
- Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | | |
Collapse
|
3
|
Clasen SJ, Bell MEW, Borbón A, Lee DH, Henseler ZM, de la Cuesta-Zuluaga J, Parys K, Zou J, Wang Y, Altmannova V, Youngblut ND, Weir JR, Gewirtz AT, Belkhadir Y, Ley RE. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci Immunol 2023; 8:eabq7001. [PMID: 36608151 DOI: 10.1126/sciimmunol.abq7001] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flagellin, the protein subunit of the bacterial flagellum, stimulates the innate immune receptor Toll-like receptor 5 (TLR5) after pattern recognition or evades TLR5 through lack of recognition. This binary response fails to explain the weak agonism of flagellins from commensal bacteria, raising the question of how TLR5 response is tuned. Here, we screened abundant flagellins present in metagenomes from human gut for both TLR5 recognition and activation and uncovered a class of flagellin-TLR5 interaction termed silent recognition. Silent flagellins were weak TLR5 agonists despite pattern recognition. Receptor activity was tuned by a TLR5-flagellin interaction distal to the site of pattern recognition that was present in Salmonella flagellin but absent in silent flagellins. This interaction enabled flagellin binding to preformed TLR5 dimers and increased TLR5 signaling by several orders of magnitude. Silent recognition by TLR5 occurred in human organoids and mice, and silent flagellin proteins were present in human stool. These flagellins were produced primarily by the abundant gut bacteria Lachnospiraceae and were enriched in nonindustrialized populations. Our findings provide a mechanism for the innate immune system to tolerate commensal-derived flagellins while remaining vigilant to the presence of flagellins produced by pathogens.
Collapse
Affiliation(s)
- Sara J Clasen
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael E W Bell
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Andrea Borbón
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Zachariah M Henseler
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Katarzyna Parys
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Veronika Altmannova
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen 72076, Germany
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen 72076, Germany
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
5
|
From single-omics to interactomics: How can ligand-induced perturbations modulate single-cell phenotypes? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:45-83. [PMID: 35871896 DOI: 10.1016/bs.apcsb.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cells suffer from perturbations by different stimuli, which, consequently, rise to individual alterations in their profile and function that may end up affecting the tissue as a whole. This is no different if we consider the effect of a therapeutic agent on a biological system. As cells are exposed to external ligands their profile can change at different single-omics levels. Detecting how these changes take place through different sequencing technologies is key to a better understanding of the effects of therapeutic agents. Single-cell RNA-sequencing stands out as one of the most common approaches for cell profiling and perturbation analysis. As a result, single-cell transcriptomics data can be integrated with other omics data sources, such as proteomics and epigenomics data, to clarify the perturbation effects and mechanism at the cell level. Appropriate computational tools are key to process and integrate the available information. This chapter focuses on the recent advances on ligand-induced perturbation and single-cell omics computational tools and algorithms, their current limitations, and how the deluge of data can be used to improve the current process of drug research and development.
Collapse
|
6
|
Schmitt M, Sinnberg T, Niessner H, Forschner A, Garbe C, Macek B, Nalpas NC. Individualized Proteogenomics Reveals the Mutational Landscape of Melanoma Patients in Response to Immunotherapy. Cancers (Basel) 2021; 13:cancers13215411. [PMID: 34771574 PMCID: PMC8582461 DOI: 10.3390/cancers13215411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Melanoma is the most aggressive form of skin cancer, with a rapidly increasing incidence rate. Due to ineffective treatment options in the late stage melanoma, patients have an overall poor prognosis. Over the last decades, the role of the immune system in the control of tumor progression has been established and immune checkpoint inhibitors (ICi) have shown remarkable clinical activity. While current trials suggest durable responses in patient under ICi therapy, there is increasing evidence pointing towards existence of innate and acquired resistance to ICi therapy; and it is now clear that personalized medicine will be critical for effective patient therapy. Proteogenomics is a powerful tool to study the mode of action of disease-associated mutations at the genome, transcriptome, proteome and PTM level. Here, we applied a proteogenomic workflow to study melanoma samples from human tumors. Such workflow may be applicable to other patient-derived samples and different cancer types. Abstract Immune checkpoint inhibitors are used to restore or augment antitumor immune responses and show great promise in the treatment of melanoma and other types of cancers. However, only a small percentage of patients are fully responsive to immune checkpoint inhibition, mostly due to tumor heterogeneity and primary resistance to therapy. Both of these features are largely driven by the accumulation of patient-specific mutations, pointing to the need for personalized approaches in diagnostics and immunotherapy. Proteogenomics integrates patient-specific genomic and proteomic data to study cancer development, tumor heterogeneity and resistance mechanisms. Using this approach, we characterized the mutational landscape of four clinical melanoma patients. This enabled the quantification of hundreds of sample-specific amino acid variants, among them many that were previously not reported in melanoma. Changes in abundance at the protein and phosphorylation site levels revealed patient-specific over-represented pathways, notably linked to melanoma development (MAPK1 activation) or immunotherapy (NLRP1 inflammasome). Personalized data integration resulted in the prediction of protein drug targets, such as the drugs vandetanib and bosutinib, which were experimentally validated and led to a reduction in the viability of tumor cells. Our study emphasizes the potential of proteogenomic approaches to study personalized mutational landscapes, signaling networks and therapy options.
Collapse
Affiliation(s)
- Marisa Schmitt
- Quantitative Proteomics, University of Tübingen, 72074 Tübingen, Germany;
| | - Tobias Sinnberg
- Division of Dermatooncology, University of Tübingen, 72074 Tübingen, Germany; (T.S.); (H.N.); (A.F.); (C.G.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72074 Tübingen, Germany
| | - Heike Niessner
- Division of Dermatooncology, University of Tübingen, 72074 Tübingen, Germany; (T.S.); (H.N.); (A.F.); (C.G.)
| | - Andrea Forschner
- Division of Dermatooncology, University of Tübingen, 72074 Tübingen, Germany; (T.S.); (H.N.); (A.F.); (C.G.)
| | - Claus Garbe
- Division of Dermatooncology, University of Tübingen, 72074 Tübingen, Germany; (T.S.); (H.N.); (A.F.); (C.G.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72074 Tübingen, Germany
| | - Boris Macek
- Quantitative Proteomics, University of Tübingen, 72074 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72074 Tübingen, Germany
- Correspondence: (B.M.); (N.C.N.); Tel.: +49-(0)7-0712970556 (B.M.); +49-(0)7-0712970552 (N.C.N.)
| | - Nicolas C. Nalpas
- Quantitative Proteomics, University of Tübingen, 72074 Tübingen, Germany;
- Correspondence: (B.M.); (N.C.N.); Tel.: +49-(0)7-0712970556 (B.M.); +49-(0)7-0712970552 (N.C.N.)
| |
Collapse
|