1
|
Li J, Gao Y, Li B, Zhang L, Fang Y, Zou H, Ye X. FONPS6, a Nonribosomal Peptide Synthetase, Plays a Crucial Role in Achieving the Full Virulence Potential of the Vascular Wilt Pathogen Fusarium oxysporum f. sp. Niveum. Life (Basel) 2025; 15:142. [PMID: 40003551 PMCID: PMC11856223 DOI: 10.3390/life15020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
NPS6 is one of the nonribosomal peptide synthetase (NRPS) family members. The roles of NPS6 in ascomycetes are well known, but its roles in Fusarium oxysporum are unidentified. We investigated its function in the growth, morphology, stress sensitivity, allelochemical secretion, and pathogenesis in F. oxysporum (FoNPS6). The partial deletion of FoNPS6 orthologs (ΔFON-NPS6) resulted in hypersensitivity to H2O2 and KO2, iron depletion, and reduced virulence. Full virulence was restored by complementation. ΔFON-NPS6 not only inhibited spore formation but also displayed hyphal growth patterns that differed significantly from the wild-type strain. Plant leaching released allelochemicals, which FON-NPS6 broke down. All of these findings show that FoNPS6 quantitatively increases F. oxysporum's pathogenicity.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| | - Yanyang Gao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| | - Bowen Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| | - Li Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| | - Yi Fang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| | - Xuhong Ye
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.G.); (B.L.); (L.Z.); (Y.F.); (H.Z.)
- Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, China
| |
Collapse
|
2
|
Amatto IVDS, Simões FADO, Garzon NGDR, Marciano CL, Silva RRD, Cabral H. Response of Fusarium oxysporum soil isolate to amphotericin B and fluconazole at the proteomic level. Braz J Microbiol 2024; 55:2557-2568. [PMID: 38954219 PMCID: PMC11405588 DOI: 10.1007/s42770-024-01417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Fusarium oxysporum is a cross-kingdom pathogen that infects humans, animals, and plants. The primary concern regarding this genus revolves around its resistance profile to multiple classes of antifungals, particularly azoles. However, the resistance mechanism employed by Fusarium spp. is not fully understood, thus necessitating further studies to enhance our understanding and to guide future research towards identifying new drug targets. Here, we employed an untargeted proteomic approach to assess the differentially expressed proteins in a soil isolate of Fusarium oxysporum URM7401 cultivated in the presence of amphotericin B and fluconazole. In response to antifungals, URM7401 activated diverse interconnected pathways, such as proteins involved in oxidative stress response, proteolysis, and lipid metabolism. Efflux proteins, antioxidative enzymes and M35 metallopeptidase were highly expressed under amphotericin B exposure. Antioxidant proteins acting on toxic lipids, along with proteins involved in lipid metabolism, were expressed during fluconazole exposure. In summary, this work describes the protein profile of a resistant Fusarium oxysporum soil isolate exposed to medical antifungals, paving the way for further targeted research and discovering new drug targets.
Collapse
Affiliation(s)
- I V da S Amatto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - F A de O Simões
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - N G da R Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - C L Marciano
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - R R da Silva
- Department of Molecular Biosciences, School of Pharmaceutical Sciences, University of São, Ribeirão Preto, Brazil
| | - H Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Qian H, Song L, Wang L, Yang Q, Wu R, Du J, Zheng B, Liang W. FolIws1-driven nuclear translocation of deacetylated FolTFIIS ensures conidiation of Fusarium oxysporum. Cell Rep 2024; 43:114588. [PMID: 39110594 DOI: 10.1016/j.celrep.2024.114588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/06/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Plant diseases caused by fungal pathogens pose a great threat to crop production. Conidiation of fungi is critical for disease epidemics and serves as a promising drug target. Here, we show that deacetylation of the FolTFIIS transcription elongation factor is indispensable for Fusarium oxysporum f. sp. lycopersici (Fol) conidiation. Upon microconidiation, Fol decreases K76 acetylation of FolTFIIS by altering the level of controlling enzymes, allowing for its nuclear translocation by FolIws1. Increased nuclear FolTFIIS enhances the transcription of sporulation-related genes and, consequently, enables microconidia production. Deacetylation of FolTFIIS is also critical for the production of macroconidia and chlamydospores, and its homolog has similar functions in Botrytis cinerea. We identify two FolIws1-targeting chemicals that block the conidiation of Fol and have effective activity against a wide range of pathogenic fungi without harm to the hosts. These findings reveal a conserved mechanism of conidiation regulation and provide candidate agrochemicals for disease management.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Limin Song
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lulu Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Yang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruihan Wu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Du
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bangxian Zheng
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
4
|
Sagini JPN, Ligabue-Braun R. Fungal heat shock proteins: molecular phylogenetic insights into the host takeover. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:16. [PMID: 38483597 DOI: 10.1007/s00114-024-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences (PPGBio), Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite, 245, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
5
|
Zhang N, Hu J, Liu Z, Liang W, Song L. Sir2-mediated cytoplasmic deacetylation facilitates pathogenic fungi infection in host plants. THE NEW PHYTOLOGIST 2024; 241:1732-1746. [PMID: 38037458 DOI: 10.1111/nph.19438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Lysine acetylation is an evolutionarily conserved and widespread post-translational modification implicated in the regulation of multiple metabolic processes, but its function remains largely unknown in plant pathogenic fungi. A comprehensive analysis combined with proteomic, molecular and cellular approaches was presented to explore the roles of cytoplasmic acetylation in Fusarium oxsysporum f.sp. lycopersici (Fol). The divergent cytoplasmic deacetylase FolSir2 was biochemically characterized, which is contributing to fungal virulence. Based on this, a total of 1752 acetylated sites in 897 proteins were identified in Fol via LC-MS/MS analysis. Further analyses of the quantitative acetylome revealed that 115 proteins representing two major pathways, translational and ribosome biogenesis, were hyperacetylated in the ∆Folsir2 strain. We experimentally examined the regulatory roles of FolSir2 on K271 deacetylation of FolGsk3, a serine/tyrosine kinase implicated in a variety of cellular functions, which was found to be crucial for the activation of FolGsk3 and thus modulated Fol pathogenicity. Cytoplasmic deacetylation by FolSir2 homologues has a similar function in Botrytis cinerea and likely other fungal pathogens. These findings reveal a conserved mechanism of silent information regulator 2-mediated cytoplasmic deacetylation that is involved in plant-fungal pathogenicity, providing a candidate target for designing broad-spectrum fungicides to control plant diseases.
Collapse
Affiliation(s)
- Ning Zhang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jicheng Hu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhishan Liu
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Limin Song
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
6
|
Zhou Y, Lu X, Hao J, Li S. Quantitative Acetylome Analysis of Differentially Modified Proteins in Virulence-Differentiated Fusarium oxysporum f. sp. cucumerinum Isolates during Cucumber Colonization. J Fungi (Basel) 2023; 9:920. [PMID: 37755028 PMCID: PMC10532600 DOI: 10.3390/jof9090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium oxysporum f. sp. cucumerinum (Foc) is a prominent pathogen that adversely affects cucumber (Cucumis sativus) production. In the pathogen's parasitic lifestyle, the pathogenesis and virulence evolution may be regulated by lysine acetylation, as demonstrated in many living organisms. However, its specific function in Foc remains poorly understood. In this study, the acetylome profiles of a mild virulence strain (foc-3b) and its derived virulence-enhanced strain (Ra-4) were analyzed before and post-inoculation on cucumber plants. In total, 10,664 acetylation sites were identified corresponding to 3874 proteins, and 45 conserved acetylation motifs were detected. Through comparison of the acetylomes, numerous differentially lysine-acetylated proteins were enriched in energy metabolism and protein processing processes, indicating the critical role of lysine acetylation during the transition from the saprotrophic lifestyle to the parasitic lifestyle. Comparative acetylome analyses on the two virulence-differentiated strains revealed that several differentially lysine-acetylated proteins were involved in pathways of defense response and energy metabolism. Ra-4 showed enhanced energy metabolism compared to foc-3b. This indicates that robust metabolic activity is required to achieve high virulence and facilitating adaptive evolution. Additionally, faster host responses are supported by an ample energy supply enhancing virulence. Thus, lysine acetylation plays a crucial role in the pathogenesis and virulence evolution of Foc.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohong Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Shidong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|