1
|
Paredes-Barrada M, Mathissen A, van der Molen RA, Jiménez-Huesa PJ, Polano ME, Donati S, Abele M, Ludwig C, van Kranenburg R, Claassens NJ. Awakening of the RuMP cycle for partial methylotrophy in the thermophile Parageobacillus thermoglucosidasius. Metab Eng 2025; 91:145-157. [PMID: 40245979 DOI: 10.1016/j.ymben.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Given sustainability and scalability concerns of using sugar feedstocks for microbial bioproduction of bulk chemicals, widening the feedstock range for microbial cell factories is of high interest. Methanol is a one-carbon alcohol that stands out as an alternative feedstock for the bioproduction of chemicals, as it is electron-rich, water-miscible and can be produced from several renewable resources. Bioconversion of methanol into products under thermophilic conditions (>50 °C) could be highly advantageous for industrial biotechnology. Although progress is being made with natural, thermophilic methylotrophic microorganisms, they are not yet optimal for bioproduction and establishing alternative thermophilic methylotrophic bioproduction platforms can widen possibilities. Hence, we set out to implement methanol assimilation in the emerging thermophilic model organism Parageobacillus thermoglucosidasius. We engineered P. thermoglucosidasius to be strictly dependent for its growth on methanol assimilation via the core of the highly efficient ribulose monophosphate (RuMP) cycle, while co-assimilating ribose. Surprisingly, this did not require heterologous expression of RuMP enzymes. Instead, by laboratory evolution we awakened latent, native enzyme activities to form the core of the RuMP cycle. We obtained fast methylotrophic growth in which ∼17 % of biomass was strictly obtained from methanol. This work lays the foundation for developing a versatile thermophilic bioproduction platform based on renewable methanol.
Collapse
Affiliation(s)
- Miguel Paredes-Barrada
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Annemieke Mathissen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Roland A van der Molen
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Pablo J Jiménez-Huesa
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Machiel Eduardo Polano
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Stefano Donati
- Novo Nordisk Foundation Center for Biosustainability, Søltofts Plads, 220, 212F, 2800, Kgs. Lyngby, Denmark
| | - Miriam Abele
- Technical University of Munich, Germany; TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Gregor-Mendel-Strasse 4, 85354, Freising, Germany
| | - Christina Ludwig
- Technical University of Munich, Germany; TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Gregor-Mendel-Strasse 4, 85354, Freising, Germany
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Abele M, Soleymaniniya A, Bayer FP, Lomp N, Doll E, Meng C, Neuhaus K, Scherer S, Wenning M, Wantia N, Kuster B, Wilhelm M, Ludwig C. Proteomic Diversity in Bacteria: Insights and Implications for Bacterial Identification. Mol Cell Proteomics 2025; 24:100917. [PMID: 39880082 PMCID: PMC11919601 DOI: 10.1016/j.mcpro.2025.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Mass spectrometry-based proteomics has revolutionized bacterial identification and elucidated many molecular mechanisms underlying bacterial growth, community formation, and drug resistance. However, most research has been focused on a few model bacteria, overlooking bacterial diversity. In this study, we present the most extensive bacterial proteomic resource to date, covering 303 species, 119 genera, and five phyla with over 636,000 unique expressed proteins, confirming the existence of over 38,700 hypothetical proteins. Accessible via the public resource ProteomicsDB, this dataset enables quantitative exploration of proteins within and across species. Additionally, we developed MS2Bac, a bacterial identification algorithm that queries NCBI's bacterial proteome space in two iterations. MS2Bac achieved over 99% species-level and 89% strain-level accuracy, surpassing methods like MALDI-TOF and FTIR, as demonstrated with food-derived bacterial isolates. MS2Bac also effectively identified bacteria in clinical samples, highlighting the potential of MS-based proteomics as a routine diagnostic tool.
Collapse
Affiliation(s)
- Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Armin Soleymaniniya
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nina Lomp
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Etienne Doll
- Research Department Molecular Life Sciences, TUM School of Life Sciences, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Siegfried Scherer
- Research Department Molecular Life Sciences, TUM School of Life Sciences, Freising, Germany
| | - Mareike Wenning
- Bavarian Health and Food Safety Authority, Unit for Food Microbiology and Hygiene, Oberschleißheim, Germany
| | - Nina Wantia
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, TUM School of Medicine and Health Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute (MDSI), Technical University of Munich, Garching, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute (MDSI), Technical University of Munich, Garching, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Zorina AA, Los DA, Klychnikov OI. Serine-Threonine Protein Kinases of Cyanobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S287-S311. [PMID: 40164163 DOI: 10.1134/s0006297924604507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025]
Abstract
Protein phosphorylation is a pivotal mechanism for signal transduction, regulation of biochemical processes essential for reproduction, growth, and adaptation of organisms to changing conditions. Bacteria, which emerged more than 3.5 billion years ago, faced the need to adapt to a variety of ecological niches from the very beginning of their existence. It is not surprising that they developed a wide range of different types of kinases and target amino acid residues for phosphorylation. To date, many examples of phosphorylation of serine, threonine, tyrosine, histidine, arginine, lysine, aspartate, and cysteine have been discovered. Bacterial histidine kinases as part of two-component systems have been studied in most detail. More recently eukaryotic type serine-threonine and tyrosine kinases based on the conserved catalytic domain have been described in the genomes of many bacteria. The term "eukaryotic" is misleading, since evolutionary origin of these enzymes goes back to the last common universal ancestor - LUCA. Bioinformatics, molecular genetics, omics, and biochemical strategies combined provide new tools for researchers to establish relationship between the kinase abundance/activity and proteome changes, including studying of the kinase signaling network (kinome) within the cell. This manuscript presents several approaches to investigation of the serine-threonine protein kinases of cyanobacteria, as well as their combination, which allow to suggest new hypotheses and strategies for researchers.
Collapse
Affiliation(s)
- Anna A Zorina
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Chabas M, Gaillard JC, Alpha-Bazin B, Armengaud J. Flash MS/MS proteotyping allows identifying microbial isolates in 36 s of mass spectrometry signal. Proteomics 2024; 24:e2300372. [PMID: 38168112 DOI: 10.1002/pmic.202300372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Rapid identification of microorganisms is essential for medical diagnostics, sanitary controls, and food safety. High-throughput analytical platforms currently rely on whole-cell MALDI-TOF mass spectrometry to process hundreds of samples per day. Although this technology has become a reference method, it is unable to process most environmental isolates and opportunistic pathogens due to an incomplete experimental spectrum database. In most cases, its discriminating power is limited to the species taxonomical rank. By recording much more sequence information at the peptide level, proteotyping by tandem mass spectrometry is able to identify the taxonomic position of any microorganism in the tree of life and can be highly discriminating at the subspecies level. We propose here a methodology for ultra-fast identification of microorganisms by tandem mass spectrometry based on direct sample infusion and a highly sensitive procedure for data processing and taxonomic identification. Results obtained on reference strains and hitherto uncharacterized bacterial isolates show identification to species level in 36 s of tandem mass spectrometry signal, 102 s when including the injection procedure. Flash proteotyping is highly discriminating, as it can provide information down to strain level. The methodology enables high throughput identification of isolates, opening up new prospects, particularly in culturomics, and diagnostics.
Collapse
Affiliation(s)
- Madisson Chabas
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, Bagnols sur Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
| |
Collapse
|
5
|
Noszka M, Strzałka A, Muraszko J, Hofreuter D, Abele M, Ludwig C, Stingl K, Zawilak-Pawlik A. CemR atypical response regulator impacts energy conversion in Campylobacteria. mSystems 2024; 9:e0078424. [PMID: 38980050 PMCID: PMC11334517 DOI: 10.1128/msystems.00784-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Campylobacter jejuni and Arcobacter butzleri are microaerobic food-borne human gastrointestinal pathogens that mainly cause diarrheal disease. These related species of the Campylobacteria class face variable atmospheric environments during infection and transmission, ranging from nearly anaerobic to aerobic conditions. Consequently, their lifestyles require that both pathogens need to adjust their metabolism and respiration to the changing oxygen concentrations of the colonization sites. Our transcriptomic and proteomic studies revealed that C. jejuni and A. butzleri, lacking a Campylobacteria-specific regulatory protein, C. jejuni Cj1608, or a homolog, A. butzleri Abu0127, are unable to reprogram tricarboxylic acid cycle or respiration pathways, respectively, to produce ATP efficiently and, in consequence, adjust growth to changing oxygen supply. We propose that these Campylobacteria energy and metabolism regulators (CemRs) are long-sought transcription factors controlling the metabolic shift related to oxygen availability, essential for these bacteria's survival and adaptation to the niches they inhabit. Besides their significant universal role in Campylobacteria, CemRs, as pleiotropic regulators, control the transcription of many genes, often specific to the species, under microaerophilic conditions and in response to oxidative stress. IMPORTANCE C. jejuni and A. butzleri are closely related pathogens that infect the human gastrointestinal tract. In order to infect humans successfully, they need to change their metabolism as nutrient and respiratory conditions change. A regulator called CemR has been identified, which helps them adapt their metabolism to changing conditions, particularly oxygen availability in the gastrointestinal tract so that they can produce enough energy for survival and spread. Without CemR, these bacteria, as well as a related species, Helicobacter pylori, produce less energy, grow more slowly, or, in the case of C. jejuni, do not grow at all. Furthermore, CemR is a global regulator that controls the synthesis of many genes in each species, potentially allowing them to adapt to their ecological niches as well as establish infection. Therefore, the identification of CemR opens new possibilities for studying the pathogenicity of C. jejuni and A. butzleri.
Collapse
Affiliation(s)
- Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Dirk Hofreuter
- Department of Biological Safety, Unit of Product Hygiene and Disinfection Strategies, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Stastna M. The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria. Int J Mol Sci 2024; 25:8564. [PMID: 39201251 PMCID: PMC11354107 DOI: 10.3390/ijms25168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00 Brno, Czech Republic
| |
Collapse
|
7
|
Hemmati M, Wudy SI, Hackbarth F, Mittermeier-Kleßinger VK, Coleman OI, Haller D, Ludwig C, Dawid C, Kleigrewe K. Development of a Global Metabo-Lipid-Prote-omics Workflow to Compare Healthy Proximal and Distal Colonic Epithelium in Mice. J Proteome Res 2024; 23:3124-3140. [PMID: 39052308 DOI: 10.1021/acs.jproteome.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A multimetabo-lipid-prote-omics workflow was developed to characterize the molecular interplay within proximal (PC) and distal (DC) colonic epithelium of healthy mice. This multiomics data set lays the foundation to better understand the two tissue types and can be used to study, for example, colon-related diseases like colorectal cancer or inflammatory bowel disease. First, the methyl tert-butyl ether extraction method was optimized, so that from a single tissue biopsy >350 reference-matched metabolites, >1850 reference-matched lipids, and >4500 proteins were detected by using targeted and untargeted metabolomics, untargeted lipidomics, and proteomics. Next, each omics-data set was analyzed individually and then merged with the additional omics disciplines to generate a deep understanding of the underlying complex regulatory network within the colon. Our data demonstrates, for example, differences in mucin formation, detected on substrate level as well as on enzyme level, and altered lipid metabolism by the detection of phospholipases hydrolyzing sphingomyelins to ceramides. In conclusion, the combination of the three mass spectrometry-based omics techniques can better entangle the functional and regional differences between PC and DC tissue compared to each single omics technique.
Collapse
Affiliation(s)
- Maryam Hemmati
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Susanne I Wudy
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Hackbarth
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Verena K Mittermeier-Kleßinger
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olivia I Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Corinna Dawid
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
8
|
Taoka M, Kuwana R, Fukube T, Kashima A, Nobe Y, Uekita T, Ichimura T, Takamatsu H. Ionic liquid-assisted sample preparation mediates sensitive proteomic analysis of Bacillus subtilis spores. Sci Rep 2024; 14:17366. [PMID: 39075114 PMCID: PMC11286849 DOI: 10.1038/s41598-024-67010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Endospore-forming bacteria are ubiquitous. Bacterial endospores are multilayered proteinaceous structures that protects the bacterial genome during stress conditions. They are also responsible for a wide range of critical clinical infections in humans. Precise analysis of spore-forming pathogens remains a major challenge in the field of proteomics because spore structures are highly resistant to conventional solubilizers and denaturing agents, such as sodium dodecyl sulfate and urea. We present an ionic liquid-assisted (i-soln) technique of sample preparation, called pTRUST, which enables shotgun analysis of Bacillus subtilis spores even when the starting materials are in the sub-microgram range. In proteomic analysis, this technique shows 50-2000-fold higher sensitivity than other conventional gel-based or gel-free methods (including one-pot sample processing). Using this technique, we identified 445 proteins with high confidence from trace amounts of highly pure spore preparations, including 52 of the 79 proteins (approximately 70%) previously demonstrated to be localized in spores in the SubtiWiki database and detected through direct protein analysis. Consequently, 393 additional proteins were identified as candidates for spore constitutive proteins. Twenty of these newly identified candidates were produced as green fluorescent protein fusion proteins, and each was evaluated for authenticity as a spore constituent using fluorescence microscopy analysis. The pTRUST method's sensitivity and reliability using the i-soln system, together with hitherto unreported proteins in spores, will enable an array of spore research for biological and clinical applications.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Tatsumi Fukube
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
| | - Akiko Kashima
- Carriere Reseau Co., Ltd., Kanagawa, 238-0011, Japan
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan.
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| |
Collapse
|
9
|
Kotimoole CN, Ramya VK, Kaur P, Reiling N, Shandil RK, Narayanan S, Flo TH, Prasad TSK. Discovery of Species-Specific Proteotypic Peptides To Establish a Spectral Library Platform for Identification of Nontuberculosis Mycobacteria from Mass Spectrometry-Based Proteomics. J Proteome Res 2024; 23:1102-1117. [PMID: 38358903 DOI: 10.1021/acs.jproteome.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nontuberculous mycobacteria are opportunistic bacteria pulmonary and extra-pulmonary infections in humans that closely resemble Mycobacterium tuberculosis. Although genome sequencing strategies helped determine NTMs, a common assay for the detection of coinfection by multiple NTMs with M. tuberculosis in the primary attempt of diagnosis is still elusive. Such a lack of efficiency leads to delayed therapy, an inappropriate choice of drugs, drug resistance, disease complications, morbidity, and mortality. Although a high-resolution LC-MS/MS-based multiprotein panel assay can be developed due to its specificity and sensitivity, it needs a library of species-specific peptides as a platform. Toward this, we performed an analysis of proteomes of 9 NTM species with more than 20 million peptide spectrum matches gathered from 26 proteome data sets. Our metaproteomic analyses determined 48,172 species-specific proteotypic peptides across 9 NTMs. Notably, M. smegmatis (26,008), M. abscessus (12,442), M. vaccae (6487), M. fortuitum (1623), M. avium subsp. paratuberculosis (844), M. avium subsp. hominissuis (580), and M. marinum (112) displayed >100 species-specific proteotypic peptides. Finally, these peptides and corresponding spectra have been compiled into a spectral library, FASTA, and JSON formats for future reference and validation in clinical cohorts by the biomedical community for further translation.
Collapse
Affiliation(s)
- Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Vadageri Krishnamurthy Ramya
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, D-23845 Borstel, Germany
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Radha Krishan Shandil
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, 20A, KIADB Industrial Area, Veerapura Village, Doddaballapur, Bengaluru 561203, India
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Kunnskapssenteret, Øya 424.04.035, Norway
| | | |
Collapse
|
10
|
Boutonnet C, Ginies C, Alpha-Bazin B, Armengaud J, Château A, Duport C. S-layer is a key element in metabolic response and entry into the stationary phase in Bacillus cereus AH187. J Proteomics 2023; 289:105007. [PMID: 37730087 DOI: 10.1016/j.jprot.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France
| | | |
Collapse
|
11
|
Noszka M, Strzałka A, Muraszko J, Kolenda R, Meng C, Ludwig C, Stingl K, Zawilak-Pawlik A. Profiling of the Helicobacter pylori redox switch HP1021 regulon using a multi-omics approach. Nat Commun 2023; 14:6715. [PMID: 37872172 PMCID: PMC10593804 DOI: 10.1038/s41467-023-42364-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.
Collapse
Affiliation(s)
- Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|