1
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
2
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Mastanjević K, Kovačević D, Nešić K, Krstanović V, Habschied K. Traditional Meat Products-A Mycotoxicological Review. Life (Basel) 2023; 13:2211. [PMID: 38004351 PMCID: PMC10671907 DOI: 10.3390/life13112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Traditional meat products are commonly produced in small family businesses. However, big industries are also involved in the production of this kind of product, especially since a growing number of consumers crave the traditional taste and aromas. The popularization of original and organic products has resulted in a return to traditional production methods. Traditional meat products are produced worldwide. However, in such (domesticated) conditions there is a potential danger for mycotoxin contamination. This review aims to present the sources of mycotoxins in traditional meat products, the most common mycotoxins related to such meat products, and future prospects regarding the suppression of their occurrence. Special attention should be paid to reducing the transfer of mycotoxins via the food chain from animal feed to animals to humans (stable-to-table principle), which is also described in this review. Other sources of mycotoxins (spices, environment, etc.) should also be monitored for mycotoxins in traditional production. The importance of monitoring and regulating mycotoxins in meat products, especially in traditional meat products, is slowly being recognized by the institutions and hopefully, in the future, can deliver legally regulated limits for such products. This is especially important since meat products are available to the general population and can seriously affect human health.
Collapse
Affiliation(s)
- Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Dragan Kovačević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Ksenija Nešić
- Food and Feed Department, Institute of Veterinary Medicine of Serbia, Smolućska 11, 11070 Beograd, Serbia;
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| |
Collapse
|
4
|
Wang Y, Peng Y, Zhou H, Gao Z. A universal CRISPR-Cas14a responsive triple-sensitized upconversion photoelectrochemical sensor. J Nanobiotechnology 2023; 21:389. [PMID: 37880670 PMCID: PMC10601294 DOI: 10.1186/s12951-023-02163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
It has recently been discovered that, like other members of the Cas family (12a and 13a), the clustered regularly interspaced short palindrome repeat CRISPR-Cas14a system not only mediates high-sensitivity detection with exceptionally strong gene editing ability but is also generally useful for DNA detection via fluorescence. Photoelectrochemical (PEC) sensors have been widely applied as efficient analytical tools. Measuring electrical signals is more cost-effective and the necessary equipment is more easily portable than fluorescence signal detectors, but their stability still needs to be improved. The high base resolution of CRISPR-Cas14a can compensate for such shortcomings. Therefore, electrical signals and fluorescence signals were combined, and the development of a universal CRISPR-Cas14a-responsive ultrasensitive upconversion PEC sensor is described in this paper. Moreover, strand displacement amplification (SDA) and a near-infrared (NIR) light source were utilized to further improve the stability and sensitivity of the photoelectric signals. At the same time, the modified working electrode (UCNPs-ssDNA-CdS@Au/ITO) on the three-electrode disposable sensor was used as the reporter probe, which cooperates with the trans-cleavage activity of Cas14a endonuclease. To verify the universality of this sensor, the UCNPs-Cas14a-based PEC sensor was applied for the detection of the small-molecule toxin T2 and protein kinase PTK7. Here, we report that the limit of detection of this reagent was within the fg range, successfully applied to the detection of T2 in oats and PTK7 in human serum. We propose that by combining PEC and CRISPR-14a, UCNPs-Cas14a-based PEC sensors could become powerful drivers for the extensive development of ultrasensitive, accurate and cost-effective universal sensors for detection and diagnosis.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 300050, Tianjin, P.R. China.
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 300050, Tianjin, P.R. China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 300050, Tianjin, P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 300050, Tianjin, P.R. China.
| |
Collapse
|
5
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Yang H, Wang W, Zeng L, Liang R, Xiao Q, Zhou Y, Wu W, Deng F. Development and optimization of a method based on dispersive solid phase extraction followed by ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry for simultaneous determination of 30 mycotoxins in Citrus products. J Sep Sci 2022; 45:4158-4166. [PMID: 36168883 DOI: 10.1002/jssc.202200584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
Citrus, a raw material widely used in food and medicine, is susceptible to fungal infection and its metabolites during growth, transportation, and storage. Thus, monitoring the residual levels of various mycotoxins in Citrus traditional Chinese medicines and related products is crucial. This study described a simple, reliable, and sensitive method for simultaneous identification and quantification of 30 mycotoxins in Citrus products. The method is based on modified quick, easy, cheap, effective, rugged, and safe extraction and purification followed by ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry. The limit of detection ranged from 0.10 to 1.50 μg/kg, and the quantification ranged from 0.25 to 5.00 μg/kg. The recoveries at three spiked levels were 64.90-99.72% and the relative standard deviation was less than 12%. The method was applied to 55 Citrus samples. The detection rates of tentoxin and mycophenolic acid were the highest, reaching 22.7% and with concentration ranges of 0.33-1.03 and 0.57-2.09 μg/kg, respectively. All contamination levels were below the maximum residue limits recommended by the European Commission and China. These results could be used to establish guidelines for screening mycotoxins in Citrus products and the limits of acceptable levels.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China.,Chengdu Institute of Food Inspection, Chengdu, P. R. China
| | - Li Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Run Liang
- Chengdu Institute of Food Inspection, Chengdu, P. R. China
| | - Quanwei Xiao
- Chengdu Institute of Food Inspection, Chengdu, P. R. China
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu, P. R. China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fang Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
7
|
Mycotoxins and Essential Oils-From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods 2022; 11:foods11223666. [PMID: 36429263 PMCID: PMC9688991 DOI: 10.3390/foods11223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The preservation of food supplies has been humankind's priority since ancient times, and it is arguably more relevant today than ever before. Food sustainability and safety have been heavily prioritized by consumers, producers, and government entities alike. In this regard, filamentous fungi have always been a health hazard due to their contamination of the food substrate with mycotoxins. Additionally, mycotoxins are proven resilient to technological processing. This study aims to identify the main mycotoxins that may occur in the meat and meat products "Farm to Fork" chain, along with their effect on the consumers' health, and also to identify effective methods of prevention through the use of essential oils (EO). At the same time, the antifungal and antimycotoxigenic potential of essential oils was considered in order to provide an overview of the subject. Targeting the main ways of meat products' contamination, the use of essential oils with proven in vitro or in situ efficacy against certain fungal species can be an effective alternative if all the associated challenges are addressed (e.g., application methods, suitability for certain products, toxicity).
Collapse
|
8
|
Determination of Mycotoxins and Veterinary Medicines in Duck Flesh and Viscera and Assessment of Their Exposure. J FOOD QUALITY 2022. [DOI: 10.1155/2022/2734839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycotoxins can accumulate in various feeds and thus may get in duck meat, which may have severe food safety and public health implications. This study examined mycotoxins and veterinary medications in duck meat marketed in eight marketplaces around China. For the determination of mycotoxins, including the mycotoxins aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin M1 (AFM1), T-2 toxin, zearalenone (ZEN), and ochratoxin A (OTA), a liquid-chromatography tandem mass spectrometry (LC-MS/MS) method was validated. Overall, 13 out of 48 samples (27%) presented AFB1, and AFB2 was present in 14 out of 48 samples with positive levels ranging from 0.5 μg/kg (gizzard) to 4.1 μg/kg (lung). Eleven samples were contaminated with AFM1. T-2 was also found in three parts of duck samples (duck gizzard, neck, and lung), and the 5th and 48th samples were contaminated with T-2. ZEN was found in 5 of 48 analyzed samples (10%), and OTA was present in 21 out of 48 samples. The maximum kinds of mycotoxins found simultaneously in duck samples were six in duck lungs. High co-occurrence of mycotoxins was verified in several samples. The detection rate of various veterinary drugs was 0–12.5% in duck meat samples, and the over standard rate was 2.1%. Co-occurrence of veterinary drugs was verified in several samples.
Collapse
|
9
|
Gab-Allah MA, Tahoun IF, Yamani RN, Rend EA, Shehata AB. Eco-friendly and sensitive analytical method for determination of T-2 toxin and HT-2 toxin in cereal products using UPLC-MS/MS. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Tahoun IF, Gab-Allah MA, Yamani RN, Shehata AB. Development and validation of a reliable LC-MS/MS method for simultaneous determination of deoxynivalenol and T-2 toxin in maize and oats. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sohrabi H, Arbabzadeh O, Khaaki P, Khataee A, Majidi MR, Orooji Y. Patulin and Trichothecene: characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Crit Rev Food Sci Nutr 2021; 62:5540-5568. [PMID: 33624529 DOI: 10.1080/10408398.2021.1887077] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patulin and Trichothecene as the main groups of mycotoxins in significant quantities can cause health risks from allergic reactions to death on both humans and animals. Accordingly, rapid and highly sensitive determination of these toxics agents is of great importance. This review starts with a comprehensive outlook regarding the characteristics, occurrence and toxic effects of Patulin and Trichothecene. In the following, numerous clinical and analytical approaches have been extensively discussed. The main emphasis of this review is placed on the utilization of novel nanomaterial based electrochemical sensing/biosensing tools for highly sensitive determination of Patulin and Trichothecene. Furthermore, a detailed and comprehensive comparison has been performed between clinical, analytical and sensing methods. Subsequently, the nanomaterial based electrochemical sensing platforms have been approved as reliable tools for on-site analysis of Patulin and Trichothecene in food processing and manufacturing industries. Different nanomaterials in improving the performance of detecting assays were investigated and have various benefits toward clinical and analytical methods. This paper would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Рeoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
13
|
Detection of toxic methylenecyclopropylglycine and hypoglycin A in litchi aril of three Chinese cultivars. Food Chem 2020; 327:127013. [PMID: 32454275 DOI: 10.1016/j.foodchem.2020.127013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
As a subtropical fruit with high commercial values, litchi is also a source of methylenecyclcopropylglycine (MCPG) and hypoglycin A (HGA), which could cause hypoglycemia and fatal encephalopathy in human. In this work, a quantitative method was developed well to detect MCPG and HGA present in litchi aril of different cultivars. Method validation was evaluated well by linearity, recovery, precision and sensitivity. Among three cultivars, 'Feizixiao' contained the highest toxin level with 0.60-0.83 mg kg-1 of MCPG and 10.66-14.46 mg kg-1 of HGA, followed by 'Huaizhi' with 0.08-0.12 mg kg-1 of MCPG and 0.63-1.54 mg kg-1 of HGA, and 'Nuomici' with 0.09-0.11 mg kg-1 of MCPG and 0.35-0.91 mg kg-1 of HGA. The toxin levels were highly associated with litchi cultivar and storage time. These findings can provide new knowledge to help to recommend the safe consumption of fresh litchi based on human health.
Collapse
|
14
|
Yang L, Tu D, Wu Y, Liu W, Hu Y, Liu T, Tan L, Li Y, Lei H, Zhan Y, Wang N, Deng Z, Guo S, Wang A. Distribution and persistence of residual T-2 and HT-2 toxins from moldy feed in broiler chickens. Toxicon 2020; 178:82-91. [PMID: 32135197 DOI: 10.1016/j.toxicon.2020.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
T-2 and HT-2 widely found in food products can seriously affect human and animal health. In this study, sterilized corn was inoculated with F. poae and incubated to allow fungal growth before being examined via liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to determine the concentrations of T-2/HT-2. Broilers were then fed with a mix of moldy corn and normal feed at different ratios to obtain different toxin doses. After 35 days, the contaminated feed was replaced with mycotoxin-free feed and the distribution and concentration of residual toxins in the tissues and organs of the chickens were examined at different time points. The results showed that at the time of feed replacement (0 h), T-2 residue was present at significantly higher concentrations in the lungs and small intestines than in other tissues (P < 0.05). In addition, T-2 concentrations increased in a dose-dependent manner in the tissues of chickens in the low-, medium-, and high-dose groups; however, the differences in concentration between the groups were not statistically significant. The HT-2 content (0 h) in the livers and small intestines was significantly higher than that in other tissues (P < 0.05). At 48 h post-feed replacement, the concentration of T-2 dropped below detectable levels in all tissues while HT-2 could still be detected at 192 h post-feed replacement. Thus, this study reveals the distribution and persistence of residual T-2/HT-2 from moldy feed in broilers, providing a reference for the detection of these toxins in animal-derived food products and a theoretical basis for formulating food-safety and quality standards.
Collapse
Affiliation(s)
- Lingchen Yang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Di Tu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yingxin Wu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Wei Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yi Hu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Tanbin Liu
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Lei Tan
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yalan Li
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Hongyu Lei
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China
| | - Yang Zhan
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, 410128, China
| | - Naidong Wang
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, 410128, China
| | - Zhibang Deng
- Lab of Functional Proteomics (LFP), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, HUNAU, Changsha, Hunan, 410128, China
| | - Shiyin Guo
- College of Food Science and Technology, HUNAU, Changsha, Hunan, 410128, China.
| | - Aibing Wang
- Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, Hunan, 410128, China.
| |
Collapse
|
15
|
Ovalbumin antibody-based fluorometric immunochromatographic lateral flow assay using CdSe/ZnS quantum dot beads as label for determination of T-2 toxin. Mikrochim Acta 2019; 186:816. [PMID: 31745739 DOI: 10.1007/s00604-019-3964-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
This work describes an anti-ovalbumin antibody-based lateral flow immunoassay (LFI) for T-2 toxin. The antibody uses a coating antigen as a bifunctional element for universality and introduces preincubation to improve the detection limits of the method. T-2 toxin and ovalbumin-modified T-2 toxin competitively binds on the anti-T-2 toxin monoclonal antibody modified on CdSe/ZnS quantum dot beads during preincubation. The modified T-2 toxin acts as a bifunctional element that forms immuno complexes during preincubation and combines with anti-ovalbumin antibody coated in the test line through the ovalbumin terminal. Fluorescence is detected at 610 nm on the test zone following photoexcitation at 365 nm. It has a reverse dose-effect relationship with the amount of T-2 toxin. The calibration plot is linear in the 20-110 fg mL-1 T-2 toxin concentration range, and the limit of detection (LOD) is 10 fg mL-1, which is lower by 8-fold than that of the traditional LFI system (LOD 80 fg mL-1) and one order of magnitude than those of LFIs with labels of colloidal gold nanoparticles (LOD 150 fg mL-1) or fluorophores (LOD 190 ng mL-1). Universality was verified through aflatoxin B1 detection using the established ovalbumin antibody-based LFI system (LOD 10 fg mL-1). The performance of the method was compared with that of established systems and a commercial ELISA kit (LOD 360 fg mL-1). Graphical abstractSchematic representation of ovalbumin antibody-based immunochromatographic lateral flow assay for T-2 toxin. Preincubation is introduced for high sensitivity. T-2- anti-ovalbumin acts as a bi-functional element for universality. CdSe/ZnS quantum dot beads act as label. Fluorometric signal is detected at 610 nm.
Collapse
|
16
|
Zhong H, Yu C, Gao R, Chen J, Yu Y, Geng Y, Wen Y, He J. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosens Bioelectron 2019; 144:111635. [PMID: 31513958 DOI: 10.1016/j.bios.2019.111635] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/08/2019] [Accepted: 08/25/2019] [Indexed: 11/19/2022]
Abstract
T-2 toxin is a mycotoxin that can cause chronic illnesses, and the detection of T-2 toxin in food is critical for human health. Herein, a novel sandwich aptasensor with a dual signal amplification strategy was developed for the detection of T-2 toxin. Molybdenum disulfide-polyaniline-chitosan-gold nanoparticles (MoS2-PANI-Chi-Au) were processed to the modified glassy carbon electrode (GCE) and used as the aptasensor platform to expedite the electronics transport and immobilize the amino-terminated capture DNA probe by Au-N bonds. The reduced graphene oxide-tetraethylene pentamine-gold@platinum nanorods (rGO-TEPA-Au@Pt NRs) were first synthesized and immobilized with a signal DNA probe. Once T-2 toxin was added into the biosensing system, the aptamer would trap T-2 toxin to turn the signal off. Next, dissociative aptamer hybridized with the capture DNA probe in GCE and linked simultaneously to the signal DNA probe on rGO-TEPA-Au@Pt NRs with another end sequence of aptamer to turn the signal on. Owing to the efficient catalytic ability of bimetallic Au@Pt nanorods, the signal was perfectly amplified through the catalysis of hydrogen peroxide (H2O2) and recorded by chronoamperometry. With the outstanding augment response, the limit of detection reached 1.79 fg mL-1 (3SB/m) and a wide linear range from 10 fg mL-1 to 100 ng mL-1 was presented. The sensitivity of the aptasensor was 19.88 μA⋅μM-1⋅cm-2. Meanwhile, the DNA aptamer-bimetallic nanorod based sensing system presented excellent specificity. The developed aptasensor provides a new platform for T-2 toxin detection with low cost for real sample assays.
Collapse
Affiliation(s)
- Hangtian Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yujie Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing , China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Competitive fluorometric assay for the food toxin T-2 by using DNA-modified silver nanoclusters, aptamer-modified magnetic beads, and exponential isothermal amplification. Mikrochim Acta 2019; 186:219. [PMID: 30847660 DOI: 10.1007/s00604-019-3322-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022]
Abstract
The authors describe an aptamer based assay for the mycotoxin T-2. The method is making use of exponential isothermal amplification reaction (EXPAR) and fluorescent silver nanoclusters (AgNCs). Free T-2 and cDNA (which is a DNA that is partially complementary to the aptamer) compete for binding to aptamer-modified magnetic beads. The cDNA collected by magnetic separation can be used as a primer to trigger EXPAR to obtain ssDNA. The C-base-rich ssDNA binds and reduces Ag(I) ion to form fluorescent AgNCs. Fluorescence is measured at excitation/emission wavelengths of 480/525 nm. T-2 can be detected by fluorometry with a detection limit as low as 30 fg·mL-1. The method was applied to analyse spiked oat and corn, and the average recoveries ranged from 97.3 to 102.3% and from 95.9 to 107.5%, respectively. The results were in good agreement with data of the commercial ELISA kit. The assay is highly sensitive, has a wide analytical range, good specificity and reliable operation. It provides a promising alternative for the standard method for quantitative detection of T-2. Graphical abstract Schematic presentation of fluorometric assay for T-2 based on aptamer-functionalized magnetic beads exponential, isothermal amplification reaction (EXPAR) and fluorescent silver nanoclusters (AgNCs).
Collapse
|
18
|
Influence of oven and microwave cooking with the addition of herbs on the exposure to multi-mycotoxins from chicken breast muscle. Food Chem 2019; 276:274-284. [DOI: 10.1016/j.foodchem.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022]
|
19
|
Qie Z, Shi J, Yan W, Gao Z, Meng W, Xiao R, Wang S. Immunochromatographic assay for T-2 toxin based on luminescent quantum dot beads. RSC Adv 2019; 9:38697-38702. [PMID: 35540212 PMCID: PMC9076097 DOI: 10.1039/c9ra06689f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/14/2019] [Indexed: 11/28/2022] Open
Abstract
A quantum dot bead based immunochromatographic assay (QB-ICA) system was established for T-2 toxin (T-2), which widely occurs in agriculture and could be used as a potential biological warfare agent. After optimization, the dynamic linear detection range of T-2 calculated from a calibration curve was from 0.12 to 0.67 ng mL−1 and the limit of detection (LOD) was 0.08 ng mL−1, which is lower than those of the ICA based on colloidal gold nanoparticles or a fluorescent material or an antibody-based biochip in other reports. The performance and practicability of the established ICA system were validated with a commercial ELISA kit and the two methods were comparable. The proposed QB-ICA for T-2 could be an alternative for rapid, sensitive, and quantitative on-site detection of this toxin in biosafety monitoring in agriculture and for susceptibility testing of the potential release of this biological warfare agent. A quantum dot bead based immunochromatographic assay was established for T-2 toxin with a limit of detection of 0.08 ng mL−1.![]()
Collapse
Affiliation(s)
- Zhiwei Qie
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Jinmiao Shi
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Wenliang Yan
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Zichen Gao
- Center for Diseases Prevention and Control of Rocket Force
- China
| | - Wu Meng
- Center for Diseases Prevention and Control of Rocket Force
- China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine
- Beijing 100850
- PR China
| |
Collapse
|
20
|
Hua-Li X, Yang B, Raza H, Hu-jun W, Lu-Mei P, Mi-Na N, Xiao-Yan C, Yi W, Yong-Cai L. Detection of NEO in muskmelon fruits inoculated with Fusarium sulphureum and its control by postharvest ozone treatment. Food Chem 2018; 254:193-200. [DOI: 10.1016/j.foodchem.2018.01.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
|
21
|
Determination of trichothecenes in chicken liver using gas chromatography coupled with triple-quadrupole mass spectrometry. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Simultaneous Determination of Pyraclostrobin, Prochloraz, and its Metabolite in Apple and Soil Via RRLC-MS/MS. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1065-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Tima H, Rácz A, Guld Z, Mohácsi-Farkas C, Kiskó G. Deoxynivalenol, zearalenone and T-2 in grain based swine feed in Hungary. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 9:275-280. [DOI: 10.1080/19393210.2016.1213318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Lu P, Wu C, Shi Q, Wang Y, Sun L, Liao J, Zhong S, Xu D, Chen J, Liu Y, Li J, Gooneratne R. A Sensitive and Validated Method for Determination of T-2 and HT-2 Toxin Residues in Shrimp Tissues by LC-MS/MS. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0336-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Yang S, Wang Y, Beier RC, Zhang H, De Ruyck K, Sun F, Cao X, Shen J, Zhang S, Wang Z. Simultaneous Determination of Type A and B Trichothecenes and Their Main Metabolites in Food Animal Tissues by Ultraperformance Liquid Chromatography Coupled with Triple-Quadrupole Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8592-8600. [PMID: 26321427 DOI: 10.1021/acs.jafc.5b03281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A rapid method for the liquid chromatography-tandem mass spectrometric determination of type A and B trichothecenes and their major metabolites in chicken meat, pork, chicken liver, and swine liver was developed. The analytes included T-2 toxin, HT-2 toxin, T-2 triol, neosolaniol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deepoxydeoxynivalenol, and nivalenol. The compounds were extracted from samples with acetonitrile/ethyl acetate (1:3, v/v) and then cleaned up using Oasis HLB cartridges. Analysis was carried out with ultraperformance liquid chromatography-tandem mass spectrometry. The mean recoveries of spiked samples ranged from 74.1% to 96.9% with intraday and interday relative standard deviations of less than 9.9% and 9.1%, respectively. The limit of detection and limit of quantitation ranged from 3.0 to 15.0 μg/kg and from 10.0 to 50.0 μg/kg, respectively. The proposed method has been successfully applied for analysis of real samples, with the primary results indicating that, compared to mycotoxins themselves, their metabolites are more likely to occur and be detectable in animal tissue foods.
Collapse
Affiliation(s)
- Shupeng Yang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Ying Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Ross C Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture , College Station, Texas 77845, United States
| | - Huiyan Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Karl De Ruyck
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Feifei Sun
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Xingyuan Cao
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Suxia Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| |
Collapse
|
26
|
Survey of mycotoxins in commonly consumed Korean grain products using an LC-MS/MS multimycotoxin method in combination with immunoaffinity clean-up. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0153-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
27
|
Zou Z, Sun J, Huang F, Feng Z, Li M, Shi R, Ding J, Li H. I
n Vitro
Removal of T-2 Toxin by Yeasts. J Food Saf 2015. [DOI: 10.1111/jfs.12204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongyi Zou
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Jianli Sun
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Fei Huang
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Zhi Feng
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Minji Li
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Ruiting Shi
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Junxia Ding
- Department of Logistics Management; China Maritime Police Academy; Ningbo Zhejiang 315801 China
| | - Hongjun Li
- College of Food Science; Southwest University; Chongqing 400716 China
| |
Collapse
|
28
|
Zhang Z, Wang D, Li J, Zhang Q, Li P. Monoclonal antibody–europium conjugate-based lateral flow time-resolved fluoroimmunoassay for quantitative determination of T-2 toxin in cereals and feed. ANALYTICAL METHODS 2015; 7:2822-2829. [DOI: 10.1039/c5ay00100e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A method of lateral flow time-resolved fluoroimmunoassay (LF-TRFIA) was developed for rapid and ultrasensitive detection of T-2 toxin with TRFIA strips and an assorted portable TRFIA reader.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- PR China
- Quality Inspection and Test Center for Oilseeds Products
- Ministry of Agriculture
| | - Jing Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- PR China
- Key Laboratory of Detection for Mycotoxins
- Ministry of Agriculture
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops
- Ministry of Agriculture
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- PR China
- Key Laboratory of Detection for Mycotoxins
- Ministry of Agriculture
| |
Collapse
|
29
|
Li MM, Guan EQ, Bian K. Effect of ozone treatment on deoxynivalenol and quality evaluation of ozonised wheat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:544-53. [PMID: 25325346 DOI: 10.1080/19440049.2014.976596] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Deoxynivalenol (DON) is the secondary metabolite of Fusarium graminearum, which is always found in Fusarium head blight of wheat. In this study, gaseous ozone was used to treat both DON solution and scabbed wheat to investigate the effectiveness of ozone treatment on DON degradation and the effect of ozone on the quality parameters of wheat. It was found that gaseous ozone had a significant effect on DON reduction in solution, when 10 mg l(-1) gaseous ozone was used to treat a 1 μg ml(-1) of DON solution, the degradation rate of DON was 93.6% within 30 s. Lower initial concentrations of DON solution treated with higher concentrations of ozone, and longer times showed higher DON degradation rates. Gaseous ozone was effective against DON in scabbed wheat. The degradation rate of DON increased with ozone concentration and processing time. The correlation between the time and degradation rate was y = -1.1926x(2) + 11.427x - 8.7787. In the process of ozone oxidation, a higher moisture content of wheat was more sensitive than that of lower moisture content to ozone under the same conditions. All samples were treated with different concentrations of ozone for 4 h to investigate the effect of ozone on wheat quality. No significant detrimental changes in the starch pasting properties of wheat were observed after all the samples were treated with ozone within 4 h. On the other hand, there was a slight rise in the dough development time and stability time, which meant the quality of flour improved after ozone treatment.
Collapse
Affiliation(s)
- M M Li
- a College of Food Science and Technology; Henan Food Crop Collaborative Innovation Center, Henan University of Technology , Zhengzhou , Henan , China
| | | | | |
Collapse
|
30
|
Tang Y, Xue H, Bi Y, Li Y, Wang Y, Zhao Y, Shen K. A method of analysis for T-2 toxin and neosolaniol by UPLC-MS/MS in apple fruit inoculated withTrichothecium roseum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:480-7. [DOI: 10.1080/19440049.2014.968884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Yang L, Zhao Z, Deng Y, Zhou Z, Hou J. Toxicity induced by F. poae-contaminated feed and the protective effect of Montmorillonite supplementation in broilers. Food Chem Toxicol 2014; 74:120-30. [PMID: 25296281 DOI: 10.1016/j.fct.2014.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
The T-2 and HT-2 toxins, the main metabolites of Fusarium poae, induce toxicity in broilers and accumulate in tissues. Consequently, during the breeding process of broilers, diets are frequently supplemented with physical adsorbents to protect birds against the toxicity induced by mycotoxins. In the present research, T-2 and HT-2 were produced in maize inoculated with F. poae. Mont, the strongest adsorbent based on in vitro adsorption ratios, was added to the contaminated diet. One-day-old chickens were randomly and equally divided into the following four groups: control diet group, Mont supplemented diet group, contaminated diet group and detoxification diet group. The experiment lasted for 42 days. Compared to the control group, the contaminated group showed significant decrease in body weight, feed intake and TP (P < 0.05), and marked increase in FCR, ALP, AST and ALT activity, T-2/HT-2 residues in the tissues and the relative expressions of apoptosis-related mRNAs (P < 0.05). Mont supplementation provided protection for the treated broilers in terms of performance, blood biochemistry, hepatic function, T-2/HT-2 residue of tissues and apoptosis. Therefore, Mont may be suitable as a detoxification agent for T-2/HT-2 in feed for broilers.
Collapse
Affiliation(s)
- Lingchen Yang
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Zhiyong Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Yifeng Deng
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China
| | - Jiafa Hou
- College of Veterinary Medicine, Nanjing Agricultural University, No.1 Wei-Gang, Xuanwu District, Nanjing 210095, China.
| |
Collapse
|
32
|
Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol 2014; 88:1915-28. [DOI: 10.1007/s00204-014-1354-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
33
|
Xu L, Zhang G, Guo C, Zhang Y, Zhang Y, Zheng J, Yang H, Yang D, He L, Zeng Z, Fang B. Simultaneous determination of major type-B trichothecenes and the de-epoxy metabolite of deoxynivalenol in chicken tissues by HPLC-MS/MS. J Sep Sci 2014; 37:642-9. [DOI: 10.1002/jssc.201301014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/20/2013] [Accepted: 12/18/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Lixiao Xu
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Guijun Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Chunna Guo
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Yaping Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Yi Zhang
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Jianlong Zheng
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Haicui Yang
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Dexue Yang
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Limin He
- Centre for Veterinary of Drug Residues; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Zhenling Zeng
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues (SCAU); Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; South China Agricultural University; Guangzhou P.R. China
| |
Collapse
|
34
|
Yang L, Zhao Z, Wu A, Deng Y, Zhou Z, Zhang J, Hou J. Determination of trichothecenes A (T-2 toxin, HT-2 toxin, and diacetoxyscirpenol) in the tissues of broilers using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:88-97. [DOI: 10.1016/j.jchromb.2013.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
|
35
|
Ran R, Wang C, Han Z, Wu A, Zhang D, Shi J. Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Li P, Zhang Z, Hu X, Zhang Q. Advanced hyphenated chromatographic-mass spectrometry in mycotoxin determination: current status and prospects. MASS SPECTROMETRY REVIEWS 2013; 32:420-452. [PMID: 23804155 DOI: 10.1002/mas.21377] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 06/02/2023]
Abstract
Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including aflatoxins, ochratoxins, patulin, trichothecenes, zearalenone, and fumonisins, is discussed in detail. Both free and masked mycotoxins are included in this review due to different methods of sample preparation. Techniques are described in terms of sample preparation, internal standards, LC/ultra performance LC (UPLC) optimization, and applications and survey. Several future hyphenated MS techniques are discussed as well, including multidimensional chromatography-MS, capillary electrophoresis-MS, and surface plasmon resonance array-MS.
Collapse
Affiliation(s)
- Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, P.R. China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, P.R. China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, P.R. China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, P.R. China
| | | | | | | |
Collapse
|
37
|
Xue H, Bi Y, Wei J, Tang Y, Zhao Y, Wang Y. New method for the simultaneous analysis of types A and B trichothecenes by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry in potato tubers inoculated with Fusarium sulphureum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9333-9338. [PMID: 24010413 DOI: 10.1021/jf402997t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A reliable and sensitive method for rapid simultaneous determination of two type A (T-2 and diacetoxyscirpenol) and two type B (3-acetyldeoxynivalenol and Fusarenon X) trichothecenes was developed and successfully applied for detecting trichothecenes in potato tubers by ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry. The established method was further evaluated by determining the linearity (R ≥ 0.9995), recovery (113.28-77.97%), precision (relative standard deviation ≤ 5.89), and sensitivity (limit of detection, 0.002-0.005 μg/g; limit of quantitation, 0.005-0.015 μg/g). The method proved to be suitable for simultaneous determination of T-2, diacetoxyscirpenol, 3-acetyldeoxynivalenol, and Fusarenon X in potato tubers inoculated with Fusarium sulphureum . In addition, it was found that T-2, diacetoxyscirpenol, 3-acetyldeoxynivalenol, and Fusarenon X could be predominantly detected in the lesion, and the toxin could also be identified in tubers without any disease symptoms. The experimental results also indicated that the concentration of toxin in the susceptible cultivar (Longshu No. 3) was significantly higher than that in the resistant cultivar (Longshu No. 6).
Collapse
Affiliation(s)
- Huali Xue
- College of Food Science and Engineering, ‡College of Science, and §Center of Analysis, Gansu Agricultural University , Number 1 Yingmen Village, Anning District, Lanzhou, Gansu 730070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Dänicke S, Brezina U. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem Toxicol 2013; 60:58-75. [DOI: 10.1016/j.fct.2013.07.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
39
|
Chen D, Cao X, Tao Y, Wu Q, Pan Y, Peng D, Liu Z, Huang L, Wang Y, Wang X, Yuan Z. Development of a liquid chromatography-tandem mass spectrometry with ultrasound-assisted extraction and auto solid-phase clean-up method for the determination of Fusarium toxins in animal derived foods. J Chromatogr A 2013; 1311:21-9. [PMID: 24011505 DOI: 10.1016/j.chroma.2013.08.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022]
Abstract
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of 19 Fusarium toxins and their metabolites including deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2), HT-2 toxin (HT-2), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), neosolaniol (NEO), fusarenon-X (F-X), diacetoxyscirpenol (DAS), monoacetoxyscirpenol (MAS), zearalanone (ZAN), zearalenone (ZON), α-Zearalenol (α-ZOL), β-Zearalenol (β-ZOL), a-Zearalanol (α-ZAL), β-Zearalanol (β-ZAL), T-2 triol, T-2 tetraol, deepoxy-deoxynialenol (DOM-1) in the muscle, liver, kidney, fat of swine, bovine and sheep, muscle and liver of chicken, muscle and skin of fish, as well as milk and eggs. Sample preparation procedure includes ultrasound-assisted extraction with acetonitrile/water (90/10, v/v), defatting with n-hexane and final clean-up with auto solid phase extraction (SPE) on Bond Elut Mycotoxin cartridges. The detection and quantification of the analytes were performed by a reversed-phase liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry (LC/ESI-MS/MS). DON, NIV, DOM-1, 3-AcDON, 15-AcDON, F-X, ZON, ZAN, α-ZOL, β-ZOL, α-ZAL, β-ZAL, T-2 triol and T-2 tetraol were detected in a negative ion mode, while T-2 toxin, HT-2 toxin, NEO, DAS and MAS were detected in a positive ion mode. The CCα and CCβ of the analytes in different samples varied from 0.16 to 1.37μg/kg and 0.33 to 2.34μg/kg, respectively. The recoveries of spiked sample from 0.5μg/kg to 8μg/kg ranged from 64.8% to 108.2% with the relative standard deviations of less than 19.4%. Performances of the whole analytical procedure meet the criteria established by the European Commission for mass spectrometric detection.
Collapse
Affiliation(s)
- Dongmei Chen
- MOA Key Laboratory for the Detection of Veterinary Drug Residues and National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shephard G, Berthiller F, Burdaspal P, Crews C, Jonker M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Sabino M, Solfrizzo M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2011-2012. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1492] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2011 and mid- 2012. It covers the major mycotoxins aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxin, patulin, trichothecenes, and zearalenone. A section on mycotoxins in botanicals and spices is also included. Methods for mycotoxin determination continue to be developed using a wide range of analytical systems ranging from rapid immunochemical-based methods to the latest advances in mass spectrometry. This review follows the format of previous reviews in this series (i.e. sections on individual mycotoxins), but due to the rapid spread and developments in the field of multimycotoxin methods by liquid chromatography-tandem mass spectrometry, a separate section has been devoted to advances in this area of research.
Collapse
Affiliation(s)
- G.S. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- Spanish Food Safety and Nutrition Agency, National Centre for Food, km 5.100, 28220 Majadahonda (Madrid), Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.A. Jonker
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Christian Doppler Laboratory for Mycotoxin-Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902 São Paulo/SP, Brazil
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - H.P. van Egmond
- Cluster Natural Toxins and Pesticides, RIKILT Institute of Food Safety, Wageningen University and Research Centre, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|
41
|
Zou ZY, He ZF, Li HJ, Han PF, Meng X, Zhang Y, Zhou F, Ouyang KP, Chen XY, Tang J. In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0223-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|