1
|
Wang Z, Ma J, Ma G, Yu Q, Han L, Zhang L. The mitochondrial functional characteristics and microstructure play an important role in yak meat color during wet curing. Food Chem X 2025; 25:102095. [PMID: 39850047 PMCID: PMC11754818 DOI: 10.1016/j.fochx.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
The study investigated the impact of low-dose sodium nitrite on yak meat color and mitochondrial functional characteristics during the wet curing. The results showed that sodium nitrite significantly enhanced the redness (a ⁎ value) of yak meat by increasing the activities of mitochondrial complexes I, II, III and IV, which are critical for electron transport and aerobic respiration. Additionally, sodium nitrite reduced mitochondrial swelling and membrane permeability, and slowed the production of lipid oxidation products, indicating protective effects against mitochondrial damage and preserving mitochondrial integrity. Correlation analysis and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) identified mitochondrial complex I activity, NADH-dependent metmyoglobin reductase activity, and specific lipid oxidation products as key factors influencing the a ⁎ value of yak meat. These findings highlighted the significant role of mitochondrial function and structure in meat color stability.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jibing Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Premi L, Rocchetti G, Lucini L, Morelli L, Rebecchi A. Replacement of nitrates and nitrites in meat-derived foods through the utilization of coagulase-negative staphylococci : A review. Curr Res Food Sci 2024; 8:100731. [PMID: 38623273 PMCID: PMC11016579 DOI: 10.1016/j.crfs.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Nitrates and nitrites, which are synthetic additives, are traditionally used as curing agents in meat-based products. These synthetic additives are employed in the preparation of fermented meat foods to improve quality characteristics and microbiological safety, develop distinct flavours and red-colour stability, and counteract lipid oxidation. Nitrites also display significant bacteriostatic and bactericidal action against spoilage microorganisms and foodborne pathogens (such as Clostridium botulinum and Listeria monocytogenes). However, meat curing is currently under scrutiny because of its links to cardiovascular diseases and colorectal cancer. Based on the current literature, this review provides recent scientific evidence on the potential utilisation of coagulase-negative staphylococci (CNS) as nitrate and nitrite substitutes in meat-based foods. Indeed, CNS are reported to reproduce the characteristic red pigmentation and maintain the typical high-quality traits of cured-meats, thanks to their arginine degradation pathway, thus providing the nitrite-related desirable attributes in cured meat. The alternative strategy, still based on the NOS pathway, consisting of supplementing meat with arginine to release nitric oxide (NO) and obtain a meat characterised by the desired pinkish-red colour, is also reviewed. Exploiting NOS-positive CNS strains seems particularly challenging because of CNS technological adaptation and the oxygen dependency of the NOS reaction; however, this exploitation could represent a turning point in replacing nitrates and nitrites in meat foods.
Collapse
Affiliation(s)
- Lara Premi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
3
|
Ruedt C, Gibis M, Weiss J. Meat color and iridescence: Origin, analysis, and approaches to modulation. Compr Rev Food Sci Food Saf 2023; 22:3366-3394. [PMID: 37306532 DOI: 10.1111/1541-4337.13191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Meat color is an important aspect for the meat industry since it strongly determines the consumers' perception of product quality and thereby significantly influences the purchase decision. Emergence of new vegan meat analogs has renewed interest in the fundamental aspects of meat color in order to replicate it. The appearance of meat is based on a complex interplay between the pigment-based meat color from myoglobin and its chemical forms and light scattering from the muscle's microstructure. While myoglobin biochemistry and pigment-based meat color have been extensively studied, research on the physicochemical contribution of light scattering to meat color and the special case of structural colors causing meat iridescence has received only little attention. Former review articles focused mostly on the biochemical or physical mechanisms rather than the interplay between them, in particular the role that structural colors play. While from an economic point of view, meat iridescence might be considered negligible, an enhanced understanding of the underlying mechanisms and the interactions of light with meat microstructures can improve our overall understanding of meat color. Therefore, this review discusses both biochemical and physicochemical aspects of meat color including the origin of structural colors, highlights new color measurement methodologies suitable to investigate color phenomena such as meat iridescence, and finally presents approaches to modulate meat color in terms of base composition, additives, and processing.
Collapse
Affiliation(s)
- Chiara Ruedt
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Zhai C, Lonergan SM, Huff-Lonergan EJ, Johnson LG, Brown K, Prenni JE, N Nair M. Lipid Peroxidation Products Influence Calpain-1 Functionality In Vitro by Covalent Binding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7836-7846. [PMID: 37167568 DOI: 10.1021/acs.jafc.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The objective of the current study was to evaluate the effects of lipid peroxidation products, malondialdehyde (MDA), hexenal, and 4-hydroxynonenal (HNE), on calpain-1 function, and liquid chromatography and tandem mass spectrometry (LC-MS/MS) identification of adducts on calpain-1. Calpain-1 activity slightly increased after incubation with 100 μM MDA but not with 500 and 1000 μM MDA. However, calpain-1 activity was lowered by hexenal and HNE at 100, 500, and 1000 μM. No difference in calpain-1 autolysis was observed between the control and 1000 μM MDA. However, 1000 μM hexenal and HNE treatments slowed the calpain-1 autolysis. Adducts of MDA were detected on glutamine, arginine, lysine, histidine, and asparagine residues via Schiff base formation, while HNE adducts were detected on histidine, lysine, glutamine, and asparagine residues via Michael addition. These results are the first to demonstrate that lipid peroxidation products can impact calpain-1 activity in a concentration-dependent manner and may impact the development of meat tenderness postmortem.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | | | - Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | - Kitty Brown
- Analytical Resources Core-Bioanalysis & Omics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Wu H, Bak KH, Goran GV, Tatiyaborworntham N. Inhibitory mechanisms of polyphenols on heme protein-mediated lipid oxidation in muscle food: New insights and advances. Crit Rev Food Sci Nutr 2022; 64:4921-4939. [PMID: 36448306 DOI: 10.1080/10408398.2022.2146654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Lipid oxidation is a major cause of quality deterioration that decreases the shelf-life of muscle-based foods (red meat, poultry, and fish), in which heme proteins, particularly hemoglobin and myoglobin, are the primary pro-oxidants. Due to increasing consumer concerns over synthetic chemicals, extensive research has been carried out on natural antioxidants, especially plant polyphenols. The conventional opinion suggests that polyphenols inhibit lipid oxidation of muscle foods primarily owing to their strong hydrogen-donating and transition metal-chelating activities. Recent developments in analytical techniques (e.g., protein crystallography, nuclear magnetic resonance spectroscopy, fluorescence anisotropy, and molecular docking simulation) allow deeper understanding of the molecular interaction of polyphenols with heme proteins, phospholipid membrane, reactive oxygen species, and reactive carbonyl species; hence, novel hypotheses regarding their antioxidant mechanisms have been formulated. In this review, we summarize five direct and three indirect pathways by which polyphenols inhibit heme protein-mediated lipid oxidation in muscle foods. We also discuss the relation between chemical structures and functions of polyphenols as antioxidants.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, SE, Sweden
| | - Kathrine H Bak
- Department of Food Technology and Vetefrinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gheorghe V Goran
- Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, University of Agricultural, Bucharest, Romania
| | - Nantawat Tatiyaborworntham
- Food Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
6
|
Wang Y, Li S, Chen J, Zhu H, Harsh BN, Boler DD, Dilger AC, Shike DW, Suman SP. Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | - Bailey N. Harsh
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Dustin D. Boler
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Anna C. Dilger
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Daniel W. Shike
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | | |
Collapse
|
7
|
Luo Y, Ju N, Chang J, Ge R, Zhao Y, Zhang G. Dietary α-lipoic acid supplementation improves postmortem color stability of the lamb muscles through changing muscle fiber types and antioxidative status. Meat Sci 2022; 193:108945. [PMID: 35986989 DOI: 10.1016/j.meatsci.2022.108945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
This study investigated the effect of dietary α-lipoic acid (600 mg/kg) supplementation on the postmortem color stability of the biceps femoris from lambs. The results showed that dietary α-lipoic acid supplementation increased a* and decreased b* and metmyoglobin (MMb) percentage of the biceps femoris with the time of storage (P < 0.05). The content of malondialdehyde (MDA) reduced with the time of storage after treatment with α-lipoic acid (P < 0.05). α-lipoic acid increased the myoglobin (Mb) content, and myosin heavy chain I (MyHC I) gene expression but decreased glycogen content, lactate dehydrogenase (LDH) activity, and MyHC IIb gene expression (P < 0.05). The T-AOC value, catalase (CAT) activity, and expression of SOD and CAT gene expression increased after α-lipoic acid treatment (P < 0.05). Therefore, dietary α-lipoic acid supplementation improved the meat color by regulating muscle fiber types and inhibited glycolysis. Moreover, α-lipoic acid maintained meat color stability by effectively inhibiting muscle oxidation via enhancing the antioxidant capacity.
Collapse
Affiliation(s)
- Yulong Luo
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Ning Ju
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Jiang Chang
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Ruixuan Ge
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Yaya Zhao
- School of Food & Wine, Ningxia University, Yinchuan 750021, PR China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, PR China.
| |
Collapse
|
8
|
Zając M, Zając K, Dybaś J. The effect of nitric oxide synthase and arginine on the color of cooked meat. Food Chem 2022; 373:131503. [PMID: 34749089 DOI: 10.1016/j.foodchem.2021.131503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/26/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
In previous studies, it has been suggested that the NO-synthase enzyme may be responsible for color formation in fermented sausages. Thus, this is the first study in which the aim was to analyze the effects of direct NO-synthase and arginine application to meat on its color after heating. Myoglobin forms as well as the presence of NO-myoglobin were investigated. The color of the meat and myoglobin forms present in the samples were mainly affected by pH differences, caused by a HEPES buffer or arginine. None of the variants demonstrated a bright pink color as in the case of the heated nitrite-cured sample. Based on analysis of the absorption spectra, it can be concluded that there is some evidence of nitroso-complex formation. Therefore, it is probable that optimizing the pH/time/temperature conditions for NO-synthase activity would allow to obtain a desirable color effect. NO-synthase could be used as an alternative curing ingredient.
Collapse
Affiliation(s)
- Marzena Zając
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture in Cracow, Balicka 122, 30-149 Kraków, Poland.
| | | | - Jakub Dybaś
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348 Kraków, Poland.
| |
Collapse
|
9
|
Hearn K, Denzer M, Mitacek R, Maheswarappa NB, McDaniel C, Jadeja R, Mafi G, Beker A, Pezeshki A, Ramanathan R. Effects of Modified Atmospheric Packaging on Ground Chicken Color and Lipid Oxidation. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of the current study was to evaluate the color changes and lipid oxidation of ground chicken patties packaged in polyvinyl chloride (PVC) film, high-oxygen (HiOx)–modified atmospheric packaging (MAP; 80% oxygen + 20% carbon dioxide [CO2]), and carbon monoxide (CO)-MAP (0.4% CO + 19.6% CO2 + 80% nitrogen) and stored at 2°C. Surface color was measured using a HunterLab MiniScan spectrophotometer on days 0, 1, 2, and 4. Lipid oxidation, pH, and aerobic plate count were determined on days 0 and 4 of storage. Fatty acid profiles were determined on day 0 to characterize saturated and unsaturated fatty acids. Patties packaged in PVC had greater (P < 0.05) pH than HiOx-MAP and CO-MAP. Gas chromatography analysis indicated that ground chicken has 72.8% unsaturated fatty acids and 27.2% saturated fatty acids (based on total lipids and fatty acid methyl ester). The formation of carboxymyoglobin on ground chicken patty surface was confirmed by peaks at 420 and 570 nm, whereas oxymyoglobin had peaks at 410 and 580 nm. Instrumental color analysis indicated both HiOx-MAP and CO-MAP had greater (P < 0.05) redness (a* values) than PVC on day 4 of storage. Patties packaged in HiOx-MAP had greater (P < 0.05) chroma values than CO-MAP and PVC on day 4 of storage. Visual panelists noted less (P < 0.05) surface discoloration in CO-MAP than PVC and HiOx-MAP on day 4 of storage. Lipid oxidation was greater (P < 0.05) in PVC and HiOx-MAP than CO-MAP. CO inclusion at 0.4% level effectively inhibited lipid oxidation and stabilized surface redness during refrigerated storage of ground chicken.
Collapse
Affiliation(s)
- Kathryn Hearn
- Oklahoma State University Department of Animal and Food Sciences
| | - Morgan Denzer
- Oklahoma State University Department of Animal and Food Sciences
| | - Rachel Mitacek
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Conner McDaniel
- Oklahoma State University Department of Animal and Food Sciences
| | - Ravi Jadeja
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Ali Beker
- Oklahoma State University Department of Animal and Food Sciences
| | - Adel Pezeshki
- Oklahoma State University Department of Animal and Food Sciences
| | | |
Collapse
|
10
|
Wang Y, Li S, Rentfrow G, Chen J, Zhu H, Suman SP. Myoglobin Post-Translational Modifications Influence Color Stability of Beef Longissimus Lumborum. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTM) of proteins play critical roles in biological processes. PTM of muscle proteins influence meat quality. Nonetheless, myoglobin (Mb) PTM and their impact on fresh beef color stability have not been characterized yet. Therefore, our objectives were to identify Mb PTM in beef longissimus lumborum muscle during postmortem aging and to characterize their influence on color stability. The longissimus lumborum muscles from 9 (n = 9) beef carcasses (24 h postmortem) were subjected to wet aging for 0, 7, 14, and 21 d. At the end of each wet-aging period, steaks were fabricated. One steak for analyses of PTM was immediately frozen at −80°C, whereas other steaks were assigned to refrigerated storage in the darkness under aerobic packaging. Instrumental color and biochemical attributes were evaluated on day 0, 3, or 6 of storage. Mb PTM were analyzed using two-dimensional electrophoresis and tandem mass spectrometry. Surface redness (a* value), color stability, and Mb concentration decreased (P < 0.05) upon aging. Gel image analyses identified 6 Mb spots with similar molecular weight (17 kDa) but different isoelectric pH. Tandem mass spectrometry identified multiple PTM (phosphorylation, methylation, carboxymethylation, acetylation, and 4-hydroxynonenal alkylation) in these 6 isoforms. The amino acids susceptible to phosphorylation were serine (S), threonine (T), and tyrosine, whereas other PTM were detected in lysine (K), arginine (R), and histidine residues. Additionally, distal histidine (position 64), critical to heme stability, was found to be alkylated. Overall, Mb PTM increased with aging. The aging-induced PTM, especially those occurring close to hydrophobic heme pocket, could disrupt Mb tertiary structure, influence heme affinity, and compromise oxygen binding capacity, leading to decreased color stability of fresh beef. Furthermore, PTM at K45, K47, and K87 were unique to Mb from non-aged beef, whereas PTM at R31, T51, K96, K98, S121, R139, and K147 were unique to Mb from aged counterparts, indicating that these Mb PTM could be used as novel biomarkers for fresh beef color stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | | |
Collapse
|
11
|
Ramanathan R, Suman SP, Faustman C. Biomolecular Interactions Governing Fresh Meat Color in Post-mortem Skeletal Muscle: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12779-12787. [PMID: 32045229 DOI: 10.1021/acs.jafc.9b08098] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Appearance is an important sensory property that significantly influences consumers' perceptions of fresh meat quality. Failure to meet consumer expectations can lead to rejection of meat products, concomitant loss in value, and potential production of organic waste. Immediately after animal harvest, skeletal muscle metabolism changes from aerobic to anaerobic. However, anoxic post-mortem muscle is biochemically active, and biomolecular interaction between myoglobin, mitochondria, metabolites, and lipid oxidation determines meat color. This review examines how metabolites and mitochondrial activity can influence myoglobin oxygenation and metmyoglobin reducing activity. Further, the review highlights recent research that has examined myoglobin redox dynamics, sarcoplasmic metabolite changes, and/or post-mortem biochemistry.
Collapse
Affiliation(s)
- Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Surendranath P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Cameron Faustman
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
12
|
Ramanathan R, Hunt MC, Price T, Mafi GG. Strategies to limit meat wastage: Focus on meat discoloration. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 95:183-205. [PMID: 33745512 DOI: 10.1016/bs.afnr.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Limiting meat waste is a significant factor that can help meet future needs to provide high-quality animal protein while maximizing the utilization of natural resources. Fresh meat waste occurs during production, processing, distribution, and marketing to various points of consumption. Consumers' expectation for muscle food quality is often associated with its appearance, and a bright-red color of red meat is an indicator of freshness and wholesomeness. Meat discoloration is a natural process resulting from interactions between the physical structure of meat and the oxidation of the ferrous forms of myoglobin. Understanding the biochemical processes that influence discoloration such as oxygen consumption, metmyoglobin reducing activity, lipid oxidation, and microbial growth help to develop innovative strategies to limit meat waste. The focus of this chapter is to discuss the factors involved in meat discoloration and any other color deviations that may lead to discounted pricing and/or meat loss. The impact of meat waste, economic loss, the role of packaging, and the application of high-throughput techniques to understand the biochemical basis of meat discoloration are also discussed.
Collapse
Affiliation(s)
- Ranjith Ramanathan
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| | - Melvin C Hunt
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, United States
| | - Taylor Price
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Gretchen G Mafi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
13
|
Denzer ML, Mowery C, Comstock HA, Maheswarappa NB, Mafi G, VanOverebeke DL, Ramanathan R. Characterization of the Cofactors Involved in Non-enzymatic Metmyoglobin/Methemoglobin Reduction In Vitro. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.9507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Previous research reported the role of nonenzymatic metmyoglobin (MetMb) and methemoglobin (MetHb) reduction in meat color; however, limited studies have characterized the cofactors involved in nonenzymatic reduction. The objective of this study was to characterize electron donors and carriers in nonenzymatic MetMb and MetHb reduction at various temperatures and postmortem muscle pHs in vitro. Methylene blue and cytochrome c (cyt-c) were evaluated as electron carriers and nicotinamide adenine dinucleotide, reduced form (NADH) and ascorbate were considered as electron donors. All combinations of electron donors and carriers were evaluated in the following order: NADH plus methylene blue, ascorbate plus methylene blue, NADH plus cyt-c, and ascorbate plus cyt-c. Spectrophotometry was utilized to monitor the rates of reduction. The results indicated that methylene blue was an effective electron carrier than cyt-c in the presence of NADH. Temperature and pH had cofactor-specific effects on nonenzymatic MetMb and MetHb reduction. Lower temperature resulted in an increased nonenzymatic MetMb reduction for methylene blue regardless of electron donor (ascorbate, P = 0.03, NADH, P = 0.04). As pH increased, MetHb reduction was enhanced in the presence of ascorbate plus cyt-c. Nonenzymatic MetHb reduction was numerically lower than nonenzymatic MetMb reduction in the presence of NADH plus methylene blue. In summary, in addition to NADH, the current in vitro research demonstrated that ascorbate plus cyt-c could contribute to nonenzymatic MetMb and MetHb reduction at meat-pH and storage temperature.
Collapse
Affiliation(s)
- Morgan L. Denzer
- Oklahoma State University Department of Animal and Food Sciences
| | - Colin Mowery
- Oklahoma State University Department of Animal and Food Sciences
| | | | | | | | | | | |
Collapse
|
14
|
Zhai C, Peckham K, Belk KE, Ramanathan R, Nair MN. Carbon Chain Length of Lipid Oxidation Products Influence Lactate Dehydrogenase and NADH-Dependent Metmyoglobin Reductase Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13327-13332. [PMID: 31715101 DOI: 10.1021/acs.jafc.9b05634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biochemical basis of lower metmyoglobin reducing activity (MRA) in high-oxygen modified atmospheric packaged (HiOx-MAP) beef than those in vacuum and polyvinyl chloride (PVC) packaging is not clear. To explore this, the effects of lipid oxidation products with varying carbon chain length on lactate dehydrogenase (LDH) and NADH-dependent metmyoglobin reductase activity were evaluated. Surface color, MRA, and lipid oxidation of beef longissimus lumborum steaks (n = 10) were measured during 6-day display. Further, two enzymes, LDH and NADH-dependent metmyoglobin reductase (n = 5), critical for MRA were incubated with or without (control) lipid oxidation products of varying carbon chain length: malondialdehyde (3-carbon), hexenal (6-carbon), and 4-hydroxynonenal (9-carbon). Steaks in HiOx-MAP had greater (P < 0.05) redness than vacuum and PVC, but had lower (P < 0.05) MRA and greater (P < 0.05) lipid oxidation on day 6. LDH and NADH-dependent metmyoglobin reductase activities were differentially influenced by lipid oxidation products (P < 0.05). The results indicate that the difference in reactivity of various lipid oxidation products on LDH (HNE > MDA = hexenal) and NADH-dependent metmyoglobin reductase (HNE = MDA > hexenal) activity could be responsible for lower MRA in HiOx-MAP.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Kiefer Peckham
- Department of Animal and Food Sciences , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Keith E Belk
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Ranjith Ramanathan
- Department of Animal and Food Sciences , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Mahesh N Nair
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
15
|
High Altitude Adaptability and Meat Quality in Tibetan Pigs: A Reference for Local Pork Processing and Genetic Improvement. Animals (Basel) 2019; 9:ani9121080. [PMID: 31817035 PMCID: PMC6940921 DOI: 10.3390/ani9121080] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The increase in altitude will bring about a complex change in a series of elements of nature, which will have a profound impact on human production and life. Studying domestic animals in the native environment is an effective way to explore the impact of high altitude on human life, and at the same time is conducive to the development of local animal husbandry. Here, we found that the hypoxic adaptation of Tibetan pigs may be related to higher levels of VEGFA, HIF1 and myoglobin expression. The higher aerobic oxidative capacity of Tibetan pigs is beneficial to improve energy utilization, and the higher UFA content of Tibetan pigs is beneficial to cold resistance. In addition, Tibetan pigs have higher levels of BCAA and Myh2 expression, which serve to relieve muscle fatigue and improve endurance. In addition, it was observed that there are obvious differences in carcass and meat quality traits of different altitudes pigs. Taken together, our findings illustrate the adaptability of Tibetan pigs to high altitude from various perspectives and compare carcass and meat quality traits of three pig breeds. Abstract The carcass and meat quality traits of pig breeds living at three different altitudes (Yorkshire pigs, YP: 500m; Qingyu Pigs, QYP: 1500m; Tibetan pigs, TP: 2500m) were compared. It was observed that there are obvious differences in pig breeds with respect to performance parameters. Specifically, YP had the best carcass traits, showing high slaughter rates and leanest meat. Conversely, QYP had the highest back fat thickness and intramuscular fat (IMF) content. For the high-altitude breed TP, the animals exhibited low L* and high a* values. The genotypes contributing to the observed phenotypes were supported by a PCR analysis. The glycolytic genes expression (HK, PFK, PK) were highest in YP, whereas expression of genes related to adipogenesis (C/EBPα, FABP4, SCD1) were highest in QYP. As expected, genes associated with angiogenesis and hypoxia (HIF1a, VEGFA) were expressed at the highest levels in TP. The composition and proportion of amino and fatty acids in pig muscles at the three altitudes examined also varied substantially. Among the breeds, TP had the highest proportion of umami amino acids, whereas QYP had the highest proportion of sweet amino acids. However, TP also exhibited the highest proportion of essential fatty acids and the lowest proportion of n6:n3. This study explains the high-altitude adaptive evolution and the formation of meat quality differences in different altitude pigs from various angles and provides a reference for local pork food processing and genetic improvement of local pigs.
Collapse
|
16
|
Kiyimba F, Belem TS, Nair MN, Rogers J, Hartson SD, Mafi GG, VanOverbeke DL, Ramanathan R. Effects of Oxygen Partial Pressure on 4-Hydroxy-2-Nonenal Induced Oxymyoglobin Oxidation. MEAT AND MUSCLE BIOLOGY 2019. [DOI: 10.22175/mmb2019.07.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
4-hydroxyl-2-nonenal (HNE) is a lipid oxidation product that can increase oxymyoglobin oxidation. However, limited research has evaluated the role of oxygen partial pressure in HNE-induced metmyoglobin formation. Therefore, the objective of was to compare the effects of atmospheric and high-oxygen partial pressure on HNE-induced oxymyoglobin oxidation in vitro. Oxymyoglobin was incubated with or without HNE at atmospheric (20% O2) or high-oxygen (80% O2) partial pressure. Metmyoglobin formation was measured after 0, 48, and 96 h of incubation at 4°C, and mass spectrometry was utilized to characterize the covalent binding of HNE to myoglobin. High-oxygen condition (80% O2) increased (P < 0.05) HNE-induced oxymyoglobin oxidation compared with the atmospheric partial pressure condition (20% O2). However, HNE was bound to myoglobin at both high-oxygen and atmospheric partial pressure conditions, with no differences (P > 0.05) in the extent of adduct formation. These results suggest that high-oxygen conditions had no effect on extent of HNE-binding, but can increase oxymyoglobin oxidation.
Collapse
Affiliation(s)
- Frank Kiyimba
- Oklahoma State University Department of Animal and Food Sciences
| | - Thiago S. Belem
- Oklahoma State University Department of Animal and Food Sciences
| | | | - Janet Rogers
- Oklahoma State University Department of Biochemistry and Molecular Biology
| | - Steven D. Hartson
- Oklahoma State University Department of Biochemistry and Molecular Biology
| | - Gretchen G. Mafi
- Oklahoma State University Department of Animal and Food Sciences
| | | | | |
Collapse
|
17
|
Ramanathan R, Hunt MC, English AR, Mafi GG, VanOverbeke DL. Effects of Aging, Modified Atmospheric Packaging, and Display Time on Metmyoglobin Reducing Activity and Oxygen Consumption of High-pH Beef. MEAT AND MUSCLE BIOLOGY 2019. [DOI: 10.22175/mmb2019.05.0017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of current research was to determine the effects of extended aging, modified atmospheric packaging (MAP), and display time on metmyoglobin reducing activity (MRA) and oxygen consumption (OC) of high-pH beef using pH sensitive methodology for MRA and OC. Ten normal-pH (mean pH = 5.6) and 10 high-pH loins (mean pH = 6.4) were vacuum packaged on d 3 postmortem and aged for 0, 21, 42, and 62 d at 2°C. Following aging, 2.0-cm-thick steaks were cut from each of the normal- and high-pH loin sections and packaged in either PVC film, high-oxygen (HiOx-MAP), or carbon monoxide modified atmospheric (CO-MAP) packaging. Surface color, OC, and MRA were measured on d 0 and 6 of the respective aging periods. Steaks in HiOx-MAP and CO-MAP had similar (P > 0.05) L* values, which were greater (P < 0.05) than high-pH steaks packaged in PVC film. On 21-d of aging, steaks with at both pHs in CO-MAP and HiOx-MAP had greater (P < 0.05) a* values than steaks packaged in PVC. As aging time increased, MRA decreased (P < 0.05) for steaks with normal- and high-pH when packaged in PVC and HiOx-MAP. Steaks with a high-pH in CO-MAP had greater (P < 0.05) MRA than steaks with a normal-pH in CO-MAP at all aging periods. Steaks with a high-pH had greater (P < 0.05) OC on d 0 and 6 than normal-pH steaks. Steaks with a normal-pH aged for 21 d and packaged in PVC and HiOx-MAP had greater (P < 0.05) lipid oxidation than high-pH steaks aged for 21 d and packaged in PVC and HiOx-MAP. After 62 d of aging and 6 d of display, the greatest color stability chemistry (based on MRA and OC for all package types) were: high-pH meat > normal-pH meat; thus the MRA and OC methodology was useful in relative comparison of packaged meat color stability differences due to pH.
Collapse
Affiliation(s)
- R. Ramanathan
- Oklahoma State University Department of Animal and Food Sciences
| | - M. C. Hunt
- Kansas State University Department of Animal Sciences and Industry
| | - A. R. English
- Oklahoma State University Department of Animal and Food Sciences
| | - G. G. Mafi
- Oklahoma State University Department of Animal and Food Sciences
| | | |
Collapse
|
18
|
Monteiro ML, Mársico ET, Rosenthal A, Conte-Junior CA. Synergistic effect of ultraviolet radiation and high hydrostatic pressure on texture, color, and oxidative stability of refrigerated tilapia fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4474-4481. [PMID: 30868583 DOI: 10.1002/jsfa.9685] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Maria Lg Monteiro
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliane T Mársico
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Amauri Rosenthal
- Embrapa Agroindústria de Alimentos Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Rio de Janeiro, Brazil
| | - Carlos A Conte-Junior
- Departamento de Tecnologia de Alimentos, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Mitacek RM, Ke Y, Prenni JE, Jadeja R, VanOverbeke DL, Mafi GG, Ramanathan R. Mitochondrial Degeneration, Depletion of NADH, and Oxidative Stress Decrease Color Stability of Wet-Aged Beef Longissimus Steaks. J Food Sci 2018; 84:38-50. [PMID: 30496612 DOI: 10.1111/1750-3841.14396] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/08/2018] [Accepted: 10/19/2018] [Indexed: 11/27/2022]
Abstract
Interrelationship between mitochondria and myoglobin function influence beef color. NADH level in postmortem muscle is an important determinant of mitochondrial activity and metmyoglobin reduction. Increased aging time promotes discoloration of steaks; however, the mechanism of this effect is not clear. The objective was to characterize the role of wet-aging in beef longissimus lumborum muscle mitochondrial function and to characterize the global metabolome to determine the mechanism of that can regenerate NADH. Beef longissimus lumborum muscles were randomly assigned to 3, 7, 14, 21, and 28 days aging periods. Surface color, biochemical, mitochondrial, and metabolite profiles were determined at each aging period and at the end of 6-day display. During 6-day display, sections aged for 28 days had 30.4% decrease in redness than sections aged for 3 days. Aging time decreased (P <0.05) muscle oxygen consumption, mitochondrial protein content, and antioxidant capacity. Metabolites such as fumaric acid, creatinine, and fructose, that can take part in glycolytic/TCA cycle and regenerate NADH decreased (P <0.05) with aging and display time. In support, NADH levels also decreased (P <0.05) with aging time, but aging time had no effect (P = 0.44) on NADH-dependent reductase activity. The results suggest that decreased color stability in aged beef can be attributed to increased mitochondrial damage, depletion of metabolites that can regenerate NADH, and increased oxidative stress. PRACTICAL APPLICATION: Beef aging time results in increased discoloration of steaks under retail display. The current research determines the fundamental basis of lower color stability in aged beef. The results indicate that mitochondrial degeneration, depletion of metabolites that produce NADH, and increased oxidative stress can limit shelf-life of aged steaks. Hence, application of post-harvest strategies to minimize mitochondrial damage and oxidative changes may have the potential to increase shelf-life of aged beef.
Collapse
Affiliation(s)
- Rachel M Mitacek
- Dept. of Animal and Food Sciences, Oklahoma State Univ., Stillwater, OK 74078, U.S.A
| | - Yiling Ke
- Dept. of Animal and Food Sciences, Oklahoma State Univ., Stillwater, OK 74078, U.S.A
| | - Jessica E Prenni
- Dept. of Horticulture and Landscape Architecture, Proteomics and Metabolomics Facility and Dept. of Biochemistry, Colorado State Univ., Fort Collins, CO 80523, U.S.A
| | - Ravirajsinh Jadeja
- Dept. of Animal and Food Sciences, Oklahoma State Univ., Stillwater, OK 74078, U.S.A
| | - Deborah L VanOverbeke
- Dept. of Animal and Food Sciences, Oklahoma State Univ., Stillwater, OK 74078, U.S.A
| | - Gretchen G Mafi
- Dept. of Animal and Food Sciences, Oklahoma State Univ., Stillwater, OK 74078, U.S.A
| | - Ranjith Ramanathan
- Dept. of Animal and Food Sciences, Oklahoma State Univ., Stillwater, OK 74078, U.S.A
| |
Collapse
|
20
|
Abstract
In postmortem muscle, mitochondria remain active and can influence beef color by oxygen consumption and metmyoglobin reduction. Enzymes involved in glycolysis and the tricarboxylic acid cycle can generate reducing equivalents such as succinate or NADH. Mitochondrial activity is critical to maintain steaks that are bright cherry-red and improve color stability. This review seeks to characterize the role of mitochondria in beef color; more specifically to understand the effects of mitochondrial function on myoglobin redox stability.
Collapse
|
21
|
López-Romero JC, Ayala-Zavala JF, Peña-Ramos EA, Hernández J, González-Ríos H. Antioxidant and antimicrobial activity of Agave angustifolia extract on overall quality and shelf life of pork patties stored under refrigeration. Journal of Food Science and Technology 2018; 55:4413-4423. [PMID: 30333637 DOI: 10.1007/s13197-018-3351-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Agave plants contain different bioactive compounds that are related to different biological activities; however, the application of Agave as a food additive has rarely been evaluated. The objective of this study was to evaluate the antioxidant and antimicrobial potential of Agave angustifolia extract (AAE) on pork patties stored at 4 °C during 10 days. According to the spectrophotometric analysis, AAE contained phenolic compounds and saponins. In addition, AAE exhibited antioxidant activity based on DPPH, ABTS and FRAP assays (94.2, 239.1 and 148.8 µmol ET/g, respectively). Likewise, AAE showed bactericidal activity against Staphylococcus epidermidis (60 mg/mL) and Escherichia coli (60 mg/mL). AAE demonstrated a protective effect against oxidative processes (TBARS and metmyoglobin) in patties compared to the control group. Mesophilic and psychotropic counts showed that AAE exhibited a weak antimicrobial effect. AAE showed a protective effect on redness and lightness (at 3 and 10 days of storage, respectively). Sensory evaluation found that AAE had no effect on the analyzed parameters. AAE exhibited antioxidant activity that preserve quality and extended the shelf life of pork patties.
Collapse
Affiliation(s)
| | | | - Etna Aida Peña-Ramos
- 1Research Center for Food and Development, (CIAD, A.C.), 83000 Hermosillo, Sonora Mexico
| | - Javier Hernández
- 2Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, 575, Xalapa, Veracruz Mexico
| | - Humberto González-Ríos
- 1Research Center for Food and Development, (CIAD, A.C.), 83000 Hermosillo, Sonora Mexico
| |
Collapse
|
22
|
Chen C, Yu Q, Han L, Zhang J, Guo Z. Effects of aldehyde products of lipid oxidation on the color stability and metmyoglobin reducing ability of bovine Longissimus muscle. Anim Sci J 2018; 89:810-816. [DOI: 10.1111/asj.12993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Cheng Chen
- College of Food Science and Engineering; Gansu Agricultural University; Lanzhou China
| | - Qunli Yu
- College of Food Science and Engineering; Gansu Agricultural University; Lanzhou China
| | - Ling Han
- College of Food Science and Engineering; Gansu Agricultural University; Lanzhou China
| | - Jiaying Zhang
- College of Food Science and Engineering; Gansu Agricultural University; Lanzhou China
| | - Zhaobin Guo
- College of Food Science and Engineering; Gansu Agricultural University; Lanzhou China
| |
Collapse
|
23
|
Nerimetla R, Krishnan S, Mazumder S, Mohanty S, Mafi GG, VanOverbeke DL, Ramanathan R. Species-Specificity in Myoglobin Oxygenation and Reduction Potential Properties. MEAT AND MUSCLE BIOLOGY 2017. [DOI: 10.22175/mmb2016.10.0003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective was to compare oxygenation and reduction potential properties of bovine and porcine myoglobins in-vitro. Cyclic voltammetry and homology-based myoglobin modeling were used to determine the species-specific effects on myoglobin reduction potential and oxygenation properties at pH 5.6, 6.4, and 7.4. At all pHs, porcine myoglobin had greater (P = 0.04) oxygen affinity than bovine myoglobin. For both species, oxygen affinity was higher at pH 6.4 > pH 7.4 > 5.6 (P = 0.0002). Myoglobin reduction potential for both species was affected by pH (P < 0.0001). The redox potentials became more negative as pH increased, indicating a proton-coupled electron transfer. There were no differences (P = 0.51) between species in reduction potential properties of heme. Homology-based myoglobin modeling indicated that the porcine myoglobin has a shorter distance between the distal histidine and heme than does bovine myoglobin. The variation in amino acid composition between bovine and porcine myoglobin could be partially responsible for differences in oxygen affinity.
Collapse
|
24
|
Djimsa BA, Abraham A, Mafi GG, VanOverbeke DL, Ramanathan R. Effects of Metmyoglobin Reducing Activity and Thermal Stability of NADH-Dependent Reductase and Lactate Dehydrogenase on Premature Browning in Ground Beef. J Food Sci 2017; 82:304-313. [PMID: 28099768 DOI: 10.1111/1750-3841.13606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 11/27/2022]
Abstract
Premature browning is a condition wherein ground beef exhibits a well-done appearance before reaching the USDA recommended internal cooked meat temperature of 71.1 °C; however, the mechanism is unclear. The objectives of this study were: (1) to determine the effects of packaging and temperature on metmyoglobin reducing activity (MRA) of cooked ground beef patties and (2) to assess the effects of temperature and pH on thermal stability of NADH-dependent reductase, lactate dehydrogenase (LDH), and oxymyoglobin (OxyMb) in-vitro. Beef patties (lean: fat = 85:15) were packaged in high-oxygen modified atmosphere (HiOX-MAP) or vacuum (VP) and cooked to either 65 or 71 °C. Internal meat color and MRA of both raw and cooked patties were determined. Purified NADH-dependent reductase and LDH were used to determine the effects of pH and temperature on enzyme activity. MRA of cooked patties was temperature and packaging dependent (P < 0.05). Vacuum packaged patties cooked to 71 °C had greater (P < 0.05) MRA than HiOX-MAP counterparts. Thermal stability of OxyMb, NADH-dependent reductase, and LDH were different and pH-dependent. LDH was able to generate NADH at 84 °C; whereas NADH-dependent reductase was least stable to heat. The results suggest that patties have MRA at cooking temperatures, which can influence cooked meat color.
Collapse
Affiliation(s)
| | - Anupam Abraham
- Dept. of Animal Science, Oklahoma State Univ., Stillwater, OK, 74078, U.S.A
| | - Gretchen G Mafi
- Dept. of Animal Science, Oklahoma State Univ., Stillwater, OK, 74078, U.S.A
| | | | - Ranjith Ramanathan
- Dept. of Animal Science, Oklahoma State Univ., Stillwater, OK, 74078, U.S.A
| |
Collapse
|
25
|
Papuc C, Goran GV, Predescu CN, Nicorescu V. Mechanisms of Oxidative Processes in Meat and Toxicity Induced by Postprandial Degradation Products: A Review. Compr Rev Food Sci Food Saf 2016; 16:96-123. [DOI: 10.1111/1541-4337.12241] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Camelia Papuc
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| | - Gheorghe V. Goran
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| | - Corina N. Predescu
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| | - Valentin Nicorescu
- UASVM of Bucharest; Faculty of Veterinary Medicine; 105 Splaiul Independentei, 5th district 050097 Bucharest Romania
| |
Collapse
|
26
|
De Maere H, Chollet S, Claeys E, Michiels C, Govaert M, De Mey E, Paelinck H, Fraeye I. In Vitro Zinc Protoporphyrin IX Formation in Different Meat Sources Related to Potentially Important Intrinsic Parameters. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1804-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|