1
|
Arslan K, Daldaban F, Yalcintan H, Kecici PD, Ozturk B, Ekiz B, Akyuz B. Relationship between the expression levels of myogenic regulatory factor genes and carcass characteristics in Kivircik and Hungarian Merino lambs. Anim Biotechnol 2025; 36:2479690. [PMID: 40122069 DOI: 10.1080/10495398.2025.2479690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
This study aimed to investigate the expression profiles of the myogenic regulatory genes MYOD1, MYOG, MYF5, MYF6, and MSTN in longissimus dorsi muscle, as well as the correlation of the expression levels of these genes with carcass characteristics and growth performance in the Kivircik and Hungarian Merino sheep breeds. The expression levels of the MYF5, MYF6, and MYOG genes were found to be significantly correlated with the rib proportion, the expression level of the MYOG gene was identified as being the main determinant of variations in the rib proportion in the Kivircik lambs. The regression analysis results revealed that the expression levels of the MYF5 and MSTN genes played an essential role in determining the cold carcass dressing percentage in Hungarian Merino lambs. Further, as a result of the regression analysis, the model including the expression level of the MYF6 gene demonstrated that this gene could be responsible for 36.4% of the differences observed in cold carcass weight. In conclusion, the findings of this study suggest that the expression levels of the MYF5, MYF6, and MYOG genes were associated with various carcass traits, particularly in the Kivircik breed, and these genes hold potential as markers for enhancing breed productivity.
Collapse
Affiliation(s)
- Korhan Arslan
- Department of Genetics, Erciyes University, Kayseri, Turkey
| | | | - Hulya Yalcintan
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Pembe Dilara Kecici
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bekir Ozturk
- Pınarhisar District Directorate of Agriculture and Forestry, Kırklareli, Turkey
| | - Bulent Ekiz
- Department of Animal Breeding and Husbandry, İstanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Bilal Akyuz
- Department of Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Schaub D, Posbergh CJ. A Genomic and Phenotypic Investigation of Feed Efficiency and Growth Traits in Targhee and Rambouillet Sheep. Animals (Basel) 2025; 15:783. [PMID: 40150312 PMCID: PMC11939469 DOI: 10.3390/ani15060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/12/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The U.S. range sheep industry uses estimated breeding values (EBVs) as part of their breeding objectives to increase post-weaning weight. The study objective was to quantify the relationship between lamb growth EBVs, feed intake, and feed efficiency. Eighty-one range ewe lambs were enrolled in the study to measure residual feed intake (RFI) over two 42-d periods at both the weaning and yearling stages. The ewe lambs' post-weaning weight EBVs (PWWT EBVs) were linearly associated with their phenotypic traits. Preliminary genome wide associations (GWAs) were also performed with Dry Matter Intake (DMI), RFI, mid-test body size, and average daily gain (ADG) and Ovine 50K SNP genotypes. Post-weaning weight EBVs were associated with dry matter intake (DMI) (p < 0.05) but had no association with residual feed intake (RFI) (p > 0.05) in both experimental periods. However, PWWT EBV was predictive of mid-test body weight in both periods (p < 0.05). A single SNP at Oar2:68,812,505, located within DMRT2, was associated with DMI and RFI in the second experimental period (Bonferroni corrected p <0.05). While selecting for higher post-weaning weight range ewes may increase feed consumed due to a larger body size, it was not associated with feed efficiency.
Collapse
Affiliation(s)
| | - Christian J. Posbergh
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
3
|
Zhang Z, Liu C, Hao W, Yin W, Ai S, Zhao Y, Duan Z. Novel Single Nucleotide Polymorphisms and Haplotype of MYF5 Gene Are Associated with Body Measurements and Ultrasound Traits in Grassland Short-Tailed Sheep. Genes (Basel) 2022; 13:genes13030483. [PMID: 35328037 PMCID: PMC8949509 DOI: 10.3390/genes13030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Myogenic factor 5 plays active roles in the regulation of myogenesis. The aim of this study is to expose the genetic variants of the MYF5 and its association with growth performance and ultrasound traits in grassland short-tailed sheep (GSTS) in China. The combination technique of sequencing and SNaPshot revealed seven SNPs in ovine MYF5 from 533 adult individuals (male 103 and female 430), four of which are novel ones located at g.6838G > A, g.6989 G > T, g.7117 C > A in the promoter region and g.9471 T > G in the second intron, respectively. Genetic diversity indexes showed the seven SNPs in low or intermediate level, but each of them conformed HWE (p > 0.05) in genotypic frequencies. Association analysis indicated that g.6838G > A, g.7117 C > A, g.8371 T > C, g.9471 T > G, and g.10044 C > T had significant effects on growth performance and ultrasound traits. The diplotypes of H1H3 and H2H3 had higher body weight and greater body size, and haplotype H3 had better performance on meat production than the others. In addition, the dual-luciferase reporter assay showed that there are two active regions in the MYF5 promoter located at −1799~−1197 bp and −514~−241 bp, respectively, but g.6838G > A and g.7117 C > A were out of the region, suggesting these two SNPs influence the phenotype by other pathway. The results suggest that the MYF5 gene might be applied as a promising candidate of functional genetic marker in GSTS breeding.
Collapse
Affiliation(s)
- Zhichao Zhang
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Liu
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Wenjing Hao
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Weiwen Yin
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Sitong Ai
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
| | - Yanfang Zhao
- Animal Disease Prevention and Control Center, Ewenki Autonomous Banner, Hulunbuir 021000, China;
| | - Ziyuan Duan
- Genetic Resources Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Z.Z.); (C.L.); (W.H.); (W.Y.); (S.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
4
|
Sousa-Junior LPB, Meira AN, Azevedo HC, Muniz EN, Coutinho LL, Mourão GB, Leão AG, Pedrosa VB, Pinto LFB. Variants in myostatin and MyoD family genes are associated with meat quality traits in Santa Inês sheep. Anim Biotechnol 2020; 33:201-213. [PMID: 32633608 DOI: 10.1080/10495398.2020.1781651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Myostatin and MyoD family genes play vital roles in myogenesis and this study aimed to identify association of variants in MyoD1, MyoG, MyF5, MyF6, and MSTN genes with meat traits in Santa Inês sheep. A dataset with 44 variants and records of seven meat traits in 192 lambs (pH0, pH24, a*, b*, L*, tenderness assessed by shear force, and water-holding capacity) was used. Single-locus and haplotype association analyses were performed, and the significance threshold was established according to Bonferroni's method. Single-locus analysis revealed two associations at a Bonferroni level, where the variant c.935-185C > G in MyoD1 had an additive effect (-4.31 ± 1.08 N) on tenderness, while the variant c.464 + 185G > A in MyoG had an additive effect (-2.86 ± 0.64) on a*. Additionally, the haplotype replacement GT>AC in MSTN was associated with pH0 (1.26 ± 0.31), pH24 (1.07 ± 0.27), a* (-1.40 ± 0.51), and tenderness (3.83 ± 1.22 N), while the replacement GT > AG in MyoD1 was associated with pH0 (1.43 ± 0.26), pH24 (1.25 ± 0.22), b* (-1.06 ± 0.39), and tenderness (-4.13 ± 1.16 N). Our results have demonstrated that some variants in MyoG, MyF6, MyoD1, and MSTN can be associated with physicochemical meat traits in Santa Inês sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | - André Gustavo Leão
- Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Mato Grosso, Rondonópolis, MT, Brazil
| | - Victor Breno Pedrosa
- Departamento de Zootecnia, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | |
Collapse
|
5
|
Pewan SB, Otto JR, Huerlimann R, Budd AM, Mwangi FW, Edmunds RC, Holman BWB, Henry MLE, Kinobe RT, Adegboye OA, Malau-Aduli AEO. Genetics of Omega-3 Long-Chain Polyunsaturated Fatty Acid Metabolism and Meat Eating Quality in Tattykeel Australian White Lambs. Genes (Basel) 2020; 11:E587. [PMID: 32466330 PMCID: PMC7288343 DOI: 10.3390/genes11050587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary objective of this review was to access, retrieve, synthesise and critically appraise the published literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28-39°C), high n-3 LC-PUFA EPA+DHA content (33-69mg/100g), marbling (3.4-8.2%), tenderness (20.0-38.5N) and overall consumer liking (7.9-8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic genes and meat quality traits present major knowledge gaps. The review also identified research opportunities in nutrition-genetics interactions aimed at a greater understanding of the genetics of n-3 LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and provide useful insights into their correlations with SCD, FASN and FABP4 genes.
Collapse
Affiliation(s)
- Shedrach Benjamin Pewan
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
- National Veterinary Research Institute, Private Mail Bag 01, Vom, Plateau State, Nigeria
| | - John Roger Otto
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Roger Huerlimann
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Alyssa Maree Budd
- Centre for Sustainable Tropical Fisheries and Aquaculture and Centre for Tropical Bioinformatics and Molecular Biology, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; (R.H.); (A.M.B.)
| | - Felista Waithira Mwangi
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Richard Crawford Edmunds
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | | | - Michelle Lauren Elizabeth Henry
- Gundagai Meat Processors, 2916 Gocup Road, South Gundagai, New South Wales 2722, Australia;
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robert Tumwesigye Kinobe
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| | - Oyelola Abdulwasiu Adegboye
- Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia;
| | - Aduli Enoch Othniel Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; (S.B.P.); (J.R.O.); (F.W.M.); (R.C.E.); (R.T.K.)
| |
Collapse
|
6
|
Sallam AM, Gad-Allah AA, Al-Bitar EM. Association analysis of the ovine KAP6-1 gene and wool traits in Barki sheep. Anim Biotechnol 2020; 32:733-739. [PMID: 32248743 DOI: 10.1080/10495398.2020.1749064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditionally, sheep are raised in Egypt for meat and wool production. Selection for higher wool quality could increase its suitability for particular processing procedures in the wool industry, which maximizes the profit of the sheep production enterprise. In this research, the effect of genetic polymorphisms of the keratin-associated protein 6-1 (KAP6-1) on wool traits was investigated in Barki sheep. Animals were genotyped by polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP). Results identified a single nucleotide polymorphism (rs589531301, G > C) with three genotypes (GG, GC and CC) and the genotypic frequencies were 14.63, 43.82 and 41.55%, respectively. The KAP6-1 genotypes significantly (p > 0.05) affected greasy fleece weight (GFW; p = 0.05), prickle factor (PF; p = 0.02), staple length (SL; p = 0.038), fiber diameter (FD; p = 0.015), kemp score (KS; p = 0.048), greasy color grade (GCG; p = 0.037), luster grade (LS; p = 0.048) and the greasy structure (GS; p = 0.038). The noteworthy, animals with the CC genotype produce more wool (GFW = 1.116 kg) with longer SL (9.03 cm), finer wool (FD = 24.34 μm) and higher KS compared to other genotypes. The results of this report presented the KAP6-1 gene as a candidate gene to improve the wool production traits in the Egyptian Barki sheep and worldwide.
Collapse
|
7
|
Wang J, Zhou H, Hickford JGH, Zhao M, Gong H, Hao Z, Shen J, Hu J, Liu X, Li S, Luo Y. Identification of Caprine KRTAP28-1 and Its Effect on Cashmere Fiber Diameter. Genes (Basel) 2020; 11:E121. [PMID: 31979055 PMCID: PMC7074440 DOI: 10.3390/genes11020121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The keratin-associated proteins (KAPs) are constituents of cashmere fibers and variation in many KAP genes (KRTAPs) has been found to be associated with fiber traits. The gene encoding the high-sulphur KAP28-1 has been described in sheep, but it has not been identified in the goat genome. In this study, a 255-bp open reading frame on goat chromosome 1 was identified using a search of similar sequence to ovine KRTAP28-1, and that would if transcribed and translated encode a high sulphur KAP. Based on the analysis of polymerase chain reaction (PCR) amplicons for the goat nucleotide sequences in 385 Longdong cashmere goats in China, five unique banding patterns were detected using single-stranded conformational polymorphism (SSCP). These represented five DNA sequences (named variants A to E) and they had the highest resemblance to KRTAP28-1 sequences from sheep, suggesting A-E are variants of caprine KRTAP28-1. DNA sequencing revealed a 2 or 4-bp deletion and eleven nucleotide sequence differences, including four non-synonymous substitutions. Of the four common variants (A, B, C and D) found in these goats, the presence of variant A was associated with decreased mean fiber diameter and this effect appeared to be additive. These results indicate that caprine KRTAP28-1 variation might have value as a molecular marker for reducing cashmere mean fiber diameter.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jon G. H. Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Mengli Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hua Gong
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (H.Z.); (J.G.H.H.); (M.Z.); (H.G.); (Z.H.); (J.S.); (J.H.); (X.L.); (S.L.)
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Wang J, Hao Z, Zhou H, Luo Y, Hu J, Liu X, Li S, Hickford JG. A keratin-associated protein (KAP) gene that is associated with variation in cashmere goat fleece weight. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|