1
|
Yu M, Oketch EO, Chathuranga NC, Nawarathne SR, Maniraguha V, Cruz BGS, Seo E, Lee J, Heo JM. How do crate materials impact the winter transport of broilers? Anim Biosci 2025; 38:568-574. [PMID: 39483003 PMCID: PMC11917388 DOI: 10.5713/ab.24.0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Pre-slaughter transportation adversely impacts the welfare, meat yield, and quality of broilers, yet the effects of different crate types on broiler chickens during winter remain underexplored. The goal of this study was to investigate the effect of plastic and iron crates in transit on meat quality, carcass, and physiological traits of broiler chickens during winter. METHODS A total of 175 (35-day-old) Ross 308 male broilers with an average body weight of about 1,708±33.3 g (mean±standard error of the mean) were picked after 4 hours of feed withdrawal before transport. The control group comprises birds in the farm (n = 15) without transportation at 173 cm2/kg density. The birds were transported into fixed iron (25 birds per crate) and plastic crates (15 birds per crate) with four replicates per crate type at the same 173 cm2/kg densities. The transportation distance was 20 km for 40 min at an average speed of 30-50 km/h early morning at 8:00 am under -1°C and 47% relative humidity. RESULTS There was no difference (p>0.05) in carcass traits among the treatments. Concerning meat quality, broilers transported in both crate types exhibited lower (p<0.01) a* values compared to the control group. Additionally, the iron crate group demonstrated higher (p<0.05) b* values for the breast meat compared to the other groups. In terms of blood metabolites, the iron crate group had higher (p<0.05) cortisol, glucose, and lactate levels compared to the control group that did not transport. CONCLUSION Broilers transported in the iron crates increase stress levels in terms of higher cortisol, glucose, and lactate contents in the blood plasma compared to untransported broilers during the winter. Therefore, employing plastic crates, which induce significantly reduced cortisol and numerically lower glucose levels compared to iron crates, appears more favorable for animal welfare by mitigating stress.
Collapse
Affiliation(s)
- Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | | | - Shan Randima Nawarathne
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Venuste Maniraguha
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | | | - Eunsoo Seo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jeseok Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Yu M, Oketch EO, Chathuranga NC, Nawarathne SR, Hong JS, Maniraguha V, Cruz BGS, Seo E, Lee J, Park H, Heo JM. Effect of crating density and weather conditions during transit on preslaughter losses, physiological characteristics, and meat quality in broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1170-1181. [PMID: 39691611 PMCID: PMC11647400 DOI: 10.5187/jast.2023.e132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2024]
Abstract
The impact of crating density and prevailing weather conditions during transit on preslaughter losses, physiological characteristics, and meat quality in broilers was investigated. A total of 900 35-day-old Ross 308 male broilers with an average body weight of 1,860 ± 17.458 g (mean ± SEM) in summer and 1,864 ± 17.454 g in winter were allotted to one of six groups arranged in a 3 × 2 factorial arrangement according to the three different crating densities (low: 0.039 m2/bird; medium: 0.031 m2/bird; high: 0.026 m2/bird) and two different weather conditions (low: -1°C and high: 30°C). Birds stocked at medium density recorded lower (p < 0.05) body weight loss compared to the low density group; and demonstrated higher (p < 0.05) lactate levels along with lower (p < 0.05) respiration rates when compared to the high crating density group. Extreme conditions of low crating density under low air temperature and high crating density under high air temperature led to higher (p < 0.001) body weight loss and glucose concentration compared to low crating density under high air temperature. In conclusion, both excessively high and low crating densities are not conducive to reducing preslaughter losses and blood stress indicators. Broiler transportation under high crating density in low air temperatures and low crating density in high air temperatures is recommended.
Collapse
Affiliation(s)
- Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | | | - Shan Randima Nawarathne
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Venuste Maniraguha
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Bernadette G. Sta. Cruz
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Eunsoo Seo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jeseok Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Haeeun Park
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
3
|
Yu M, Chathuranga NC, Oketch EO, Hong JS, Park H, Heo JM. Effect of different crate material types for transit on production, physiological characteristics, and welfare of broilers during the summer season. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1193-1202. [PMID: 39691616 PMCID: PMC11647414 DOI: 10.5187/jast.2024.e48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 12/19/2024]
Abstract
The current study investigated the impact of using iron and plastic crates during summer transportation on production, physiological characteristics, and welfare of broiler chickens. A total of 160 Ross 308 male broilers were randomly selected from a battery-caged house at 35 days of age. Their average body weight was 1,866.62 ± 36.048 g (mean ± SEM). Broilers were crated into fixed iron crates with 1.00 m (length) × 0.78 m (width) × 0.26 m (height) and plastic crates with 0.82 m (length) × 0.57 m (width) × 0.29 m (height) dimensions at 173 cm2/kg densities. Afterward, they were transported in the early morning at an average speed of 30-50 km/h for 40 minutes under 30°C and 40% relative humidity, completing a total distance of 20 km. Body weights were recorded before and after completing the journey. Following the weighing of birds, blood samples were collected for blood metabolite (cortisol, glucose, and lactate) analysis. Cervical dislocation was performed to euthanize broilers followed by breast and drumstick collection. Dressing, drumstick, and breast meat were calculated as percentages whereas respiratory frequencies were measured as the number of breaths per minute. Collected breast meat samples were utilized to analyze physiochemical parameters such as pH, color (CIE L*, a*, b*), water holding capacity, and cooking loss. Results from skin temperature assessments showed higher temperatures (p < 0.05) in broilers that were loaded into iron crates, both before (iron, 41.23 ± 0.610°C; plastic, 39.25 ± 0.065°C) and after (iron, 43.53 ± 0.723°C, and plastic, 41.63 ± 0.132°C) completing the journey. However, total skin temperature change was not significantly affected. Importantly, stress-indicating blood metabolite analysis revealed that glucose and lactate levels were lower (p < 0.05) in broilers transported in plastic crates. Nevertheless, cortisol levels remained unaffected by crate materials. Furthermore, transit losses, carcass characteristics, and physiochemical properties were also unaffected despite the dissimilar crate types. In conclusion, the study revealed that plastic is the more advantageous crating material compared to iron. Besides, plastic crates ensure meat quality and animal welfare, as evidenced by blood metabolite levels and skin temperature after transit.
Collapse
Affiliation(s)
- Myunghwan Yu
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | | | - Elijah Ogola Oketch
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jun Seon Hong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Haeeun Park
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jung Min Heo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
4
|
Jeong SKC, Jo K, Lee S, Jeon H, Kim S, Han S, Woo M, Kim HB, Seong PN, Jung S. Relationship between the pH of semispinalis capitis muscle and the quality properties of pork shoulder butt and belly slices. Food Chem X 2024; 23:101704. [PMID: 39220416 PMCID: PMC11363561 DOI: 10.1016/j.fochx.2024.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the relationship of carcass characteristics such as hot carcass weight and back fat thickness (BFT) and the pH of semispinalis capitis (SC) with the cooking loss (CL) of pork shoulder butt and the CL and Warner-Bratzler shear force (WBSF) of belly. BFT was correlated with the CLs of the butt slices (r s = -0.30) and the belly slices (r s = -0.27 to -0.32). The pH of the SC muscle showed a correlation with the CLs of the butt slices (r s = -0.45) and the belly slices of the 6th and 11th thoracic vertebrae (r s = -0.28 to -0.33). Additionally, the correlations (r s = 0.62 to 0.77) were observed in the CLs among the belly slices. However, the WBSF of the belly slices did not show correlations with others. Therefore, the pH of the SC muscle as well as BFT can be used to obtain information on the CL of shoulder butts and bellies in carcasses.
Collapse
Affiliation(s)
- Seul-Ki-Chan Jeong
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seonmin Lee
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soeun Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seokhee Han
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minkyung Woo
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 16890, Republic of Korea
| | - Pil Nam Seong
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Han S, Jo K, Jeong SKC, Jeon H, Kim S, Woo M, Jung S, Lee S. Comparative Study on the Postmortem Proteolysis and Shear Force during Aging of Pork and Beef Semitendinosus Muscles. Food Sci Anim Resour 2024; 44:1055-1068. [PMID: 39246540 PMCID: PMC11377210 DOI: 10.5851/kosfa.2024.e37] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 09/10/2024] Open
Abstract
The differences in the proteolytic patterns and shear force of pork and beef during aging were evaluated. Pork and beef semitendinosus muscles were obtained at 24 and 48 h postmortem, respectively, and aged at 4°C for 0 (Day 0), 7 (Day 7), and 14 days (Day 14). Changes in the electrical conductivity were observed in pork on Day 7 and beef on Day 14. The calpain activity increased in pork (p<0.05) after 14 days of aging, whereas that of beef decreased on Day 7 (p<0.05). The cathepsin B activity in pork and beef increased between Day 7 and 14 (p<0.05). The content of α-amino group in the 10% trichloroacetic acid-soluble fraction increased between Day 7 and 14 in pork (p<0.05), but increased steadily in beef throughout aging (p<0.05). The electrophoretogram of the myofibrillar proteins revealed a 30 kDa protein band only in the beef lane on Day 14. The cooked pork had no significant changes in the shear force during aging periods (p>0.05), while the gradual decrease in the shear force with the increasing aging periods was shown in the cooked beef (p<0.05). Circular dichroism analysis of myosin extracts from pork and beef revealed thermal denaturation temperatures of 55°C and 58°C, respectively. This study highlights the different post-mortem proteolytic patterns and thermal denaturation temperatures of myosin in pork and beef semitendinosus muscles, which contribute to distinct changes in the shear force during aging between pork and beef.
Collapse
Affiliation(s)
- Seokhee Han
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Soeun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minkyung Woo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Santhapur R, Jayakumar D, McClements DJ. Development and Characterization of Hybrid Meat Analogs from Whey Protein-Mushroom Composite Hydrogels. Gels 2024; 10:446. [PMID: 39057469 PMCID: PMC11276292 DOI: 10.3390/gels10070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
There is a need to reduce the proportion of animal-derived food products in the human diet for sustainability and environmental reasons. However, it is also important that a transition away from animal-derived foods does not lead to any adverse nutritional effects. In this study, the potential of blending whey protein isolate (WPI) with either shiitake mushroom (SM) or oyster mushroom (OM) to create hybrid foods with enhanced nutritional and physicochemical properties was investigated. The impact of OM or SM addition on the formation, microstructure, and physicochemical attributes of heat-set whey protein gels was therefore examined. The mushroom powders were used because they have relatively high levels of vitamins, minerals, phytochemicals, and dietary fibers, which may provide nutritional benefits, whereas the WPI was used to provide protein and good thermal gelation properties. A variety of analytical methods were used to characterize the structural and physicochemical properties of the WPI-mushroom hybrids, including confocal microscopy, particle electrophoresis, light scattering, proximate analysis, differential scanning calorimetry, thermogravimetric analysis, dynamic shear rheology, textural profile analysis, and colorimetry. The charge on whey proteins and mushroom particles went from positive to negative when the pH was raised from 3 to 9, but whey protein had a higher isoelectric point and charge magnitude. OM slightly increased the thermal stability of WPI, but SM had little effect. Both mushroom types decreased the lightness and increased the brownness of the whey protein gels. The addition of the mushroom powders also decreased the hardness and Young's modulus of the whey protein gels, which may be because the mushroom particles acted as soft fillers. This study provides valuable insights into the formation of hybrid whey protein-mushroom products that have desirable physiochemical and nutritional attributes.
Collapse
Affiliation(s)
- Ramdattu Santhapur
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
| | - Disha Jayakumar
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
7
|
Lee S, Jo K, Jeong SKC, Jeon H, Choi YS, Jung S. Characterization of peptides released from frozen-then-aged beef after digestion in an in vitro infant gastrointestinal model. Meat Sci 2024; 212:109468. [PMID: 38428150 DOI: 10.1016/j.meatsci.2024.109468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
This study investigated whether the freezing-then-aging treatment of beef affects protein digestibility and release of potentially bioactive peptides using an in vitro infant digestion model. After 28 days of storage, aged-only (AO) and frozen-then-aged (FA) beef exhibited higher α-amino group contents in the 10% trichloroacetic acid-soluble fraction compared to day 0 (P < 0.05). Following in vitro digestion in the infant model, FA showed higher contents of α-amino groups and smaller proteins (<3 and 1 kDa) than day 0 and AO (P < 0.05). Relative contributions of myofibrillar, sarcoplasmic, and stromal proteins to the bioactive peptides released from AO and FA differed from those of day 0. In addition, FA exhibited a higher proportion of potential bioactive peptide sequences. Overall, freezing-then-aging treatment can enhance the potential health benefits of beef to be used as a protein source for complementary foods.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
8
|
Liu R, Guan W, Lv W, Kang Z, Wang Q, Jin D, Zhao X, Ge Q, Wu M, Yu H. Oxidative Modification, Structural Conformation, and Gel Properties of Pork Paste Protein Mediated by Oxygen Concentration in Modified Atmosphere Packaging. Foods 2024; 13:391. [PMID: 38338526 PMCID: PMC10855563 DOI: 10.3390/foods13030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The objective of this study was to investigate the effect of pork oxidation through modified atmosphere packaging (MAP) on gel characteristics of myofibrillar proteins (MP) during the heat-induced gelation process. The pork longissimus thoracis (LT) was treated by MAP at varying oxygen concentrations (0, 20, 40, 60, and 80% O2) with a 5-day storage at 4 °C for the detection of MP oxidation and gel properties. The findings showed the rise of O2 concentration resulted in a significant increase of carbonyl content, disulfide bond, and particle size, and a decrease of sulfhydryl content and MP solubility (p < 0.05). The gel textural properties and water retention ability were significantly improved in MAP treatments of 0-60% O2 (p < 0.05), but deteriorated at 80% O2 level. As the concentration of O2 increased, there was a marked decrease in the α-helix content within the gel, accompanied by a simultaneous increase in β-sheet content (p < 0.05). Additionally, a judicious oxidation treatment (60% O2 in MAP) proved beneficial for crafting dense and uniform gel networks. Our data suggest that the oxidation treatment of pork mediated by O2 concentration in MAP is capable of reinforcing protein hydrophobic interaction and disulfide bond formation, thus contributing to the construction of superior gel structures and properties.
Collapse
Affiliation(s)
- Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Wen Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Wei Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Zhuangli Kang
- School of Tourism and Cuisine, Engineering Technology Research Center of Yangzhou Prepared Cuisine, Yangzhou University, Yangzhou 225127, China;
| | - Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Duxin Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (R.L.); (W.G.); (W.L.); (Q.W.); (D.J.); (X.Z.); (Q.G.); (M.W.)
| |
Collapse
|
9
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. High-pressure processing of beef increased the in vitro protein digestibility in an infant digestion model. Meat Sci 2023; 205:109318. [PMID: 37647738 DOI: 10.1016/j.meatsci.2023.109318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Beef is an ideal protein source for use as a complementary food in infants. Considering the limited protein-digesting capacity of infants, it is required to enhance protein digestibility while minimizing the deterioration of beef quality. Thus, this study aimed to determine the effects of high-pressure processing (HPP) on the physicochemical properties and in vitro digestibility of beef proteins in an infant digestion model. HPP at 200 and 300 MPa decreased the tryptophan fluorescence intensity of the myosin and actin fractions relative to that at 0.1 MPa (P < 0.05). Compared to treatment at 0.1 and 100 MPa, HPP at 300 MPa decreased α-helix and β-turn contents in the myosin and actin fractions (P < 0.05), whilst increasing the β-sheet content (P < 0.05). Beef actomyosin content decreased (P < 0.05) during HPP at 200 and 300 MPa (c.f., 0.1 and 100 MPa). After in vitro digestion of beef, HPP at 200 and 300 MPa increased the α-amino group content and the abundance of proteins below 3 kDa in the digesta (P < 0.05). However, due to the considerable lipid oxidation at 300 MPa, HPP at 200 MPa is ideal for improving the protein digestibility of beef when incorporated into complementary foods for infants.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
10
|
Lee S, Jo K, Jeong SKC, Jeon H, Choi YS, Jung S. Recent strategies for improving the quality of meat products. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:895-911. [PMID: 37969348 PMCID: PMC10640940 DOI: 10.5187/jast.2023.e94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023]
Abstract
Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|