1
|
Kang L, Li X, Zhao X, Liu T, Jin Y, Duan Y. Effects of L-arginine supplementation on fat deposition and meat quality in growing lambs: Interactions with gut microbiota and metabolic signalling pathways. Food Chem 2025; 479:143677. [PMID: 40081064 DOI: 10.1016/j.foodchem.2025.143677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Arginine (ARG) improves meat quality and fat deposition; however, its effects on gut microbiota-mediated lipid metabolism in lambs remain unclear. Twenty-four lambs were divided into control (fed a basal diet) and ARG groups (with 1 % ARG added). In the ARG group, backfat thickness, shear force in the longissimus thoracis (LT) muscle, and C16:0 and SFA contents in the subcutaneous adipose tissue (SAT) were reduced, whereas the eye muscle area, a* value, and intramuscular fat, C18:2n-6c, C20:4n-6, C20:5n-3, and PUFA contents in the LT were elevated. Moreover, the ARG group exhibited higher levels of Prevotella, Akkermansia, Faecalibacterium, SCFAs, and GLP-1 in the colon, and lower serum triglyceride and glucose levels. Interestingly, ARG differentially regulated lipid metabolism in the SAT and LT via the GLP-1R/AMPK and triglyceride metabolism signalling pathways. Overall, ARG addition may optimise gut microbiota composition, fat deposition, and meat quality, providing application guidance for regulating fat deposition in lambs.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xuan Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
2
|
Chen L, Zhang Z, Deng W, Jiang G, Xie D, Cao A. Bile acids enhance fat metabolism and skeletal muscle development in Zhijiang duck by modulating gut microbiota. Poult Sci 2025; 104:105319. [PMID: 40449103 PMCID: PMC12166883 DOI: 10.1016/j.psj.2025.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/10/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
To optimize livestock production of integrated farms, dietary crude fat levels are often increased, making efficient fat utilization crucial. Bile acids are known to improve fat utilization, but their impact on growth performance and breast muscle development in Zhijiang ducks remains unclear. In this study, a total of 360 twenty-day-old Zhijiang ducks with similar body weights were divided into three groups: the control group (CN) received a basal diet; the high-fat group (FA) received the basal diet plus 1.25 % rapeseed oil; and the high-fat plus bile acids compound (BA) group (FB) received the FA diet supplemented with 250 mg/kg BA for 30 days. Results indicated that the addition of rapeseed oil and BA significantly increased (P < 0.05) average daily gain (ADG) and reduced (P < 0.05) feed conversion ratio (FCR). Slaughter data showed that BA significantly enhanced (P < 0.05) breast muscle weight and percentage while decreasing (P < 0.05) abdominal fat weight. Additionally, BA increased (P < 0.05) the cross-sectional area of breast muscle fibers, total bile acid content, and levels of insulin-like growth factors 1/2 (IGF1/2). Transcriptomic analysis further revealed that BA significantly upregulated (P < 0.05) the levels of PPARα, CPT1α, NR1H4, and CETP in breast muscle. 16S rRNA analysis showed a significant increase (P < 0.05) in the relative abundances of genera Enorma, [Eubacterium nodatum group], Rikenellaceae RC9 gut group, and SP3-e08. Additionally, the Spearman correlation suggested a positive correlation between the genera Olsenella, SP3-e08, Enorma, Rikenellaceae_RC9_gut_group, and [Eubacterium_nodatum_group] with PPARα, CETP, NR1H4, and CPT1α. In contrast, the genera Christensenellaceae_R_7_group and Sutterella exhibited negative correlations with PPARα. These findings provide new insights into the role of BA in promoting growth performance and skeletal muscle development in Zhijiang ducks fed a high-fat diet, with this effect potentially linked to changes in the gut microbiota.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Animal and Aquatic Sciences, Huaihua Academy of Agricultural Sciences, Huaihua 418000, PR China; Livestock and Poultry Breeding Innovation Center, Yuelushan Laboratory, Changsha 410000, PR China.
| | - Zhizhong Zhang
- Institute of Animal and Aquatic Sciences, Huaihua Academy of Agricultural Sciences, Huaihua 418000, PR China
| | - Wei Deng
- Institute of Animal and Aquatic Sciences, Huaihua Academy of Agricultural Sciences, Huaihua 418000, PR China
| | - Guitao Jiang
- Research Department of Animal Nutrition and Poultry, Hunan Institute of Animal and Veterinary Science, Changsha 410000, PR China
| | - Deming Xie
- Experimental Animal Center, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Aizhi Cao
- Shandong Longchang Animal Health Product Co. Ltd., Dezhou 253000, PR China
| |
Collapse
|
3
|
Pan Y, Sun G, Li G, Chen S, Liu H, Li H, Mei C, Yang W, Zan L. Sex-specific microbiota associations with backfat thickness, eye muscle area, and rumen fermentation in Qinchuan cattle. BMC Microbiol 2025; 25:277. [PMID: 40335895 PMCID: PMC12060573 DOI: 10.1186/s12866-025-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Ruminant livestock are essential for global food production, and understanding sex-specific rumen fermentation and microbial differences is key to improving production efficiency and meat quality. This study explored sex-specific variations in backfat thickness, eye muscle area, rumen fermentation, and microbiota in Qinchuan cattle. RESULTS The results revealed that heifers exhibited higher backfat thickness, butyrate concentrations, and acetate/propionate ratio, whereas bulls had larger eye muscle areas and higher propionate concentrations. Volatile fatty acids (VFAs) transport-related genes (CA4, DRA, and NHE1) were more highly expressed in bulls. Heifers showed greater microbial diversity with distinct sex-specific community structures. Bulls had a higher abundance of Prevotella, while butyrate-producing bacteria like Butyrivibrio and Pseudobutyrivibrio were more abundant in heifers. Functional predictions revealed that bulls were enriched in glycan biosynthesis and amino acid metabolism pathways, whereas heifers showed enhanced lipid metabolism pathways. Correlation analyses showed that backfat thickness was positively correlated with acetate and butyrate production, and acetate/propionate ratio, but negatively correlated with Veillonellaceae_UCG-001. Eye muscle area was negatively correlated with isobutyrate production and the abundance of Elusimicrobium and Anaeroplasma, but positively correlated with Lachnospiraceae_NK3A20_group. Redundancy analysis (RDA) identified propionate and butyrate as key drivers of microbial community differences. The Random Forest model identified key predictors for backfat thickness, including rumen fermentation parameters, microbial taxa, and metabolic pathways, explaining 28% of the variation. However, eye muscle area was not well predicted by the current parameters. CONCLUSION These findings enhance our understanding of sex-specific microbial and metabolic profiles, offering potential strategies for optimizing livestock management and breeding programs.
Collapse
Affiliation(s)
- Yueting Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gege Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guo Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shuaicheng Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huaxuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- National Beef Cattle Improvement Center, Yangling, 712100, China.
| |
Collapse
|
4
|
Wang H, Zhan J, Zhao S, Jiang H, Jia H, Pan Y, Zhong X, Huo J. A Comparison Between High- and Low-Performing Lambs and Their Impact on the Meat Quality and Development Level Using a Multi-Omics Analysis of Rumen Microbe-Muscle-Liver Interactions. Microorganisms 2025; 13:943. [PMID: 40284779 PMCID: PMC12029538 DOI: 10.3390/microorganisms13040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Through an integrated multi-omics analysis of rumen microbial communities, muscle transcriptomes, metabolic profiles, and liver metabolic profiles, this study systematically compared high- and low-performing lambs to elucidate their divergent effects on meat quality attributes and growth development. A total of 100 male lambs with similar birth weight (3.07 ± 0.06 kg) were selected within 72 h. All test lambs were synchronized weaning at 45 days of age and uniformly fed the same diet (total mixed ration) in the same pen until 180 days of age, with ad libitum access to food and water throughout this period. Subsequently, the eight lambs with the highest (HADG) and lowest (LADG) average daily gains were slaughtered for performance evaluation and multi-omics analysis. This study found that HADG lambs increased body weight, muscle fiber diameter, eye muscle area, improved amino acid (histidine, arginine, valine, isoleucine, essential amino acid/total amino acid, and essential amino acid/nonessential amino acid), and fatty acid (linoleic acid, behenic acid, and arachidonic acid) composition enhanced rumen enzymes (pepsase, lipase, xylanase, amylase, and carboxymethyl cellulose) and promoted efficient fermentation (p < 0.05). Analysis of microbial populations indicated a notable increase in Prevotella levels within the rumen of HADG lambs. Furthermore, the rumen markers Schwartzia and Streptococcus exhibited significant correlations with differential meat quality traits. Analysis of the muscle transcriptome indicated a significant correlation between the turquoise module and host phenotypes, particularly body weight. Additionally, muscle metabolism is primarily concentrated within the black module; however, it exhibits a significant correlation with the host body phenotype in the yellow module (p < 0.05). Moreover, liver metabolites, rumen microbes, host phenotype, and muscle transcripts were significantly correlated (p < 0.05). In conclusion, the interactions among rumen microbes, muscle, and liver in lambs promote rumen fermentation, which in turn regulate muscle transcriptional activity and modify metabolic profiles in both the liver and muscle. Moreover, PCK1, SPP1, FGF7, NR4A1, DUSP5, GADD45B, etc., can be candidate genes for muscle growth and development. This finding provides a theoretical basis for further exploiting the production potential of Hu lambs.
Collapse
Affiliation(s)
- Haibo Wang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Provincial Development and Research Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Jinshun Zhan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Provincial Development and Research Institute of Ruminants in Gansu, Lanzhou 730070, China
| | - Haoyun Jiang
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Haobin Jia
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Yue Pan
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Xiaojun Zhong
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| | - Junhong Huo
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China; (H.W.); (J.Z.); (H.J.); (H.J.); (Y.P.); (X.Z.)
| |
Collapse
|
5
|
He Y, Hu H, Liang X, Liang J, Li F, Zhou X. Gut microbes-muscle axis in muscle function and meat quality. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2885-4. [PMID: 40220074 DOI: 10.1007/s11427-024-2885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025]
Abstract
The concept of the gut microbes-muscle axis underscores the impact of intestinal microbiota on the muscular system, an area that is increasingly coming to light. However, current interpretations and applications of this concept remain underdeveloped. In this review, we concluded and discussed factors, such as short-chain fatty acids, amino acids, vitamins, bile acids, antibiotics, cytokines, hormones, and extracellular vesicles that mediate gut microbes-muscle crosstalk and influence the gut microbes-muscle axis. Additionally, we examined how the gut microbes-muscle axis affects muscle mass, muscle strength, muscle metabolism, as well as muscle oxidative and immune status. Furthermore, we reviewed the influence of the microbes-muscle axis on muscle fiber type transition, muscle fat deposition, and meat quality. These insights illuminate the potential mechanisms by which the gut microbes-muscle axis operates in humans and animals. Thus, this review provides a theoretical foundation for future research and offers practical guidance for its application in biomedical and livestock industries.
Collapse
Affiliation(s)
- Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hong Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xuqing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
6
|
Xu Y, Huang Y, Wei S, Tian J, Huang Y, Nie Q, Zhang D. Changes in gut microbiota affect DNA methylation levels and development of chicken muscle tissue. Poult Sci 2025; 104:104869. [PMID: 39952142 PMCID: PMC11874558 DOI: 10.1016/j.psj.2025.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
The intestinal microbiome is essential in regulating host muscle growth and development. Antibiotic treatment is commonly used to model dysbiosis of the intestinal microbiota, yet limited research addresses the relationship between gut microbes and muscle growth in yellow-feathered broilers. In this study, Xinghua chickens were administered broad-spectrum antibiotics for eight weeks to induce gut microbiome suppression. We investigated the relationships between the gut microbiome and muscle growth using 16S rRNA sequencing and transcriptomic analysis. Results indicated that antibiotic treatment significantly reduced body weight, dressed weight, eviscerated weight, and breast and leg muscle weight. Microbial diversity and richness in the duodenum, jejunum, ileum, and cecum were significantly decreased. The relative abundances of Firmicutes, Actinobacteria, and Bacteroidetes declined, while Proteobacteria increased. This microbial imbalance led to 298 differentially expressed genes (DEGs) in muscle tissue, of which 67 down-regulated genes were enriched in skeletal muscle development, including MYF6, MYBPC1 and METTL21C genes essential for muscle development. The DEGs were primarily involved in the MAPK signaling pathway, calcium signaling pathway, ECM-receptor interaction, actin cytoskeleton regulation, and nitrogen metabolism. Correlation analysis showed that dysregulation of the cecal microbiome had the most substantial effect on muscle growth and development. Furthermore, intestinal microbiome dysregulation reduced DNMT3b and METTL21C mRNA expression in muscle tissue, lowered overall DNA methylation and SAM levels, and induced methylation changes that impacted skeletal muscle development. This study demonstrates that gut microbiota influence DNA methylation in muscle tissue, thereby associated with muscle growth and development.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Yunpeng Huang
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Shenghua Wei
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinghong Tian
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulin Huang
- Wens Foodstuff Group Co. Ltd., Yunfu 527400, PR China
| | - Qinghua Nie
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Dexiang Zhang
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China; Wens Foodstuff Group Co. Ltd., Yunfu 527400, PR China.
| |
Collapse
|
7
|
Cao C, Li F, Ding Q, Jin X, Tu W, Zhu H, Sun M, Zhu J, Yang D, Fan B. Potassium sodium hydrogen citrate intervention on gut microbiota and clinical features in uric acid stone patients. Appl Microbiol Biotechnol 2024; 108:51. [PMID: 38183479 PMCID: PMC10771603 DOI: 10.1007/s00253-023-12953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024]
Abstract
The high recurrence rate of renal uric acid stone (UAS) poses a significant challenge for urologists, and potassium sodium hydrogen citrate (PSHC) has been proven to be an effective oral dissolution drug. However, no studies have investigated the impact of PSHC on gut microbiota and its metabolites during stone dissolution therapy. We prospectively recruited 37 UAS patients and 40 healthy subjects, of which 12 patients completed a 3-month pharmacological intervention. Fasting vein blood was extracted and mid-stream urine was retained for biochemical testing. Fecal samples were collected for 16S ribosomal RNA (rRNA) gene sequencing and short chain fatty acids (SCFAs) content determination. UAS patients exhibited comorbidities such as obesity, hypertension, gout, and dyslipidemia. The richness and diversity of the gut microbiota were significantly decreased in UAS patients, Bacteroides and Fusobacterium were dominant genera while Subdoligranulum and Bifidobacterium were poorly enriched. After PSHC intervention, there was a significant reduction in stone size accompanied by decreased serum uric acid and increased urinary pH levels. The abundance of pathogenic bacterium Fusobacterium was significantly downregulated following the intervention, whereas there was an upregulation observed in SCFA-producing bacteria Lachnoclostridium and Parasutterella, leading to a significant elevation in butyric acid content. Functions related to fatty acid synthesis and amino acid metabolism within the microbiota showed upregulation following PSHC intervention. The correlation analysis revealed a positive association between stone pathogenic bacteria abundance and clinical factors for stone formation, while a negative correlation with SCFAs contents. Our preliminary study revealed that alterations in gut microbiota and metabolites were the crucial physiological adaptation to PSHC intervention. Targeted regulation of microbiota and SCFA holds promise for enhancing drug therapy efficacy and preventing stone recurrence. KEY POINTS: • Bacteroides and Fusobacterium were identified as dominant genera for UAS patients • After PSHC intervention, Fusobacterium decreased and butyric acid content increased • The microbiota increased capacity for fatty acid synthesis after PSHC intervention.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Feng Li
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Qi Ding
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Xiaohua Jin
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Wenjian Tu
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Hailiang Zhu
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Mubin Sun
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Fan
- Department of Urology, The Changshu Hospital Affiliated to Soochow University (Changshu No. 1 People's Hospital), Changshu, China.
| |
Collapse
|
8
|
Kang L, Wang W, Yang L, Liu T, Zhang T, Xie J, Zhai M, Zhao X, Duan Y, Jin Y. Effects of feeding patterns on production performance, lipo-nutritional quality and gut microbiota of Sunit sheep. Meat Sci 2024; 218:109642. [PMID: 39208537 DOI: 10.1016/j.meatsci.2024.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the impact of feeding patterns on the production performance, lipo-nutritional quality, and gut microbiota of Sunit sheep. A total of 24 sheep were assigned to two groups: confinement feeding (CF) and pasture feeding (PF) groups. After 90 days, the CF group exhibited significantly increased average daily gain, carcass weight, backfat thickness, and intramuscular fat content of the sheep, whereas the PF group showed significantly increased pH24h and decreased L∗ value and cooking loss of the longissimus lumborum (LL) muscle (P < 0.05). In the PF group, the contents of linoleic, α-linolenic, and docosahexaenoic acids were considerably higher and the n-6/n-3 polyunsaturated fatty acid ratio was significantly lower (P < 0.05). Furthermore, the triglyceride, cholesterol, and nonesterified fatty acid levels in the serum of the CF group significantly increased, whereas the enzyme contents of fatty acid synthase (FASN) and hormone-sensitive lipase (HSL) in the LL muscle of the PF group were markedly elevated (P < 0.05). The PF group also showed altered expression of lipid metabolism-related genes, including upregulated FASN, HSL, fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (P < 0.05). Meanwhile, differences were observed in the abundance of key bacteria and microbiota functions between the groups. Correlation analysis revealed that production performance and lipid metabolism may be related to the differential effects of bacteria. In conclusion, the transition in the feeding patterns of Sunit sheep caused changes in the gut microbial community and lipid metabolism level in the muscle as well as differences in fat deposition and meat quality.
Collapse
Affiliation(s)
- Letian Kang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Weihao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Le Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Ting Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Taiwu Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Junkang Xie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Maoqin Zhai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xin Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Yan Duan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
9
|
Wang Q, Fan D, Hu Y, Liu H, Tan B, Xie S, Chen Q. Effects of supplementation with freeze-dried Clostridium butyricum powder after replacement of fishmeal with cottonseed protein concentrate on growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. BMC Vet Res 2024; 20:519. [PMID: 39551754 PMCID: PMC11571666 DOI: 10.1186/s12917-024-04372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The present study was designed to investigate the effects of supplementation with freeze-dried Clostridium butyricum (CB) powder on the growth, immune function and intestinal health of Litopenaeus vannamei after replacing fishmeal in the diet with cottonseed protein concentrate (CPC). Six treatment groups were designed, namely the control group (CON, 25% fish meal) and five alternative groups (CPC replacing 40% fishmeal protein in the control group). Based on the alternative group, 0%, 0.065%, 0.26%, 1.04%, and 4.16% of freeze-dried CB bacterial powder (4.6 × 108 CFU/g) were added, recorded as CB 0, CB 0.065, CB 0.26, CB 1.04, and CB 4.16, respectively. Each treatment had 3 replicates of 40 shrimps (0.29 ± 0.01 g) each and breeding for 8 weeks. After the experiment, serum enzyme activities, muscle amino acids, and intestinal parameters (short-chain fatty acids, digestive enzymes, gene expression, and microbiota) were tested to explore the effects of freeze-dried CB powder in shrimp aquaculture. The results showed that the CB1.04 group had the highest final body weight, weight gain rate, and specific growth ratio (P > 0.05). Freeze-dried CB powder increased the activity of serum superoxide dismutase, glutathione peroxidase, complement 3, and complement 4. Muscle tyrosine, proline, and total essential amino acids were remarkably increased in the CB 1.04 group (P < 0.05). Propionic acid levels were elevated in the CB 1.04 and CB4.16 groups (P < 0.001). The relative expression of Dorsal, Relish, and Target of Rapamycin (TOR) genes was significantly increased in the CB 1.04 group (P < 0.01). Actinobacteria and Demequina abundance was significantly higher in the CB 1.04 group (P < 0.01). The results of the Vibrio parahaemolyticus challenge test showed the highest cumulative mortality rate (43.33%) in the CB0 group and the lowest cumulative mortality rate (20%) in the CB1.04 group. This study confirmed that freeze-dried CB powder alleviated the negative effects of CPC replacement of fish meal protein in Litopenaeus vannamei, and the optimum additive level was 2.11% (9.71 × 109 CFU/kg) as indicated by binary regression analysis of specific growth ratio.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Qiang Chen
- Bai Yang Industrial Investment Group Co., Ltd, Nanning, 530000, PR China
| |
Collapse
|
10
|
Li H, Pan C, Wang F, Li Z, Shahzad K, Huang Y, Zhao W. Multi-omics reveals the effects of dietary supplementation with Bupleuri radix branch powder on gut microbiota and lipid metabolism: insights into gut microbial-muscle interactions. Microbiol Spectr 2024; 12:e0145724. [PMID: 39436132 PMCID: PMC11619355 DOI: 10.1128/spectrum.01457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Improving livestock growth and raising the quality of livestock products have attracted much attention owing to the market's growing need for livestock products. Bupleuri Radix branches powder (BR) has a variety of health characteristics, but its effects on ruminant growth and animal product quality are still uncertain. This study explored the effects of BR on growth performance, health status, gut microbiota, and muscle lipid metabolism of Shaanxi fine-wool sheep (SFS), and examined the interaction between gut microbiota and lipid metabolism through correlation analysis. The results indicated that BR can regulate the immune function, intestinal VFAs, and enzyme activity of FSF by improving the gut microbiota, thereby affecting its muscle lipid metabolism. The lipid metabolite TG showed a strong positive correlation with the gut microbes Bacteroides and Fibrobacter, while Phosphatidylethanolamine and Phosphatidyl serine (PE and PS) showed a significant negative correlation with Fibrobacter. The above results indicate that gut microbiota and lipid metabolites interact with each other. BR has the effects of promoting SFS growth, improving body health, and improving meat quality. These findings offer new insights into improve animal growth performance and livestock product quality in modern farming. IMPORTANCE Enhancing livestock growth performance and improving meat quality are important guidelines for the development of the current animal husbandry industry; thus, we explored a comprehensive study of Bupleuri Radix (BR) on growth performance, gut microbiology, and muscle lipid metabolism in Shaanxi fine-wool sheep (SFS). Our research has found that BR could improve the growth performance of SFS and meat quality by affecting gut microbes. This study provides new solutions to improve the economic efficiency of animal husbandry.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Cheng Pan
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fuqiang Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Zengkai Li
- Shenmu Livestock Development Center, Yulin, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Wangsheng Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
11
|
Deng J, Zhou K, Feng C, Bao Y, Zhang Z, Luo W, Li M. Effect of konjac glucomannan on gut microbiota from hyperuricemia subjects in vitro: fermentation characteristics and inhibitory xanthine oxidase activity. Front Nutr 2024; 11:1465940. [PMID: 39364150 PMCID: PMC11446875 DOI: 10.3389/fnut.2024.1465940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Background The disorder of uric acid metabolism is closely associated with gut microbiota and short-chain fatty acids (SCFAs) dysregulation, but the biological mechanism is unclear, limiting the development of uric acid-lowering active polysaccharides. Konjac glucomannan (KGM) could attenuate metabolic disturbance of uric acid and modulate the gut microbiota. However, the relationship between uric acid metabolism and gut microbiota is still unknown. Methods In this study, The fecal samples were provided by healthy volunteers and hyperuricemia (HUA) patients. Fecal samples from healthy volunteers was regarded as the NOR group. Similarly, 10% HUA fecal suspension was named as the HUA group. Then, fecal supernatant was inoculated into a growth basal medium containing glucose or KGM, and healthy fecal samples were designated as the NOR-GLU and NOR-KGM groups, while HUA fecal samples were designated as the HUA-GLU and HUA-KGM groups. All samples were cultured in an anaerobic bag system. After fermentation for 24 h, the samples were collected for further analysis of composition of intestinal microbiota, SCFAs concentration and XOD enzyme activity. Results The results showed that KGM could be utilized and degraded by the gut microbiota from HUA subjects, and it could modulate the composition and structure of their HUA gut microbiota to more closely resemble that of a healthy group. In addition, KGM showed a superior modulated effect on HUA gut microbiota by increasing Megasphaera, Faecalibacterium, Lachnoclostridium, Lachnospiraceae, Anaerostipes, and Ruminococcus levels and decreasing Butyricicoccus, Eisenbergiella, and Enterococcus levels. Furthermore, the fermentation solution of KGM showed an inhibitory effect on xanthine oxidase (XOD) enzyme activity, which might be due to metabolites such as SCFAs. Conclusion In conclusion, the effect of KGM on hyperuricemia subjects was investigated based on the gut microbiota in vitro. In the present study. It was found that KGM could be metabolized into SCFAs by HUA gut microbiota. Furthermore, KGM could modulate the structure of HUA gut microbiota. At the genus level, KGM could decrease the relative abundances of Butyricicoccus, Eisenbergiella, and Enterococcus, while Lachnoclostridium and Lachnospiraceae in HUA gut microbiota were significantly increased by the addition of KGM. The metabolites of gut microbiota, such as SCFAs, might be responsible for the inhibition of XOD activity. Thus, KGM exhibited a superior probiotic function on the HUA gut microbiota, which is expected as a promising candidate for remodeling the HUA gut microbiota.
Collapse
Affiliation(s)
- Jie Deng
- Shunde Vocational and Technical College, Foshan, China
| | - Kai Zhou
- Institute of Jiangxi Oil-Tea Camellia, College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Caimin Feng
- Shunde Vocational and Technical College, Foshan, China
| | - Yilu Bao
- Shunde Vocational and Technical College, Foshan, China
| | - Zhiming Zhang
- Shunde Vocational and Technical College, Foshan, China
| | - Wenfeng Luo
- Central Laboratory of Panyu Central Hospital, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Xu L, Mao T, Xia M, Wu W, Chen J, Jiang C, Zeng T, Tian Y, Lu L, Cai Z. New evidence for gut-muscle axis: Lactic acid bacteria-induced gut microbiota regulates duck meat flavor. Food Chem 2024; 450:139354. [PMID: 38636385 DOI: 10.1016/j.foodchem.2024.139354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The interaction between gut microbiota and muscles through the gut-muscle axis has received increasing attention. This study attempted to address existing research gaps by investigating the effects of gut microbiota on meat flavor. Specifically, lactic acid bacteria were administered to ducks, and the results of e-nose and e-tongue showed significantly enhanced meat flavor in the treatment group. Further analyses using GC-MS revealed an increase in 6 characteristic volatile flavor compounds, including pentanal, hexanal, heptanal, 1-octen-3-ol, 2,3-octanedione, and 2-pentylfuran. Linoleic acid was identified as the key fatty acid that influences meat flavor. Metagenomic and transcriptomic results further confirmed that cecal microbiota affects the duck meat flavor by regulating the metabolic pathways of fatty acids and amino acids, especially ACACB was related to fatty acid biosynthesis and ACAT2, ALDH1A1 with fatty acid degradation. This study sheds light on a novel approach to improving the flavor of animal-derived food.
Collapse
Affiliation(s)
- Ligen Xu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tingting Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Chen
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunqing Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Jinwu Agricultural Development Co., Jinhua 321000, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Shao Y, Xu J, Wang M, Ren Y, Wei M, Tian B, Luo J, Loor JJ, Shi H. Preliminary Results on the Effects of Soybean Isoflavones on Growth Performance and Ruminal Microbiota in Fattening Goats. Animals (Basel) 2024; 14:1188. [PMID: 38672337 PMCID: PMC11047704 DOI: 10.3390/ani14081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Soybean isoflavones (SIFs), a group of secondary metabolites, have antioxidant, anti-inflammatory, and hormone-like activities. Supplementation with SIFs in the diet was reported to promote lactation performance in ruminants. The present study was performed to further decipher the effect of various concentrations of SIFs on growth and slaughter performance, serum parameters, meat quality, and ruminal microbiota in fattening goats. After a two-week acclimation, a total of 27 5-month-old Guanzhong male goats (18.29 ± 0.44 kg) were randomly assigned to control (NC), 100 mg/d SIF (SIF1), or 200 mg/d SIF (SIF2) groups. The experimental period lasted 56 days. The weight of the large intestine was greater (p < 0.05) in the SIF1 and SIF2 groups compared with the NC group. Meat quality parameters indicated that SIF1 supplementation led to lower (p < 0.05) cooking loss and shear force (0.05 < p < 0.10). The 16S rRNA sequencing analysis demonstrated that SIF1 supplementation led to lower (p < 0.05) proportions of Papillibacter and Prevotellaceae_UCG-004 but greater (p < 0.05) CAG-352 abundance in the rumen; these responses might have contributed to the improvement in production performance. In conclusion, meat quality and ruminal microbiome could be manipulated in a positive way by oral supplementation with 100 mg/d of SIFs in fattening goats. Thus, this study provides new insights and practical evidence for the introduction of SIFs as a novel additive in goat husbandry.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Junhong Xu
- Weinan Agricultural Products Quality and Safety Inspection and Testing Center, Weinan 714000, China;
| | - Mengyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Yalun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Manhong Wei
- College of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Bowen Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| |
Collapse
|
14
|
Liu J, Han L, Hou S, Gui L, Yuan Z, Sun S, Wang Z, Yang B. Integrated metabolome and microbiome analysis reveals the effect of rumen-protected sulfur-containing amino acids on the meat quality of Tibetan sheep meat. Front Microbiol 2024; 15:1345388. [PMID: 38389537 PMCID: PMC10883651 DOI: 10.3389/fmicb.2024.1345388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction This study investigated the effects of rumen-protected sulfur-containing amino acids (RPSAA) on the rumen and jejunal microbiota as well as on the metabolites and meat quality of the longissimus lumborum (LL) in Tibetan sheep. Methods By combining 16S rDNA sequencing with UHPLC-Q-TOF MS and Pearson correlation analysis, the relationship between gastrointestinal microbiota, muscle metabolites and meat quality was identified. Results The results showed that feeding RPSAA can increase the carcass weight, abdominal fat thickness (AP-2 group), and back fat thickness (AP-2 and AP-3 group) of Tibetan sheep. The water holding capacity (WHC), texture, and shear force (SF) of LL in the two groups also increased although the fatty acids content and brightness (L*) value significantly decreased in the AP-2 group. Metabolomics and correlation analysis further showed that RPSAA could significantly influence the metabolites in purine metabolism, thereby affecting L* and SF. In addition, RPSAA was beneficial for the fermentation of the rumen and jejunum. In both groups, the abundance of Prevotella 1, Lachnospiraceae NK3A20 group, Prevotella UCG-003, Lachnospiraceae ND3007 group in the rumen as well as the abundance of Eubacterium nodatum group and Mogibacterium group in the jejunum increased. In contrast, that of Turicibacter pathogens in the jejunum was reduced. The above microorganisms could regulate meat quality by regulating the metabolites (inosine, hypoxanthine, linoleic acid, palmitic acid, etc.) in purine and fatty acids metabolism. Discussion Overall, reducing the levels of crude proteins in the diet and feeding RPSAA is likely to improve the carcass quality of Tibetan sheep, with the addition of RPMET (AP-2) yielding the best edible quality, possibly due to its ability to influence the gastrointestinal microbiota to subsequently regulate muscle metabolites.
Collapse
Affiliation(s)
- JiQian Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|